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Abstract
As	one	of	the	key	components	in	model-	informed	drug	discovery	and	develop-
ment,	 physiologically-	based	 pharmacokinetic	 (PBPK)	 modeling	 linked	 with	
in vitro-	to-	in vivo	extrapolation	(IVIVE)	is	widely	applied	to	quantitatively	pre-
dict	 drug–	drug	 interactions	 (DDIs)	 on	 drug-	metabolizing	 enzymes	 and	 trans-
porters.	This	 study	aimed	 to	 investigate	an	 IVIVE	 for	 intestinal	P-	glycoprotein	
(Pgp,	ABCB1)-	mediated	DDIs	among	three	Pgp	substrates,	digoxin,	dabigatran	
etexilate,	 and	 quinidine,	 and	 two	 Pgp	 inhibitors,	 itraconazole	 and	 verapamil,	
via	 PBPK	 modeling.	 For	 Pgp	 substrates,	 assuming	 unbound	 Michaelis-	Menten	
constant	(Km)	to	be	intrinsic,	in vitro-	to-	in vivo	scaling	factors	for	maximal	Pgp-	
mediated	efflux	rate	(Jmax)	were	optimized	based	on	the	clinically	observed	results	
without	 co-	administration	 of	 Pgp	 inhibitors.	 For	 Pgp	 inhibitors,	 PBPK	 models	
utilized	the	reported	in vitro	values	of	Pgp	inhibition	constants	(Ki),	1.0 μM	for	
itraconazole	and	2.0 μM	for	verapamil.	Overall,	the	PBPK	modeling	sufficiently	
described	Pgp-	mediated	DDIs	between	these	substrates	and	inhibitors	with	the	
prediction	errors	of	less	than	or	equal	to	±25%	in	most	cases,	suggesting	a	reason-
able	IVIVE	for	Pgp	kinetics	in	the	clinical	DDI	results.	The	modeling	results	also	
suggest	that	Pgp	kinetic	parameters	of	both	the	substrates	(Km	and	Jmax)	and	the	
inhibitors	(Ki)	are	sensitive	to	Pgp-	mediated	DDIs,	thus	being	key	for	successful	
DDI	prediction.	It	would	also	be	critical	to	incorporate	appropriate	unbound	in-
hibitor	concentrations	at	the	site	of	action	into	PBPK	models.	The	present	results	
support	 a	 quantitative	 prediction	 of	 Pgp-	mediated	 DDIs	 using	 in  vitro	 param-
eters,	which	will	significantly	increase	the	value	of	in	vitro	studies	to	design	and	
run	clinical	DDI	studies	safely	and	effectively.

StudyHighlights
WHATISTHECURRENTKNOWLEDGEONTHETOPIC?
Physiologically-	based	 pharmacokinetic	 (PBPK)	 modeling	 is	 increasingly	 being	
applied	to	predict	transporter-	mediated	drug–	drug	interactions	(DDIs);	however,	
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INTRODUCTION

Model-	informed	drug	discovery	and	development	(MID3)	
has	 become	 an	 important	 framework	 to	 quantitatively	
maximize	 the	 benefit-	risk	 profiles	 of	 new	 molecular	 en-
tities	during	their	development.	One	of	 the	critical	com-
ponents	 in	 the	 MID3	 strategy	 is	 physiologically-	based	
pharmacokinetic	 (PBPK)	 modeling,	 which	 is	 a	 mecha-
nistic	 framework	 to	 quantitatively	 describe	 in  vivo	 drug	
disposition	profiles	based	on	drug-		and	system-	dependent	
parameters.1–	3	By	integrating	in vitro-	to-	in vivo	extrapola-
tion	(IVIVE)	with	PBPK	modeling,	PBPK-	IVIVE	is	widely	
applied	to	predict	in vivo	disposition	profiles	of	drugs	in	
various	clinical	studies,	such	as	drug-	drug,	drug-	disease,	
and	 drug-	gene	 interactions,	 that	 have	 not	 been	 tested	
yet.	For	 the	prediction	of	drug-	drug	 interactions	(DDIs),	
regulatory	authorities	in	general	have	accepted	the	model	
outcomes	on	DDIs	involving	drug-	metabolizing	enzymes,	
particularly	 CYPs,	 whereas	 the	 predictive	 performance	
of	 transporter-	mediated	DDIs	has	not	 reached	sufficient	
levels	of	confidence	yet.1–	3	One	of	the	reasons	for	the	lat-
ter	 is	 that	 the	 interpretation	 of	 clinical	 significance	 of	
transporter-	mediated	DDIs	is	typically	more	complicated	
than	 that	 of	 drug-	metabolizing	 enzyme-	mediated	 DDIs.	
In	addition,	there	are	knowledge	gaps	that	limit	the	con-
fidence	of	DDI	predictions	to	model	transporter	kinetics	
with	appropriate	drug	exposures	at	the	site	of	action.3,4

One	 of	 the	 adenosine	 triphosphate-	binding	 cassette-	
transporters,	 ABCB1	 (P-	glycoprotein	 [Pgp]),	 has	 been	
extensively	studied.5–	7	It	has	been	recognized	widely	that	

Pgp	plays	a	critical	role	for	a	variety	of	drugs	in	affecting	
the	 rate	 and	 extent	 of	 their	 absorption.	 Despite	 recently	
increased	 understanding	 of	 the	 role	 of	 Pgp	 in	 pharma-
cokinetics,	it	is	still	challenging	to	accurately	predict	the	
fraction	 of	 the	 dose	 absorbed	 (Fa)	 for	 Pgp	 substrates	 via	
PBPK	modeling,	largely	due	to	several	IVIVE	factors,	such	
as	solubility/dissolution,	permeability,	and	transporter	ki-
netics.	 Consequently,	 it	 is	 difficult	 to	 quantitatively	 pre-
dict	 intestinal	 Pgp-	mediated	 DDIs	 (Pgp-	DDIs)	 from	 an	
IVIVE	 perspective	 for	 both	 substrates	and	 inhibitors.4,8,9	
Knowledge	gaps	still	remain	in	establishing	an	IVIVE	for	
Pgp	 kinetics	 of	 both	 substrates	 (e.g.,	 Michaelis-	Menten	
constant	[Km]	and	maximal	efflux	rate	[Jmax])	and	inhib-
itors	(e.g.,	 inhibition	constant	[Ki]).	In	fact,	 the	US	Food	
and	Drug	Administration	(FDA)	indicates	in	their	reviews	
that	there	is	uncertainty	in	quantitatively	translating	Pgp	
Ki	values	from	in vitro	to	in vivo	in	the	PBPK	approach.10

In	this	study,	we	have	investigated	an	IVIVE	for	Pgp-	
DDIs	 via	 PBPK	 modeling.	 We	 selected	 three	 Pgp	 sub-
strates,	digoxin,	dabigatran	etexilate,	and	quinidine,	and	
two	Pgp	inhibitors,	itraconazole	and	verapamil.	Digoxin	is	
largely	excreted	into	urine	as	the	unchanged	drug	whereas	
quinidine	is	mainly	metabolized	by	CYP3A	in	liver	with	a	
moderate	excretion	into	urine.11,12	Quinidine	also	inhibits	
CYP2D6,	 CYP3A,	 and	 Pgp.13,14	 Dabigatran	 etexilate	 is	 a	
prodrug	that	is	metabolized	extensively	by	carboxylester-
ases	 to	 the	 pharmacologically	 active	 moiety,	 dabigatran,	
which	 is	 not	 a	 Pgp	 substrate.15,16	 Digoxin	 is	 categorized	
as	class	3	 in	the	Biopharmaceutics	Classification	System	
(BCS)	whereas	dabigatran	etexilate	and	quinidine	are	BCS	

there	are	currently	knowledge	gaps	that	limit	the	confidence	of	DDI	predictions	
for	modeling	transporter	kinetics	of	both	substrates	and	inhibitors.
WHATQUESTIONDIDTHISSTUDYADDRESS?
The	aim	of	this	study	was	to	quantitatively	investigate	an	in vitro-	to-	in vivo	ex-
trapolation	 (IVIVE)	 for	 intestinal	 Pgp-	DDIs	 between	 three	 Pgp	 substrates,	 di-
goxin,	dabigatran	etexilate,	and	quinidine,	and	two	Pgp	inhibitors,	itraconazole	
and	verapamil.	The	PBPK-	IVIVE	approach	utilized	Pgp	kinetic	parameters	deter-
mined	in vitro	such	as	unbound	Michaelis-	Menten	constants	and	maximal	efflux	
rates	for	the	substrates	and	inhibition	constants	for	the	inhibitors.
WHATDOESTHISSTUDYADDTOOURKNOWLEDGE?
The	present	PBPK-	IVIVE	approach	reasonably	described	clinically	observed	Pgp-	
DDI	 results,	 suggesting	a	consistent	 IVIVE	 for	Pgp	kinetics.	The	present	mod-
eling	approach	can	be	applicable	to	predict	Pgp-	DDIs	with	other	Pgp	substrates	
and	inhibitors.
HOW MIGHT THIS CHANGE DRUG DISCOVERY, DEVELOPMENT,
AND/ORTHERAPEUTICS?
The	present	PBPK-	IVIVE	results	support	a	quantitative	Pgp-	DDI	prediction	using	
in vitro	Pgp	kinetic	parameters,	thus	presenting	advancement	toward	quantita-
tive	Pgp-	DDI	prediction	 in	clinical	 studies	and/or	case	scenarios	 that	have	not	
been	tested	clinically	yet.
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class	 1	 drugs.17	 These	 Pgp	 substrates	 are	 hence	 consid-
ered	soluble	at	clinical	doses.	We	have	previously	devel-
oped	and	verified	the	PBPK	models	of	digoxin,	dabigatran	
etexilate,	and	quinidine	to	adequately	describe	rifampin-	
mediated	DDIs	due	to	intestinal	Pgp	induction.18

Regarding	 Pgp	 inhibitors	 used	 in	 this	 study,	 itracon-
azole	 and	 verapamil	 not	 only	 inhibit	 Pgp	 but	 also	 in-
hibit	 CYP3A.8,19,20	 In	 addition,	 the	 primary	 metabolites	
of	 itraconazole	 and	 verapamil,	 hydroxyitraconazole	 and	
norverapamil,	 respectively,	 also	 inhibit	 both	 Pgp	 and	
CYP3A.21,22	 PBPK	 models	 of	 itraconazole	 and	 hydroxy-
itraconazole	have	mainly	been	reported	as	CYP3A	inhib-
itors,	 whereas	 one	 reported	 PBPK	 model	 included	 Pgp	
inhibition	 to	 predict	 the	 DDI	 with	 digoxin.23–	26	The	 Pgp	
Ki	value	used	for	this	model	was	0.008 μM	for	itraconazole	
without	inputs	for	hydroxyitraconazole.	PBPK	models	for	
verapamil	and	norverapamil	were	reported	to	account	for	
the	effects	of	both	Pgp	and	CYP3A	inhibition	on	DDIs	with	
digoxin	and	midazolam,	respectively.20	Subsequently,	the	
vendor-	verified	verapamil	and	norverapamil	models	from	
Simcyp	(Certara	UK	Ltd.,	Simcyp	Division,	Sheffield,	UK)	
have	been	applied	 to	 the	DDI	prediction	with	bosutinib,	
dabigatran	 etexilate,	 and	 rivaroxaban	 with	 or	 without	
modifications.27–	30	 Pgp	 Ki	 values	 used	 in	 these	 models	
were	 0.10	 to	 0.16  μM	 for	 verapamil	 and	 0.04	 to	 0.3  μM	
for	 norverapamil,	 whereas	 PBPK	 models	 often	 utilized	
the	 lower	 end	 of	 the	 reported	 in  vitro	 Ki	 values	 as	 the	
worst-	case	 scenario.	 Overall,	 in	 these	 reports,	 only	 one	
Pgp	substrate	was	used	for	the	model	verification	and/or	
application,	resulting	in	no	comparisons	of	the	predictive	
model	 performance	 among	 the	 different	 Pgp	 substrates.	
Furthermore,	 different	 Ki	 values	 of	 Pgp	 inhibitors	 have	
been	used	for	DDI	prediction	with	or	without	their	metab-
olites.	 In	 the	present	 study,	we	have	 therefore	evaluated	
the	predictive	model	performance	of	PBPK-	IVIVE	on	clin-
ical	DDI	studies	between	these	substrates	and	inhibitors.

METHODS

PBPKmodelingoutline

A	commercially	available	dynamic	PBPK	model,	Simcyp	
population-	based	 simulator	 (version	 19.1),	 was	 used	 to	
simulate	pharmacokinetics	of	 the	Pgp	substrates	and	in-
hibitors.	 The	 advanced	 dissolution,	 absorption,	 and	 me-
tabolism	 (ADAM)	 model	 implemented	 in	 Simcyp	 was	
utilized	to	predict	Fa	and	a	fraction	of	the	dose	escaping	
intestinal	 first-	pass	 metabolism	 (Fg).	 Simulation	 of	 all	
clinical	trials	was	performed	with	a	virtual	default	popula-
tion	of	100	healthy	volunteers	in	10	trials	of	10	subjects,	
each	aged	20	to	50 years	with	a	female/male	ratio	of	0.5.	
Clinical	trial	designs	in	the	simulations	were	primarily	set	

as	 the	 study	 design	 reported	 in	 the	 literature	 described	
below.

PBPKmodelinputparameters

Input	parameters	of	Pgp	inhibitors	and	substrates	in	the	
PBPK	 models	 are	 summarized	 in	 Appendix	 S1.	 For	 Pgp	
inhibitors,	 compound	 files	 of	 itraconazole	 and	 hydrox-
yitraconazole	were	obtained	from	the	 literature	whereas	
those	 of	 verapamil	 and	 norverapamil	 were	 from	 the	
Simcyp	library.25	These	files	were	modified,	such	as	Pgp	
Ki	inputs	in	the	ADAM	model,	and	then	verified	based	on	
the	clinical	results,	as	described	in	Appendix	S1.	In vitro	
half	maximal	 inhibitory	concentration	 (IC50)	 for	Pgp	 in-
hibition	by	itraconazole,	hydroxyitraconazole,	verapamil,	
and	norverapamil	against	digoxin	in	Caco-	2	cell	monolay-
ers	were	obtained	from	the	database	in	Drug	Interaction	
Solutions	 (DIDB	 database;	 University	 of	 Washington,	
Seattle,	WA).	Assuming	Ki	was	half	of	the	IC50	(to	be	con-
servative),	Ki	values	used	for	PBPK	modeling	were	1.0 μM	
for	itraconazole,	0.8 μM	for	hydroxyitraconazole,	2.0 μM	
for	verapamil,	0.15 μM	for	norverapamil,	and	0.8 μM	for	
quinidine,	as	described	in	Appendix	S1.	In	addition,	itra-
conazole	Ki	value	of	0.22 μM	toward	dabigatran	etexilate	
in	Caco-	2	cell	monolayers	was	also	explored	 in	 the	DDI	
prediction	between	itraconazole	and	dabigatran	etexilate.

For	 Pgp	 substrates,	 the	 previously	 developed	 com-
pound	 files	 of	 digoxin,	 dabigatran	 etexilate,	 dabigatran,	
and	quinidine	were	primarily	used	in	the	present	study.18	
In vitro	Pgp	kinetic	parameters,	Km	and	Jmax,	were,	respec-
tively,	25 μM	and	128 pmol/min/cm2	for	digoxin,	2.6 μM	
and	25 pmol/min/cm2	for	dabigatran	etexilate	and	1.0 μM	
and	 21  pmol/min/cm2	 for	 quinidine.	 To	 adequately	 re-
cover	 the	 plasma	 concentration-	time	 profiles	 of	 the	 Pgp	
substrates	 in	 the	 control	 groups	 of	 each	 DDI	 study,	 the	
in  vitro-	to-	in  vivo	 Pgp	 scaling	 factors	 (Pgp-	SFs)	 for	 Jmax	
were	 optimized	 by	 the	 sensitivity	 analysis	 for	 the	 ratios	
of	transporter	activity	or	abundance	in	intestine	between	
in  vivo	 and	 in  vitro	 (relative	 activity/expression	 factors,	
RAF/REF,	in	Simcyp).	In	contrast,	the	unbound	Km	esti-
mates	in vitro	were	assumed	to	represent	in vivo	affinity	
(i.e.,	 intrinsic	 values)	 as	 the	 general	 hypothesis.	 The	 re-
fined	compound	files	were	 then	applied	to	 the	DDI	pre-
diction	in	the	test	groups	with	Pgp	inhibitors.

PBPKmodelingforDDIprediction

The	 DDI	 results	 of	 itraconazole	 and	 verapamil	 with	 di-
goxin,	dabigatran	etexilate,	and	quinidine	were	obtained	
from	the	 literature	as	described	 in	Appendix	S1.	A	brief	
outline	of	the	DDI	studies	is	as	follows:
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•	 Itraconazole	 200  mg	 once-	daily	 with	 digoxin	 0.5  mg	
(n = 10).31

•	 Itraconazole	200 mg	once-	daily	with	dabigatran	etexi-
late	0.375 mg	(n = 8).21

•	 Itraconazole	100	or	200 mg	once-	daily	with	quinidine	
sulfate	100	or	200 mg	(n = 6	or	9).12,32

•	 Verapamil	80 mg	three-	times-	daily	with	digoxin	0.25 mg	
(n = 10).33

•	 Verapamil	120 mg	twice-		or	four-	times-	daily	with	dabig-
atran	etexilate	150 mg	(n = 20).34

•	 Verapamil	 80	 or	 120  mg	 three-	times-	daily	 with	 quini-
dine	sulfate	400 mg	(n = 6).35

As	indicated	in	Appendix	S1,	the	PBPK	modeling	for	
the	 DDIs	 with	 verapamil	 and	 digoxin	 was	 performed	
at	digoxin	doses	of	0.25	and	1 mg	because	plasma	con-
centrations	of	digoxin	in	the	control	group	of	this	study	
were	 approximately	 fourfold	 higher	 than	 the	 mean	
values	 from	 the	 meta-	analysis	 of	 six	 studies	 following	
the	 dose-	normalization.	 In	 the	 verapamil	 DDI	 study	
with	 dabigatran	 etexilate,	 total	 dabigatran	 (unconju-
gated	 and	 conjugated)	 concentrations	 were	 measured,	
whereas	 conjugated	 dabigatran,	 mainly	 glucuronides,	
was	 approximately  20%	 of	 total	 dabigatran	 based	 on	
the	 assay	 results	 before	 and	 after	 alkaline	 cleavage.	
Assuming	 that	 the	 differences	 were	 within	 variability	
deriving	from	various	factors,	such	as	the	differences	in	
subjects,	studies,	and	bioanalytical	assays,	the	reported	
values	 were	 used	 in	 the	 present	 study.	 This	 assump-
tion	was	also	made	in	the	previous	report	based	on	the	
meta-	analysis.18

Dataanalysis

Pharmacokinetic	 parameters	 of	 Pgp	 substrates,	 such	 as	
the	 maximal	 plasma	 concentrations	 (Cmax)	 and	 the	 area	
under	the	plasma	concentration-	time	curves	(AUC),	were	
obtained	from	the	literature.	When	these	parameters	were	
not	reported,	the	values	were	calculated	from	the	reported	
clearance	 values	 with	 doses	 or	 the	 digitalized	 plasma	
concentration-	time	 profiles	 by	 DigitizeIt	 version	 2.3.3	
(Bormann,	Germany).	Pharmacokinetic	parameters,	such	
as	 Cmax,	 AUC,	 and	 the	 ratios	 of	 Cmax	 (CmaxR)	 and	 AUC	
(AUCR)	in	the	test	groups	to	the	control	groups	are	pre-
sented	 as	 either	 arithmetic	 mean,	 median,	 or	 geometric	
mean	with	standard	deviations	(SDs),	90%	or	95%	confi-
dence	intervals	(CIs),	or	percent	coefficients	of	variation	
(CV%)	 according	 to	 the	 literature.	 To	 estimate	 substrate	
Pgp-	SFs,	the	local	sensitivity	analysis	tool	implemented	in	
Simcyp	were	performed	to	assess	the	appropriate	values.	
The	simulations	with	the	obtained	Pgp-	SF	were	thereafter	
performed	with	a	virtual	default	population	of	100	healthy	

volunteers	in	10	trials	of	10	subjects.	The	study	conditions	
for	the	sensitivity	analyses	and	the	following	simulations	
were	based	on	the	reported	clinical	study	designs.	To	eval-
uate	predictive	model	performance,	the	deviation	of	pre-
dicted	from	observed	values	was	calculated	as	prediction	
error	(PE):

PE	of	less	than	or	equal	to	±25%	was	provisionally	used	
as	the	predefined	criteria	for	the	model	verification.36,37

RESULTS

ItraconazoleDDIswithPgpsubstrates

Clinically	 observed	 and	 PBPK	 model-	predicted	 plasma	
concentration-	time	 profiles	 of	 digoxin,	 dabigatran,	 and	
quinidine	 in	 the	 itraconazole	 DDI	 studies	 are	 presented	
in	Figure 1.	In	the	DDI	study	with	digoxin,	Pgp-	SF	for	di-
goxin	was	estimated	at	0.75	in	the	control	group	with	PE	
of	±4%	for	Cmax	and	AUC	(Table 1).	PBPK	modeling	suf-
ficiently	predicted	the	observed	CmaxR	with	PE	of	−11%,	
whereas	 AUCR	 was	 slightly	 underpredicted	 with	 PE	 of	
−27%.	The	predicted	Fa	in	the	control	and	test	groups	were	
~0.8	and	~0.9,	respectively.	It	is	noteworthy	that	the	pre-
dicted	CmaxR	(1.20 ± 0.10)	and	AUCR	(1.11 ± 0.07)	were	
within	the	regulatory	agency’s	criteria	of	negligible	DDIs	
(±25%)	whereas	the	observed	ratios	(1.34	and	1.52,	respec-
tively)	were	above	the	criteria.	This	could	be	the	potential	
limitation	on	the	use	of	PE%	as	the	predictive	model	per-
formance;	therefore,	we	should	carefully	account	for	the	
variability	in	the	predicted	results	(e.g.,	SDs	and	CIs)	for	
making	decisions.

In	 the	 DDI	 study	 with	 dabigatran	 etexilate,	 Pgp-	SF	
for	 dabigatran	 etexilate	 was	 estimated	 at	 90	 in	 the	 con-
trol	 group	 with	 PE	 of	 −15%	 for	 Cmax	 and	 30%	 for	 AUC	
(Table 1).	Using	itraconazole	in vitro	Ki	of	1 μM	(against	
digoxin),	 PBPK	 modeling	 slightly	 underpredicted	 the	
observed	CmaxR	and	AUCR	in	 the	 test	group	with	PE	of	
−30%	 to	 −50%	 (Table  1	 and	 Figure  1).	The	 predicted	 Fa	
increased	from	~0.1	to	~0.3.	In	contrast,	using	in vitro	Ki	
of	0.22 μM	(against	dabigatran	etexilate),	the	modeling	re-
sults	showed	PE	of	32%	for	CmaxR	and	−4%	for	AUCR.	The	
predicted	Fa	in	the	control	and	test	groups	were	~0.1	and	
~0.5,	respectively.

In	 the	 DDI	 study	 of	 quinidine	 sulfate	 (100  mg)	 with	
itraconazole,	 Pgp-	SF	 for	 quinidine	 was	 estimated	 at	 five	
in	 the	control	group	with	PE	of	±8%	 for	 Cmax	and	AUC	
(Table  1).	 PBPK	 modeling	 adequately	 predicted	 the	 ob-
served	 CmaxR	and	AUCR	with	PE	of	±18%	 (Table 1	and	

PE% =
Predicted value −Observed value

Observed value
× 100
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Figure 1).	The	predicted	Fa	in	the	control	and	test	groups	
were	 ~0.4	 and	 ~0.5,	 respectively,	 while	 the	 predicted	 Fg	
was	near-	unity	in	both	the	groups.	In	another	DDI	study	
of	quinidine	sulfate	(200 mg)	with	itraconazole,	quinidine	
Pgp-	SF	 was	 estimated	 at	 nine	 in	 the	 control	 group	 with	
PE	 of	 ±6%	 for	 Cmax	 and	 AUC	 (Table  1).	 PEs	 for	 CmaxR	
and	AUCR	in	the	test	group	were	within	±25%.	The	pre-
dicted	Fa	was	~0.5	in	the	control	group	and	~0.6	in	the	test	
group,	 whereas	 the	 predicted	 Fg	 was	 near-	unity	 in	 both	
the	groups.

Overall,	 these	 results	 indicated	 that	 the	 PBPK-	IVIVE	
for	itraconazole	reasonably	described	the	clinical	DDI	re-
sults	with	digoxin,	dabigatran	etexilate,	and	quinidine.

VerapamilDDIswithPgpsubstrates

Clinically	 observed	 and	 PBPK	 model-	predicted	 plasma	
concentration-	time	 profiles	 of	 digoxin,	 dabigatran,	 and	
quinidine	in	the	verapamil	DDI	studies	are	presented	in	
Figure  2.	 In	 the	 DDI	 study	 with	 digoxin,	 Pgp-	SF	 for	 di-
goxin	was	estimated	at	2.5	in	the	control	group	with	PE	of	
−16%	for	both	Cmax	and	AUC.	In	this	study,	PBPK	mod-
eling	 was	 performed	 at	 digoxin	 doses	 of	 0.25	 and	 1  mg,	

as	indicated	above.	The	predicted	CmaxR	and	AUCR	were	
comparable	 between	 the	 two	 doses	 (i.e.,	 1.59	 vs.	 1.61	
and	1.41	vs.	1.44,	respectively).	The	predicted	CmaxR	and	
AUCR	were	also	consistent	with	the	observed	results	(1.44	
and	1.50,	respectively)	with	PE	of	±12%	(Table 2).	The	pre-
dicted	Fa	in	the	control	and	test	groups	were	~0.6	and	~0.7,	
respectively.

In	 the	 DDI	 study	 with	 dabigatran	 etexilate,	 Pgp-	SF	
for	 dabigatran	 etexilate	 was	 estimated	 at	 70	 in	 the	 con-
trol	 group	 with	 PE	 of	 −17%	 for	 Cmax	 and	 13%	 for	 AUC	
(Table  2).	 PBPK	 modeling	 sufficiently	 predicted	 the	 ob-
served	CmaxR	and	AUCR	in	three	test	groups	following	the	
different	dosing	regimens	with	PE	of	±22%.	The	predicted	
Fa	in	the	control	group	was	0.10,	which	increased	to	0.12	
to	0.15	in	the	test	groups.

In	the	DDI	study	of	quinidine	sulfate	with	verapamil	
(80	and	120 mg	three-	times-	daily),	Pgp-	SF	for	quinidine	
was	 estimated	 at	 two	 in	 the	 control	 group	 with	 PE	 of	
±5%	for	Cmax	and	AUC	(Table 2).	PBPK	modeling	suffi-
ciently	predicted	the	observed	CmaxR	and	AUCR	in	two	
test	groups	following	the	different	dosing	regimens	with	
PE	of	±18%.	The	predicted	Fa	and	Fg	were,	respectively,	
0.89	and	0.98	 in	 the	control	group	and	0.91	and	1.0	 in	
the	test	group.

F I G U R E  1  PBPK	model-	predicted	and	clinically	observed	plasma	concentrations	of	digoxin,	dabigatran,	and	quinidine	in	healthy	
subjects	following	a	single	oral	administration	with	and	without	multiple-	dose	oral	coadministration	of	itraconazole.	Oral	doses	were	
digoxin	0.5 mg	(a),	dabigatran	etexilate	0.375 mg	(b,	c),	quinidine	sulfate	100 mg	(d),	and	200 mg	(e)	with	and	without	itraconazole	200 mg	
once-	daily	except	for	100 mg	once-	daily	(e).	Itraconazole	Pgp	Ki	values	used	were	1 μM	(a,	b,	d,	e)	and	0.22 μM	(c).	The	observed	and	
predicted	plasma	concentration-	time	profiles	were	expressed	as	mean	(circles)	and	mean	(solid	lines)	with	5th	and	95th	percentiles	(dotted	
line),	respectively,	in	the	control	(blue)	and	test	(red)	groups,	except	for	only	the	observed	Cmax	(e).	Cmax,	maximal	plasma	concentration;	Ki,	
inhibition	constant;	PBPK,	physiologically-	based	pharmacokinetic
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Overall,	 these	 results	 indicated	 that	 the	 PBPK-	IVIVE	
for	 verapamil	 reasonably	 described	 the	 clinical	 DDI	 re-
sults	with	digoxin,	dabigatran	etexilate,	and	quinidine.

Sensitivityanalysesforsubstrate
Pgp-SFandinhibitorKi

The	sensitivity	analyses	for	the	substrate	Pgp-	SF	and	the	
inhibitor	Pgp	Ki	were	performed	to	investigate	the	impacts	
of	these	parameters	on	the	substrate	Fa	in	the	DDI	stud-
ies.	As	presented	in	Figure 3,	the	predicted	Fa	for	the	sub-
strates	 would	 significantly	 decline	 with	 the	 increases	 in	
the	substrate	Pgp-	SFs	(i.e.,	the	increases	in	Pgp	Jmax)	when	
the	inhibitor	Ki	were	relatively	less	potent	(e.g.,	≥0.1 μM).	
Similarly,	 the	 predicted	 substrate	 Fa	 would	 decline	 with	
the	increases	in	the	inhibitor	Ki	when	the	substrate	Pgp-	
SFs	were	relatively	higher	(e.g.,	≥5).	In	contrast,	when	ei-
ther	 substrate	Pgp-	SF	or	 inhibitor	Ki	was	 lower	 (e.g.,	≤4	
and	≤0.06 μM,	respectively),	the	predicted	Fa	was	less	sen-
sitive	to	these	parameters.	The	lower	Pgp-	SF	would	read-
ily	cause	saturation	of	Pgp	activity	whereas	the	lower	(or	
more	potent)	 inhibitor	Ki	 could	potentially	 lead	 to	near-	
complete	Pgp	inhibition;	thus,	both	the	cases	would	result	

in	higher	Fa	(e.g.,	≥0.7).	Overall,	the	modeling	results	sug-
gested	 that	 both	 the	 substrate	 Pgp-	SF	 and	 the	 inhibitor	
Ki	 would	 be	 key	 for	 prediction	 and/or	 understanding	 of	
Pgp-	DDIs.

DISCUSSION

In	 the	 PBPK-	IVIVE	 for	 clinical	 Pgp-	DDIs,	 we	 first	 fo-
cused	on	the	model	verification	of	three	Pgp	substrates,	
digoxin,	 dabigatran	 etexilate,	 and	 quinidine,	 with	
Pgp-	SF	for	Jmax.	This	is	based	on	the	general	hypothesis	
that	 unbound	 Km	 for	 enzymes	 and	 transporters	 is	 in-
trinsic.	The	modeling	results	suggest	that	the	optimiza-
tion	of	substrate	Pgp-	SF	is	critical	to	adequately	recover	
the	clinical	results.	We	then	applied	the	PBPK	models	
of	two	Pgp	inhibitors,	itraconazole	and	verapamil,	with	
the	 in  vitro	 Pgp	 Ki	 values	 to	 recover	 the	 clinical	 Pgp-	
DDIs	with	the	Pgp	substrates.	The	results	suggest	that	
the	 PBPK-	IVIVE	 could	 adequately	 recover	 the	 Pgp-	
DDI	 results	 between	 these	 substates	 and	 inhibitors.	
Thus,	the	present	PBPK-	IVIVE	approach	appears	to	be	
successful	 in	 describing	 clinical	 Pgp-	DDIs.	 However,	
the	 results	 clearly	 underscore	 the	 current	 challenges	

F I G U R E  2  PBPK	model-	predicted	and	clinically	observed	plasma	concentrations	of	digoxin,	dabigatran,	and	quinidine	in	healthy	
subjects	following	a	single	oral	administration	with	and	without	multiple-	dose	oral	administration	of	verapamil.	Oral	doses	were	digoxin	
0.25 mg	(prediction	at	1 mg)	with	verapamil	80 mg	three-	times-	daily	(a),	dabigatran	etexilate	150 mg	1 h	after	(b)	or	2 h	before	(c)	verapamil	
120 mg	twice-	a-	day	or	1 h	after	verapamil	120 mg	four-	times-	daily	(d),	quinidine	sulfate	400 mg	with	verapamil	80 mg	three-	times-	daily	(e),	
or	120 mg	three-	times-	daily	(f).	The	observed	and	predicted	plasma	concentration-	time	profiles	were	expressed	as	mean	(circles)	and	mean	
(solid	lines)	with	5th	and	95th	percentiles	(dotted	line),	respectively,	in	the	control	(blue)	and	test	(red)	groups.	PBPK,	physiologically-	based	
pharmacokinetic
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on	 PBPK-	IVIVE	 on	 Pgp-	DDIs.	 Some	 potential	 issues	
are	 identified	 and	 warrant	 further	 investigation	 and	
discussion.

One	of	the	main	challenges	on	the	Pgp-	DDI	predic-
tion	 associated	 with	 PBPK-	IVIVE	 is	 to	 accurately	 de-
termine	 substrate	 Pgp	 kinetics	 in  vitro	 (Km	 and	 Jmax)	

T A B L E  2 	 PBPK	model-	predicted	and	clinically	observed	pharmacokinetic	parameters	of	digoxin,	dabigatran,	and	quinidine	in	DDI	
studies	with	verapamil

Substrate Group Analysis
Cmax
(ng/ml) AUC(ng∙h/ml) CmaxR AUCR

Digoxin	0.25 mg	p.o.a Control Obs 2.5 ± 0.7 16 ± 2 − −

Pred 2.1 ± 1.1 13 ± 9 − −

PE% −16 −16 − −

Verapamil	80 mg	p.o.	
t.i.d.

Obs 3.6 ± 0.8 24 ± 3 1.44 1.50

Pred 3.3 ± 1.5 18 ± 11 1.61 ± 0.21 1.44 ± 0.15

PE% −9 −22 12 −4

Dabigatran	Etexilate	
150 mg	p.o.

Control Obs 99	(75) 854	(62) − −

Pred 83	(76) 964	(82) − −

PE% −17 13 − −

Verapamil	120 mg	p.o.	
b.i.d.	1-	h	predose

Obs 162 (60) 1310 (55) 1.63	(1.22 –	 2.17) 1.54	(1.19 –	 1.99)

Pred 133 (70) 1462 (74) 1.61	(1.58 –	 1.64) 1.52	(1.49 –	 1.54)

PE% −18 12 −1 −1

Verapamil	120 mg	p.o.	
b.i.d.	2-	h	postdose

Obs 111 (87) 1010 (75) 1.12	(0.84 –	 1.49) 1.18	(0.91 –	 1.52)

Pred 106 (75) 1236 (80) 1.29	(1.26 –	 1.32) 1.28	(1.26 –	 1.30)

PE% −4 22 15 8

Verapamil	120 mg	p.o.	
q.i.d.	1-	h	predose

Obs 132 (86) 1190 (74) 1.34	(1.00 –	 1.80) 1.39	(1.07 –	 1.81)

Pred 135 (70) 1499 (74) 1.64	(1.60 –	 1.67) 1.56	(1.53 –	 1.58)

PE% 2 26 22 12

Quinidine	400 mg	
p.o.b

Control Obs 2047 19529 ± 4710 − −

Pred 2106 ± 429 18546 ± 6722 − −

PE% 3 −5 − −

Verapamil	80 mg	p.o.	
t.i.d.

Obs 1957 28621 ± 5675 0.96 1.47

Pred 2291 ± 473 24944 ± 9811 1.09 ± 0.03 1.33 ± 0.15

PE% 18 −13 14 −9

Verapamil	120 mg	p.o.	
t.i.d.

Obs 1939 29381 ± 6500 0.95 1.50

Pred 2353 ± 485 28140 ± 11072 1.12 ± 0.04 1.51 ± 0.24

PE% 21 −4 18 0

Note: Values	are	expressed	as	mean,	mean ± SD	or	geometric	mean	(coefficient	of	variation%).
Abbreviations:	−,	not	reported	or	available;	AUC,	area-	under	the	plasma	concentration-	time	curve;	AUCR,	area-	under	the	plasma	concentration-	time	curve	
ratio;	Cmax,	maximal	plasma	concentration;	CmaxR,	maximal	plasma	concentration	ratio;	DDI,	drug-	drug	interaction;	Obs,	observed;	PBPK,	physiologically-	
based	pharmacokinetic;	PE,	prediction	error	(%);	Pred,	predicted.
aPrediction	was	performed	at	1 mg.
bQuinidine	sulfate	doses	(400 mg	=	332 mg	equivalents).
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because	 of	 a	 large	 inter-	laboratory	 variability	 associ-
ated	with	various	factors	such	as	different	cell	lines	and	
transporter	 kinetic	 equations/models.4,38	 The	 current	
strategy	 to	overcome	 these	 limitations	 is	 to	adequately	
model	in vitro	data,	where	transporter	kinetics	with	un-
bound	substrate	concentrations	at	 the	binding	site	can	
be	taken	into	account	along	with	flux	through	two	diffu-
sional	barriers.4,38	We	used	the	previously	reported	Pgp	
kinetic	 parameters,	 which	 were	 determined	 by	 fitting	
in vitro	Caco-	2	data	(from	a	laboratory)	to	the	compart-
mental	model.18	In	the	compartment	model	used,	Km	is	
defined	as	an	intracellular	unbound	concentration	and	
governed	 by	 the	 substrate-	Pgp	 interaction,	 yielding	 in-
dependent	 Km	 estimates	 from	 Pgp	 expression	 levels.39	
In vitro	unbound	Km	estimates	are	thus	assumed	to	rep-
resent	in vivo	affinity	(i.e.,	intrinsic	values).	In	contrast,	
Pgp-	SFs	for	Jmax	could	account	for	the	differences	in	Pgp	
expression	 or	 functional	 activity	 between	 in  vitro	 and	
in vivo,	although	this	might	be	drug-	dependent	due	 to	
some	 other	 factors,	 such	 as	 the	 regional	 difference	 of	
Pgp	 abundance	 along	 the	 various	 regions	 of	 intestine	

and	drug	absorption	sites.40,41	Accordingly,	we	have	es-
timated	substrate	Pgp-	SFs	to	adequately	recover	the	ob-
served	results	of	control	groups	in	each	study,	given	an	
expected	variability	derived	from	various	factors	such	as	
intra-		and	intersubjects	and	studies.

Similarly,	in vitro	Pgp	Ki	values	have	been	reported	to	
show	 a	 large	 variability	 among	 laboratories	 due	 to	 mul-
tiple	 factors,	 including	different	substrates	and	cell	 lines	
with	 various	 Pgp	 expression	 levels.9,42	 For	 instance,	 the	
in  vitro	 Ki	 values	 for	 digoxin	 varied	 from	 20	 to	 800-	fold	
for	 15  Pgp	 inhibitors	 among	 22	 laboratories.43,44	 In	 the	
present	 study,	 we	 primarily	 used	 the	 median	 Ki	 values	
of	 Pgp	 inhibitors	 against	 digoxin	 in	 Caco-	2	 cell	 mono-
layers	 obtained	 from	 the	 DIDB	 database.	 The	 Pgp	 IC50	
values	 varied	 considerably	 from	 0.46	 to	 6.0 μM	 (median	
2.0 μM)	for	 itraconazole	and	0.06	 to	17 μM	(4.0 μM)	for	
verapamil.	 Median	 IC50	 value	 for	 itraconazole	 against	
dabigatran	etexilate	in	Caco-	2	cell	monolayers	(0.44 μM)	
was	~5-	folder	lower	than	that	against	digoxin	(2 μM).	In	
the	Pgp-	DDI	prediction	between	itraconazole	and	dabiga-
tran	etexilate,	the	PE	for	CmaxR	and	AUCR	were	−34%	and	

F I G U R E  3  The	relationships	among	the	PBPK	model-	predicted	Pgp	substrate	Fa,	intestinal	Pgp	Jmax	scaling	factor	(Pgp-	SF),	and	
Pgp	inhibitor	Ki	in	healthy	subjects	following	a	single	oral	administration	of	Pgp	substrates	with	multiple-	dose	oral	coadministration	of	
itraconazole	or	verapamil.	Oral	doses	were	digoxin	0.5 mg	(a),	dabigatran	etexilate	0.375 mg	(b),	quinidine	sulfate	100 mg	(c),	digoxin	
1 mg	(d),	dabigatran	etexilate	150 mg	(e),	and	quinidine	sulfate	400 mg	(f)	with	itraconazole	200 mg	once-	daily	(a,	b,	c)	or	verapamil	80 mg	
three-	times-	daily	(d),	120 mg	twice-	daily	(e),	and	120 mg	three-	times-	daily	(f).	The	ranges	of	Pgp-	SF	were	1	to	100	against	the	Pgp	inhibitor	
Ki	of	0.001	to	10 μM.	Fa,	fraction	of	the	dose	absorbed;	Jmax,	maximal	efflux	rate;	Ki,	inhibition	constant;	PBPK,	physiologically-	based	
pharmacokinetic
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−51%,	 respectively,	 when	 using	 the	 Ki	 value	 for	 digoxin	
whereas	 those	 were	 32%	 and	 −4%,	 respectively,	 when	
using	the	Ki	value	for	dabigatran	etexilate	(Table 1).	The	
sensitivity	 analysis	 revealed	 that	 itraconazole	 Pgp	 Ki	 of	
~0.3 μM	yielded	a	reasonable	prediction	with	PE	of	±16%	
for	 CmaxR	 and	 AUCR,	 suggesting	 that	 itraconazole	 Ki	 in	
the	best	fit	was	relatively	closer	to	that	for	dabigatran	etex-
ilate	relative	to	digoxin.	This	suggests	that	it	is	important	
to	determine	in vitro	Ki	toward	appropriate	Pgp	substrates,	
which	 can	 be	 supported	 with	 the	 reasonable	 prediction	
of	 verapamil	 DDIs	 with	 digoxin	 and	 quinidine	 because	
of	 comparable	verapamil	 IC50	between	digoxin	 (4.0 μM)	
and	quinidine	(3.9 μM).	We	could	not	further	investigate	
this	point	because	in vitro	Ki	values	for	itraconazole	and	
verapamil	against	other	Pgp	substrate	were	limited	in	the	
DIDB	 database.	 Despite	 the	 reasonable	 Pgp-	DDI	 predic-
tion,	one	of	the	limitations	of	the	present	modeling	is	that	
the	median	IC50	values	obtained	from	the	DIDB	database	
were	 used	 whereas	 the	 compartment	 modeling	 analyses	
for	 Pgp	 kinetic	 estimation	 have	 been	 recommended.38,42	
Therefore,	 this	 point	 should	 be	 addressed	 in	 the	 future,	
although,	 at	 this	 moment,	 the	 traditional	 extracellular	
concentration-	based	 analyses	 for	 estimating	 Pgp	 IC50	 is	
still	 widely	 used	 and	 in	 general	 accepted	 by	 regulatory	
agencies.45-	47	 Another	 limitation	 is	 that	 inhibitors’	 Ki	 is	
incorporated	 into	only	 intestine	and/or	 liver	 to	 focus	on	
Pgp-	DDIs	on	absorption,	including	re-	absorption	via	bili-
ary	excretion.	As	digoxin	and	quinidine	are	excreted	into	
urine,	there	is	a	possibility	for	Pgp-	mediated	DDIs	in	the	
kidneys.14,15	However,	the	modeling	results	exhibited	that	
Pgp	 Ki	 values	 used	 in	 the	 present	 studies	 were	 at	 least	
several	 fold	 higher	 than	 steady-	state	 unbound	 Cmax	 of	
Pgp	inhibitors;	for	instance,	~10-	fold	for	itraconazole	and	
20-	fold	 for	 hydroxyitraconazole	 following	 itraconazole	
200  mg	 once-	daily,	 and	 40-	fold	 for	 verapamil	 and	 5-	fold	
for	norverapamil	following	verapamil	120 mg	twice-	daily.	
Therefore,	systemic	effects	of	Pgp	inhibitors	on	Pgp-	DDIs	
can	be	expected	to	be	minimal	unless	a	significant	accu-
mulation	of	unbound	drugs	takes	place	in	certain	tissues.

The	 model-	predicted	 substrate	 Fa	 decreases	 with	 in-
creases	 in	 Pgp-	SFs	 for	 Jmax	 when	 Pgp	 activity	 is	 neither	
saturated	nor	inhibited	at	given	doses	(Figure 3).	Pgp-	SFs	
used	 in	 this	study	ranged	from	0.75	to	2.5	 for	digoxin	at	
0.25	to	1 mg,	70	to	90	for	dabigatran	etexilate	at	0.375	to	
150 mg,	and	2	to	9	for	quinidine	sulfate	at	100	to	400 mg,	
corresponding	 to	 the	 predicted	 Fa	 of	 0.54	 to	 0.85,	 0.06	
to	 0.14,	 and	 0.41	 to	 0.93,	 respectively.	 Hence,	 the	 pre-
dicted	Fa	showed	roughly	two-	fold	difference	among	the	
studies,	 which	 could	 be	 conceivable	 given	 the	 different	
doses	 and	 study	 conditions	 along	 with	 expected	 vari-
ability.	In	addition,	quinidine	is	known	to	exhibit	supra-	
proportional	increases	in	oral	exposures	at	the	doses	used	
in	this	study.12,13,32,35	These	differences	potentially	lead	to	

different	degrees	of	Pgp-	DDIs	depending	on	substrate	Fa,	
as	 simulated	 in	 Figure  3.	Therefore,	 it	 would	 be	 critical	
to	 optimize	 substrate	 Pgp-	SF	 to	 sufficiently	 predict	 Pgp-	
DDIs,	 as	 the	 FDA	 guidance	 indicates	 that	 the	 sponsor	
should	establish	and	verify	PBPK	models	for	transporter	
substrates	 before	 applying	 for	 DDI	 predictions.45	 The	
range	of	predicted	Fa	for	digoxin	(0.54	to	0.85)	corresponds	
to	the	extent	of	increases	in	oral	exposure	by	1.2	to	2-	fold	
when	digoxin	Fa	increases	up	to	unity	due	to	a	complete	
Pgp	 inhibition.	The	European	Medicines	Agency	(EMA)	
guidance	 recommends	 that	 dabigatran	 etexilate	 is	 a	 bet-
ter	 probe	 Pgp	 substrate	 for	 clinical	 DDI	 studies	 because	
of	 its	 lower	 Fa	 (~0.1).46	 In	 the	 clinical	 DDI	 studies	 used	
for	the	present	study,	the	observed	CmaxR	and	AUCR	for	
digoxin	and	quinidine	were	within	two-	fold	with	the	ex-
ception	 of	 AUCR	 (~2.6-	fold)	 in	 one	 of	 four	 DDI	 results	
with	 quinidine.	 In	 contrast,	 those	 for	 dabigatran	 were	
six	to	seven-	fold	at	the	microdose	of	dabigatran	etexilate	
(0.375 mg)	with	itraconazole	and	~1.5-	fold	at	the	clinically	
recommended	dose	of	dabigatran	etexilate	(150 mg)	with	
verapamil.	This	may	suggest	that	the	microdose	of	dabig-
atran	etexilate	is	more	sensitive	for	clinical	Pgp-	DDI	stud-
ies,	which	can	also	be	reasonably	predicted	by	the	present	
PBPK-	IVIVE.

In	 the	 itraconazole	and	verapamil	PBPK	models,	Pgp	
Ki	 values	 for	 parent	 drugs	 were	 incorporated	 into	 intes-
tine	and	liver	whereas	those	for	metabolites	were	only	in	
liver.	This	is	because	the	ADAM	model	is	not	available	for	
inhibitor	metabolites	 in	Simcyp,	 resulting	 in	metabolite-	
mediated	 intestinal	 Pgp	 inhibition	 being	 dynamically	
predicted	 by	 plasma	 concentrations	 in	 portal	 vein	 cor-
rected	 for	 unbound	 fraction	 in	 enterocytes	 (fu,gut),	 e.g.,	
total	 plasma	 concentrations	 when	 fu,gut	 is	 unity.	 In	 both	
the	compound	files	of	hydroxyitraconazole	from	the	liter-
ature	and	norverapamil	from	the	Simcyp	library,	the	input	
values	of	fu,gut	are	set	at	unity.25	In	contrast,	unbound	en-
terocyte	concentrations	predicted	by	the	ADAM	model	are	
used	for	the	prediction	of	parent	drug-	mediated	intestinal	
Pgp	inhibition.	It	 is	noteworthy	that	the	predicted	Fg	for	
itraconazole	and	verapamil	were	~1	and	~0.8,	respectively,	
suggesting	minimal	metabolite	formations	in	enterocytes.	
The	 present	 PBPK	 modeling	 therefore	 assumed	 that	
metabolite-	mediated	Pgp	inhibition	was	negligible	in	the	
intestines,	which	will	(and	should)	be	investigated	further.	
This	also	includes	the	distribution	(rate	and	extent)	of	me-
tabolites	 (and	 parent	 drug	 administered	 intravenously)	
from	the	portal	vein	to	the	lipid	bilayer	in	the	apical	mem-
brane	of	enterocytes	where	Pgp	interacts	with	substrates	
and	inhibitors	via	conformational	changes	coupling	ATP	
hydrolysis.48–	50

In	summary,	the	present	study	has	demonstrated	that	
clinical	Pgp-	DDIs	among	three	substrates	and	two	inhib-
itors	could	be	reasonably	described	by	PBPK-	IVIVE	with	
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Pgp	kinetic	parameters	determined	 in vitro.	The	present	
modeling	approach	can	be	applicable	to	predict	Pgp-	DDIs	
with	other	Pgp	substrates	and	inhibitors.	In	addition,	the	
modeling	results	also	suggest	that	Pgp	kinetic	parameters	
of	both	the	substrates	(Km	and	Jmax)	and	inhibitors	(Ki)	are	
key	for	successful	DDI	prediction	because	these	parame-
ters	are	sensitive	to	substrate	Fa	in	Pgp-	DDIs.	It	would	also	
be	 critical	 to	 incorporate	 appropriate	 unbound	 inhibitor	
concentrations	at	the	site	of	action	into	PBPK	modeling.	
These	 points	 are	 graphically	 summarized	 in	 Figure  4	 as	
the	PBPK-	IVIVE	scheme	for	Pgp-	DDI	prediction,	which	is	
in	line	with	the	FDA	guidance	and	the	industry	review.4,45	
The	 present	 results	 support	 a	 quantitative	 prediction	 of	
Pgp-	DDIs	 using	 in  vitro	 parameters,	 which	 will	 signifi-
cantly	increase	the	value	of	in vitro	studies	to	design	and	
run	clinical	DDI	studies	safely	and	effectively.
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