
����������
�������

Citation: Zhang, T.; Kitai, A.H. Effect

of Microindentation on

Electroluminescence of SiC P-I-N

Junctions. Materials 2022, 15, 534.

https://doi.org/10.3390/

ma15020534

Academic Editor: Toma Stoica

Received: 24 November 2021

Accepted: 6 January 2022

Published: 11 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

materials

Article

Effect of Microindentation on Electroluminescence of SiC
P-I-N Junctions
Tingwei Zhang 1,* and Adrian H. Kitai 1,2,*

1 Department of Materials Science and Engineering, McMaster University, Hamilton, ON L8S 4L7, Canada
2 Department of Engineering Physics, McMaster University, Hamilton, ON L8S 4L7, Canada
* Correspondence: zhangt10@mcmaster.ca (T.Z.); kitaia@mcmaster.ca (A.H.K.)

Abstract: The influence of microindentation on the electroluminescence of silicon carbide was studied
in forward-biased 4H SiC p-i-n junctions. Four spectral regions at approximately 390, 420, 445 and
500 nm initially observed on virgin samples strongly depend, in regard to magnitude, on the condition
of the starting die. These spectral regions may be interpreted as arising from either phonon-assisted
band-to-band transitions or from defect-related transitions. The same SiC die were then subjected to
mechanical damage brought about by a series of closely spaced microindentations directed approxi-
mately perpendicular to the c-axis. The spectra taken after a first set and subsequently a second set
of microindentations are distinct from the initial spectra in all cases, and differences are interpreted as
being due to the modification of existing defects or additional defects being generated mechanically. The
influence of microindentation on the ideality factor is measured and discussed. Measured light flux with
respect to a standard light source is also shown at each microindentation stage.

Keywords: SiC; microindentation; electroluminescence

1. Introduction and Background

Due to the nature of its strong covalent bonding, relatively high thermal conductivity
and wide bandgap, SiC is commonly used for high-temperature, high-radiation and high-
power applications. It is also known for a low formation energy difference between
polytypes, resulting in more than 200 SiC polytypes with distinct stacking sequences [1].
Among all the SiC polytypes, the most commercially available are 3C-SiC, 4H-SiC and 6H-
SiC [2]. The properties for each polytype can be seen in Table 1 [3]. In spite of the identical
chemical composition of each SiC polytype, they have distinct electronic properties.

Table 1. Electronic properties of SiC polytypes [3].

Property 3C-SiC 4H-SiC 6H-SiC

Bandgap Eg
(eV), 300 K 2.36 3.26 3.02

Electron mobility(
cm2V−1s−1

) 1000 //c-axis:1200; ⊥c-axis: 1020 //c-axis: 100; ⊥c-axis: 450

The recent achievement of high quality 8-inch vapor-grown SiC wafers was motivated
by the electric vehicle and sustainable power generation sectors [4]. SiC is also used as
the substrate material for high-performance GaN light-emitting diodes (LEDs) [5]. It is
a historical fact that SiC is one of the oldest LED materials, and it played a role in the
discovery of the LED [6]. The indirect bandgap of SiC in which radiative recombination is
forbidden prevents its use as an active LED material. However, visible radiation can still be
observed in virtually all forward-biased SiC junctions, owing to deviations from the perfect
lattice caused by phonons, point defects, line defects, stacking faults and surfaces.
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The study of SiC p-n or p-i-n junction electroluminescence provides valuable insight
into the recombination mechanisms in SiC and can help identify defects [7]. In 4H-SiC
material, a peak at 390 nm that is commonly observed from the spectral data is associated
with phonon-assisted band-to-band recombination. The indirect bandgap of a non-faulted
4H-SiC has a corresponding band-edge wavelength of 380 nm [8], where the 10 nm longer
emission wavelength can be explained by well-studied SiC phonon energies on the order
of 100 meV [9].

From the literature, three additional peaks located at 420, 460 and 480 nm have been
detected that provide evidence of recombination at various stacking faults [10–12]. Similarly,
in other previous work, peaks at 390, 424 and 540 nm were observed from the PL mapping
of a 4H-SiC sample. A structural analysis by scanning TEM confirmed the existence of
stacking faults [13]. The peak at 424 nm indicates single Shockley stacking fault formation,
and the 540 nm peak is attributed to the band edge recombination from 3C-SiC polytype
inclusions inside the 4H-SiC matrix, considering that the bandgap of the 3C polytype is
2.36 eV.

In addition to experimental results, modeling by using Density Functional Theory also
can help us analyze the change of radiative recombination energy resulting from stacking
faults in 4H-SiC [14]. Stacking faults may behave similarly to quantum well structures [15],
where electrons get trapped and recombine with a corresponding emission of sub-bandgap
photons [16]. Due to the ease of formation, stacking faults are known to cause a serious
problem for device stability, as they can also be induced at high current density during
operation [17]. The EL data in an experiment showed a sharp 424 nm peak, along with a
broad green emission peaked around 530 to 540 nm. In this case, recombination-induced
stacking faults (RISFs) were found to be responsible for the 424 nm peak, whereas the broad
green emission range was caused by neighboring partial dislocations [18].

The identification of such fluorescent defect centers allows further study of defect-
induced device degradation or future applications, such as quantum computing and single
photon emitters [19,20]. In this work, commercially available 4H-SiC p-i-n junctions from a
SiC transistor device were studied, and microindentation was performed on one side of the
p-i-n junctions. The effects of both grown-in defects and subsequent defects introduced by
mechanical damage were studied. The recombination mechanism corresponding to the EL
spectrum peaks is discussed, along with a series of electrical characterizations of device
performance.

2. Sample Preparation and Measurements

Three 4H-SiC junction transistors purchased from GeneSiC (GA20JT12-263) (Dulles,
VA, USA) were mounted into epoxy pucks (Electron Microscopy Sciences, Hatfield, PA,
USA) with connections to the base-collector p-i-n junction for convenience of holding and
clamping during the surface exposure for optical and electronic testing. A smooth and
optically clear die edge surface close to the active junction area was obtained after grinding
into the original package by using SiC sandpaper (Metlab, Niagara Falls, NY, USA) with
grits between 800 and 1200 for the final polish. Samples 1, 2 and 3 were oriented differently
during grinding and polishing. Inevitably, samples were subjected to unavoidable heat and
mechanical stress due to the soldering, grinding and the polishing process. Light emitted
from the exposed die surface of each sample was measured and analyzed.

Each die consists of an NPN bipolar junction transistor with interdigitated base and
emitter electrodes, as shown in Figure 1. Inside our sample, the p-type base and n-type
emitter intersect with each other periodically with electrode connection on the top of each
junction and a n-type collector underneath the interdigitated structure. Samples 1 and 2
were exposed at the direction perpendicular to those interdigitations, whereas Sample 3
was exposed from the direction parallel to such a structure. Specifics of the geometry of the
exposed die surface are later described in detail for each sample.
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Figure 1. A typical interdigitated structure of a bipolar junction transistor.

EL spectra were obtained by using a grating spectrometer Optometrics Corp. DMC1-
03 (Littleton, CO, USA) with an avalanching photodiode Hamamatsu S12053 (Hamamatsu,
Japan) operated at 158V reverse bias. Data were taken at room-temperature ambient
conditions, with 0.2 A current flow across the base-collector junction. Samples were then
subjected to indentation by using a micro-hardness tester (CLEMEX Vickers micro-hardness
tester, Longueuil, Canada) to generate a first stage of microindentations to the polished
sample edge and near the surface of the sample where the interdigitation is located. After
repeating the measurement of spectra, each sample was subjected to a second set of
microindentations (see Table 2 for details).

Table 2. Details of sample preparation.

Sample Number Direction θ
Load

(Gram-Force)
Number of Stage

1 Indentation

Total Number
after Stage 2
Indentation

Sample 1 Die edge perpendicular
to interdigitations 90 300 7 13

Sample 2 Edge perpendicular to
interdigitations 100 200 11 22

Sample 3 Edge parallel to
interdigitations 90 200 11 22

Sample 1 was ground and polished in a direction on an edge face perpendicular to
the interdigitations and the c-axis of the 4H SiC die, as shown in Figure 2. The sample was
not ground deep into the active junction area. Visible-light EL emission can be seen from
the sample in the form of a light stripe, which corresponds to the edge view of the active
region at the junction. The first and second stages of microindentations are also shown,
appearing as a series of green emission points near the emission stripe.

The spectrum of Sample 1, as shown in Figure 3, indicates two strong peaks located at
390 and 445 nm and a long wavelength peak that is broadened and ranges from 480 nm to
500 nm, depending on the indentation condition.

The polished face of Sample 2 was ground and polished in a direction tilted at 100 de-
grees relative to the c-axis, as shown in Figure 4, and the interdigitated structure can
now be seen in the optical micrograph as light stripes, due to this slightly tilted angle
relative to an edge face. The micro-hardness tester load was reduced to 200 gf for Sample
2. As in Sample 1, the spectrum of Sample 2, shown in Figure 5, also indicates two strong
peaks located near 390 and 445 nm and a third broadened green peak located around 480
to 500 nm. In addition to spectral measurements, the diode ideality factor and relative
intensity data were collected to further analyze the influence of microindentation. For
Sample 2, the ideality factor n increased from 0.95 before indentations to 1.02 after Stage
1 and to 1.13 after Stage 2. This was calculated based on exponential regression of the IV
graph, as presented in Figure 6. Notice that, at a high current, the temperature starts to
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affect IV characteristics of Sample 2, shown as a steeper line, whereas, in Sample 3, the IV
characteristic continues to follow an exponential regression. The relative light flux emitted
from the partly exposed SiC die was obtained by using an integrating sphere (Newport,
Irvine, CA, USA). To enable a valid comparison of relative light flux between samples, a
reference LED light source (Cree, Durham, NC, USA) was measured in the integrating
sphere, and these reference data were used to correct for experimental inconsistencies when
switching samples in the integrating sphere.
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Figure 3. Spectra of Sample 1 before indentations and after Stages 1 and 2 of indentations. Note
the change in the spectrum particularly after Stage 1 of indentations (spectra are normalized at the
maximum value). All sample were connected to a DC power supply with 0.2 A current flow.

Sample 3 was edge-polished in a direction with θ = 90
◦

relative to the c-axis and
parallel to the interdigitations, as shown in Figure 7. Figure 8 shows a strong EL peak
of Sample 3 at 420 nm, suggesting the formation of single Shockley stacking faults [17].
Sample 3 underwent 200 gf tester load during microindentation. The spectra and ideality
factor were obtained for this sample. Selective I–V data of Sample 3 are presented in
Figure 6. The ideality factor n of Sample 3 before indentation is 2.12. However, the voltage
reading sometimes fluctuated over a 100 mV range during the I–V testing after both Stages
1 and 2, especially after second-stage indentation, thus making the interpretation of the
result somewhat unreliable. The IV data of Sample 3 after first-stage indentation in Figure 6
were taken when the device was stable. The instability of SiC junctions with stacking faults
is well-known [21]. The light-flux data of Sample 3 are presented in Table 3.
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Table 3. PV reading and intensity ratio of Samples 2 and 3.

Sample Number Before Microindentation After Stage 1 After Stage 2

Sample 2 Relative light flux 1.00 * 1.77 approx 2.28
Sample 3 Relative light flux 1.00 * 2.70 2.29

* Relative brightness is normalized to the reading before microindentation for each sample.

3. Discussion

The spectra of Samples 1 and 2 show peaks at 390 and 445 nm, along with a third
480–500 nm broad green emission peak. While the 390 nm emission indicates a phonon-
assisted band-to-band recombination [9], the exact mechanisms of the other peaks remain
somewhat speculative. From Reference [17], we note that peaks at 455, 480 and 500 nm
are evidence of quadruple Shockley SFs (4SSFs), triple Shockley SFs (3SSFs) and double
Shockley SFs (2SSFs), respectively. Although there is no direct evidence to indicate that the
observed peaks are originated from stacking faults, it would still be a valid assumption
that there may be a stacking-sequence variation in the vicinity of the interdigitated junction
areas. To further analyze the change of spectra due to microindentation, we normalized
our spectra relative to the 390 nm band-to-band recombination for each sample, as shown
in Figures 9 and 10.
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In general, either plastic deformation along the slip direction or a brittle fracture
across the cleavage plane results in microscopic defects being generated in SiC when a
sufficient external stress is applied [22]. When the temperature is below the brittle-to-
ductile transition temperature (TBDT), a limited plastic deformation driven by the partial
dislocation motion is expected [23]. Dislocation nucleation and extended stacking faults
were observed previously by others under TEM testing at the condition below the brittle-
to-ductile temperature [24]. Meanwhile, a photoluminescence test result of 6H-SiC from
Weifang Lu et al. has also shown that carbon-related surface defects would also increase
the emission in the green region [25] which assembles microcracks if SiC underwent brittle
fracture. Based on the normalized figure above, those changes of structure due to either
microcracks, dislocation motion or a combination of both have caused the broadening of
the green-emission region in both Samples 1 and 2.

In Figure 9, the relative intensity of the peak at 445 nm and the broadened green region
of Sample 2 have increased noticeably relative to the band-to-band recombination after
microindentations. The increase of intensity shown in Table 3 supports the increase of
emission in the green region in Sample 2, since there is no other source of increased light
flux. For Sample 1, however, the change of relative intensity of 445 nm and green-emission
region to the band-to-band recombination shows the opposite result. This may be due to
Sample 2 having a tilted angle (see Figure 4), but it is more likely owed to the fact that
Sample 2’s surface was ground deeper into the die edge, entering the active region of the
junction. The mechanically induced defects would therefore have more influence within
the junction area and would increase the localized defect-driven green emissions. Moreover,
the difference between the peak location before and after indentation may also indicate a
shift of stacking sequence which could be induced by the external shear stress [17].

In addition to these observations, each as-received SiC sample may possess distinct
defect types and structure at the junction interface, and this could be an additional explana-
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tion as to the distinctions in their spectra, considering they were not manufactured for LED
application. Indications of pre-existing stacking fault formations have been observed as
varying from sample to sample in our previous work [26].

Evidence of this hypothesis is from Sample 3. Despite having unstable IV data, the
spectrum of Sample 3 shows a dominant 420 nm peak at all microindentation stages. This
420 nm peak is independent of the polish direction. As mentioned before, it is known that
stacking faults constitute a prominent defect in SiC and can be active as a quantum well
structure with an ideality factor greater than 2 [27]. An interesting observation from the
normalized spectrum is that, after more indentations are formed, the 420 nm peak becomes
more significant with respect to the 390 nm peak, with an increased overall intensity (shown
in Table 3) after the first indentation stage. One way to interpret this is that the band-to-
band recombination became less favored when more defects were introduced into the
system, or the stress applied during microindentations extended the pre-existing stacking
faults [24,28]. In addition, the broadening of the green emission after each stage is also
relatively small compared to the other two samples.

A camera image of all three samples is shown in Figure 11, revealing how the differ-
ences of the spectra affect the color from sample to sample.
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4. Conclusions

Mechanically induced defects by using microindentation were introduced to three
4H-SiC samples. EL spectra were studied at each stage of the microindentation. All three
samples had a broadened green emission after each indentation stage, while having distinct
intrinsic spectra and intensity data. Sample 3, with a strong 420 nm peak, indicates that
stacking-fault-associated recombination dominated the overall radiative recombination.
Most of the observed changes to the samples can be explained by the microscopic defects
generated during the microindentation process that favor or suppress specific regions of
light emission based on the known literature modeling of SiC defects. The diode-ideality-
factor results are consistent with a substantial increase in defect-mediated recombination
after microindentation.
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