
A Novel COVID-19-Related Drug
Discovery Approach Based on
Non-Equidimensional Data Clustering
Bolin Chen1†, Yourui Han2,3†, Xuequn Shang1* and Shenggui Zhang2,3*

1School of Computer Science, Northwestern Polytechnical University, Xi’an, China, 2School of Mathematics and Statistics,
Northwestern Polytechnical University, Xi’an, China, 3Xi’an-Budapest Joint Research Center for Combinatorics, Northwestern
Polytechnical University, Xi’an, China

The novel coronavirus disease (COVID-19) caused by severe acute respiratory
syndrome coronavirus-2 (SARS-CoV-2) has spread all over the world. Since
currently no effective antiviral treatment is available and those original inhibitors
have no significant effect, the demand for the discovery of potential novel SARS-
CoV-2 inhibitors has become more and more urgent. In view of the availability of the
inhibitor-bound SARS-CoV-2 Mpro and PLpro crystal structure and a large amount of
proteomics knowledge, we attempted using the existing coronavirus inhibitors to
synthesize new ones, which combined the advantages of similar effective
substructures for COVID-19 treatment. To achieve this, we first formulated this
issue as a non-equidimensional inhibitor clustering and a following cluster center
generating problem, where three essential challenges were carefully addressed, which
are 1) how to define the distance between pairwise inhibitors with non-
equidimensional molecular structure; 2) how to group inhibitors into clusters when
the dimension is different; 3) how to generate the cluster center under this non-
equidimensional condition. To be more specific, a novel matrix Kronecker product (p,
m)-norm ‖ · ‖m⊗

p was first defined to induce the distance Dp(A, B) between two
inhibitors. Then, the hierarchical clustering approach was conducted to find similar
inhibitors, and a novel iterative algorithm–based Kronecker product (p, m)-norm was
designed to generate individual cluster centers as the drug candidates. Numerical
experiments showed that the proposed methods can find novel drug candidates
efficiently for COVID-19, which has provided valuable predictions for further biological
evaluations.
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1 INTRODUCTION

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has shockingly spread and caused
huge social and economic destruction (Jin et al., 2020). SARS-CoV-2 has created an unprecedented
health emergency around the world and till date 232,252,046 confirmed cases and 4,756,629 deaths
have been documented. But no effective antiviral treatment is currently available, and new drugs are
urgently needed (Ramesh et al., 2021).
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Notably, SARS-CoV-2 is an envelope virus having a single-
stranded positive-sense RNA genome (Ghosh et al., 2020; Elfiky
and Azzam, 2021; Nejadi et al., 2021). In the replication and
maturation stage of the virus, two polyproteins, i.e., pp1a and
pp1ab, are promptly translated upon entry into the host cells.
Then, two viral protease are the prerequisite enzymes of the viral
replication and maturation which are raised upon proteolytic
cleavage of pp1a and pp1b: one is main protease (Mpro) (Main
protease Mpro also called chymotrypsin-like protease 3CLpro)
and another is the papain-like protease (PLpro) enzymes (Lin
et al., 2018; Ghosh et al., 2020; Elmezayen et al., 2021; Joshi et al.,
2021). Both proteases are essential for SARS-CoV-2 viral
replication and, thus, can be considered as drug-able targets
(Ghosh et al., 2020).

On the one hand, Mpro and PLpro are progressing faster in
molecular docking and target-based virtual screening
research, and some progress has also been made in
combinatorial chemistry and high-throughput screening of
SARS-CoV-2 drugs. AL-Khafaji et al. (2021) use integrated
computational approach to identify safe and rapid treatment
for SARS-CoV-2. Das et al. (2021) have utilized a blind

molecular docking approach to identify the possible
inhibitors of the SARS-CoV-2 main protease. Enmozhi
et al. (2021) evaluated the compound Andrographolide
from Andrographis paniculata as a potential inhibitor of
the main protease of SARS-COV-2 (Mpro) through in silico
studies such as molecular docking, target analysis, toxicity
prediction, and ADME prediction. On the other hand,
screening through biological experiments is a time-
consuming and energy-consuming event. Thus, there are
also much works to accelerate in the search of inhibitors
based on the chemical-informatics approach. Amin et al.
(2021) did molecule identification and QSAR-based
screening of in-house molecules active against putative
SARS-CoV-2 PLpro. Ghosh et al. (2021) did QSAR-based
screening of in-house molecules active against putative
SARS-CoV-2 Mpro.

These methods are more about screening original inhibitors or
screening newly designed inhibitors. But designing new inhibitors
from the biological level is a more tedious task. In view of the
availability of the inhibitor-bound SARS-CoV-2Mpro and PLpro
crystal structure and a large amount of proteomics knowledge, we

FIGURE 1 | Schematic diagram of COVID-19 drug discovery. (A) A sketch map of main protease (Mpro) and active papain-like protease (PLpro) inhibitors with
higher activity in a high-dimension space; (B) the molecular structure of these inhibitors in high-dimension space; (C) a graph representation of SARS-CoV PLpro and
SARS-CoVMpro inhibitors based on their three-dimensional molecular structure. The topological information of the inhibitor molecules is reserved, and the inhibitors are
grouped by hierarchical clustering–based Kronecker product (p,m)-norm; (D) a novel iterative algorithm–based Kronecker product (p,m)-norm is used to generate
the cluster centers of individual clusters.
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hope to use existing coronavirus inhibitors with similar structures
to synthesize new inhibitors that have comprehensive advantages
and may be effective against COVID-19. We model this as a non-
equidimensional inhibitor clustering and the following cluster
center generating problem. A schematic diagram of the idea is
shown in Figure 1.

Although there are many methods to measure the similarity
between different drugs, they are mainly based on the simplified
molecular-input line-entry system (SMILES), ATC code, side
effect, sequences, and GO of drug related targets (Huang et al.,
2020). However, different inhibitors have different scales,
i.e., some of them are large molecules, while others are small
molecules, which makes it difficult to appropriately measure the
full molecular structure of drugs. The graph representation of an
inhibitor represent each atom as a vertex. Although it could
contain the full structure information of the inhibitor, it also
makes such representation result in different scales and
dimensions for different inhibitors. In view of these, the novel
drug discovery strategy needs to address the following three
essential issues, which are 1) how to define the distance
between pairwise inhibitors with different dimensions; 2) how
to cluster inhibitors with different dimensions; and 3) how to
generate the cluster center of similar inhibitors with different
dimensions.

To overcome these, we introduce a novel norm (matrix
Kronecker product (p, m)-norm) ‖ · ‖m⊗

p from the matrix
norm to induce distance Dp(A, B) between the inhibitors
with different dimensions and propose a novel iterative
algorithm–based Kronecker product (p, m)-norm to generate
the cluster centers. A schematic diagram of the algorithm is
shown in Figure 2.

2 MATERIALS AND METHODS

2.1 Data Sources
We choose active main protease (Mpro) and active papain-
like protease (PLpro) inhibitors whose pIC50 value are higher
than the “activity threshold” as the “seed” set. Eventually, a
total of 60 of them are selected, which are denoted as
s1, s2, . . . , s60{ } to be an example. (The active inhibitors are
obtained from the articles of Amin et al., 2021 and Ghosh
et al., 2021). The inhibitors’ molecular structures are
represented by SMILES and are shown in Table 1 (only a
part of the inhibitors are displayed; all inhibitors’ structures
with SMILES notations are shown in the Supplementary
Material).

2.2 Distance of Inhibitors
There are many measures which can calculate the distance
between pairwise inhibitors based their SMILES
representation (Weininger, 1988). Most of them use
descriptors to extract features and calculate the distance by

FIGURE 2 | Schematic diagram of the proposed approach. (A) The definition of Kronecker product (p, m)-norm and its properties. (B) The clustering of non-
equidimensional inhibitors based on Kronecker product (p, m)-norm and hierarchical clustering. (C) The cluster center generating based on the Kronecker product (p,
m)-norm to get much newer inhibitors. (D) New inhibitors screening to find the best inhibitor.

TABLE 1 | The simplified molecular-input line-entry system (SMILES) of main
protease (Mpro) inhibitors and papain-like protease (PLpro) inhibitors.

Compound SMILES notation

1-M c1oc(cc1)C(=O)Oc1cncc(Br)c1
2-M c1oc(cc1)C(=O)Oc1cncc(Cl)c1
3-M c1cc(oc1C(=O)Oc1cncc(Cl)c1)c1ccc(Cl)cc1
4-M c1c(sc2ccccc12)C(=O)Oc1cncc(Cl)c1
..
. ..

.
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using classic distance, such as, Manhattan distance, Euclidean
distance, Chebyshev distance, and cosine distance. But the
design of the descriptor in the feature extraction is not so easy,
and it loses some of the information, which we are unsure is
useful. On the one hand, some statistical characteristics, such
as “SMILES atoms” Sk, the combinations of two “SMILES
atoms” SSk, and the combinations of three “SMILES atoms”
SSSk, take into account the information on the lower-order
neighbors of each atom in the molecule, such as the first-order
neighbor, second-order neighbor, and third-order neighbor
but lack information on the higher-order neighbors of the
atom. Moreover, some can also define more optimal
descriptors (Toropov et al., 2011), such as BOND, NOSP,
and HALO. But those manually designed features only
describe part of those inhibitor information, and some
unknown important information may still be missed due to
the complexity of the feature engineering.

On the other hand, the SARS-CoV PLpro and SARS-CoV
Mpro inhibitors can be represented as graphs through their three-
dimensional molecular structure. These graphs contain all the
topological information of the inhibitor molecules. For these
graphs, some metrics, such as the count version of ECFP4
fingerprints, can be used to measure the distance between
pairwise inhibitors with different dimensions by extracting
features from the graphs. However, these features are not
handy for generating new molecules without a structure yet
from a set of similar inhibitors. Since we would like to
synthesize a novel drug by recombining the structure of a set
of highly related molecules, a novel matrix norm was proposed to
measure the distance between the pairwise inhibitors with
different dimensions without extracting their features. Hence,
in this study, a graph representation is conducted to represent a
given inhibitor by using its weighted adjacency matrix. The
weight is determined by the type of the chemical bond,
where the single bond is 1 and the double bond is 2. It is
noted that different inhibitors may result in adjacency matrices
with different sizes. A graph representation is shown in
Figure 3.

2.2.1 Kronecker Product Norm of Square Matrices
Traditionally, the distance between vectors can be induced by
the norm of the vector, and the distance between matrices can
be induced by the norm of the matrix. However, when the
distance of two vectors (matrices) is induced by the currently
known vector (matrix) norm, two vectors (matrices) are
required to be of the same dimension. Therefore, it is an
interesting problem whether a new norm can be defined to
induce the distance between non-equidimensional vectors
(matrices).

Considering that the matrix norm ‖A‖ �
max ‖A · x‖: ‖x‖ � 1{ } is induced by the vector norm ‖x‖ and
that the Kronecker product ⊗ can increase the dimensionality of
the matrix, we design a new function
‖A‖m⊗

p � max ‖A ⊗ Em‖p: ‖Em‖p � ‖Im‖p � 1{ }, which is
induced by matrix p-norm ‖ · ‖p on Rn×n. Next, we give
proof that this new function ‖A‖m⊗

p is a matrix norm, such
that we can use this novel matrix norm to induce its
corresponding distance.

Theorem 1. The function ‖A‖m⊗

p �
max ‖A ⊗ Em‖p: ‖Em‖p � ‖Im‖p � 1{ } is a matrix norm on
Rn×n and satisfies the following properties:

(i) ‖A‖m⊗

p ≥ 0, unless A = 0, ‖A‖m⊗

p � 0.
(ii) For any scalar α and any A ∈ Rn×n, ‖αA‖m⊗

p � |α|‖A‖m⊗

p .
(iii) For any two matrices A ∈ Rn×n and B ∈ Rn×n,

‖A + B‖m⊗

p ≤ ‖A‖m⊗

p + ‖B‖m⊗

p .
(iv) For any two matrices A ∈ Rn×n and B ∈ Rn×n,

‖AB‖m⊗

p ≤ ‖A‖m⊗

p · ‖B‖m⊗

p .

Proof

(i) Nonnegative and positive:

A‖ ‖m⊗

p � max A ⊗ Em‖ ‖p: Em‖ ‖p � 1{ }≥ 0, unless A � 0, A‖ ‖m⊗

p

� 0.

FIGURE 3 | A diagram for weighted adjacency matrix of a given inhibitor. (A) The three-dimensional molecular structure of an inhibitor. (B) The corresponding graph
of the inhibitor’s molecular structure, which is obtained by treating the atoms in the molecular structure as nodes and the bonds in the molecular structure as edges. (C)
The weighted adjacency matrix of the inhibitor’s graph, and the weight determined by the type of chemical bond, where the single bond is 1 and the double bond is 2.
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(ii) Homogeneous:

αA‖ ‖m⊗

p � max αA ⊗ Em‖ ‖p: Em‖ ‖p � 1{ }
� max α| | A ⊗ Em‖ ‖p: Em‖ ‖p � 1{ }
� α| | ·max A ⊗ Em‖ ‖p: Em‖ ‖p � 1{ }
� α| | · A‖ ‖m⊗

p .

(iii) Triangle inequality:

A + B‖ ‖m⊗

p � max A + B( ) ⊗ Em‖ ‖p: Em‖ ‖p � 1{ }
≤max A ⊗ Em‖ ‖p + B ⊗ Em‖ ‖p: Em‖ ‖p � 1{ }
� max A ⊗ Em‖ ‖p: Em‖ ‖p � 1{ } +max B ⊗ Em‖ ‖p: Em‖ ‖p � 1{ }
� A‖ ‖m⊗

p + B‖ ‖m⊗

p

(iv) Submultiplicativity:

AB‖ ‖m⊗

p � max A · B( ) ⊗ Em‖ ‖p: Em‖ ‖p � 1{ }
� max A · B( ) ⊗ Em · Im( )‖ ‖p: Em‖ ‖p � 1{ }
� max A ⊗ Em( ) · B ⊗ Im( )‖ ‖p: Em‖ ‖p � 1{ }
≤max A ⊗ Em‖ ‖p · B ⊗ Im‖ ‖p: Em‖ ‖p � 1{ }
≤max A ⊗ Em‖ ‖p: Em‖ ‖p � 1{ } ·max B ⊗ Im‖ ‖p: Em‖ ‖p � 1{ }
≤max A ⊗ Em‖ ‖p: Em‖ ‖p � 1{ } ·max B ⊗ Em‖ ‖p: Em‖ ‖p � 1{ }
� A‖ ‖m⊗

p · B‖ ‖m⊗

p

Therefore, the function ‖A‖m⊗

p is a matrix norm, which is
induced by the matrix p-norm ‖A‖p, and it is also called the
operator norm or least upper bound norm associated with
the matrix p-norm ‖A‖p. We name this novel matrix norm
‖A‖m⊗

p as the matrix Kronecker product (p, m)-norm.

2.2.2 Distance of Different Dimension Square Matrices
The distance Dp(A,B)

1 of two inhibitors’ weighted adjacency
matrices with a different dimension is defined by the matrix
Kronecker product (p, m)-norm ‖ · ‖m⊗

p .

Definition 1. Let two matrices A ∈ Rn×n and B ∈ Rm×m, the
distance Dp(A,B)

1 of matrices A and B is defined by

Dp A, B( )1 �
A − B‖ ‖q⊗p , if n � m

A‖ ‖ q/n( )⊗
p − B‖ ‖ q/m( )⊗

p

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣, if n ≠ m

⎧⎪⎨
⎪⎩ (1)

where q is the least common multiple of n and m.
Meanwhile, we define the distance Dp(A,B)

2 of two inhibitors’
square matrices with different scales by the idea of mapping A
and B to the same dimension.

Definition 2. Let two matrices A ∈ Rn×n and B ∈ Rm×m, the
distance Dp(A,B)

2 of matrices A and B is defined by

Dp A, B( )2 � A ⊗ Iq/n − B ⊗ Iq/m
				 				p, (2)

where q is the least common multiple of n and m.

2.3 Hierarchical Clustering–Based
Kronecker Product Norm
Once the pairwise distances between any two inhibitors are
obtained by Dp(A,B)

i, i ∈ {1, 2}, a clustering procedure can be
conducted to group similar inhibitors, where the shorter the
distance between two inhibitors, the higher the possibility

FIGURE 4 | New inhibitor’s molecular structure by hybridizing. (A,B) Two inhibitors were employed as examples to show how a new drug can be generated.
Separatingmeans randomly disconnecting a cut edge in the two inhibitor molecules’ graphs, which will divide the two inhibitor molecules into four parts. (C)Reorganizing
means randomly choosing two of the four parts, which do not belong to the same inhibitor molecule, to combine the two parts and make it a new molecule by adding
an edge.
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that they are grouped into the same cluster. However, not
every clustering method works in this case of non-
equidimensional data clustering. If the dimensions of two

inhibitors are the same, then the cluster center can be
naturally obtained in an averagely weighted manner. But if
the dimensions of two or more weighted adjacency matrices
are different, the center of a group of inhibitors is unavailable
by using the above averagely weighted manner. This means,
we cannot use the clustering methods that are based on the
centroid linkage or rely on the cluster center, such as
k-means. In this study, the hierarchical clustering method
that D’Andrade (1978) based on the average linkage of two
clusters

davg Ci, Cj( ) � 1
|Ci|p|Cj| ∑x∈Ci

∑
z∈Cj

dist x, z( ).

was employed to test our proposed method.

2.4 Cluster Center Discovery–Based
Kronecker Product Norm
After clustering, a list of clusters C1, C2, . . . , Cm{ } can be
obtained, and the inhibitors in the same cluster Ci �
s1i , s

2
i , . . . , s

n
i{ } can be hybridized to generated new predictions

by iteratively separating and reorganizing.

FIGURE 5 | The color threshold corresponding to the different numbers
of clusters.

FIGURE 6 | Clusters obtained from the hierarchical clustering tree by using the average linkage.
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We use a “bottom–up” aggregation strategy to design an
iterative algorithm with the heuristic measure function f,
which is constructed by Dp(A,B)

i. First, for cluster
C � s1, s2, . . . , sn{ }, C ∈ C1, C2, . . . , Cm{ }, each inhibitor si is
regarded as an initial sample, and then the two closest
samples sjp and skp are found and merged in each step of
the algorithm operation.

Then through merging to the hybrid, the closest two
inhibitors sjp and skp in the same cluster by separating and
reorganizing, we will get much newer inhibitors s′. Separating
means randomly disconnecting a cut edge in the two inhibitor
molecules’ graphs, which will divide the two inhibitor molecules
into four parts. Reorganizing means randomly choosing two of
the four parts which do not belong to the same inhibitor
molecule, to combine the two parts and making it a new
molecule by adding an edge. The schematic diagram is
shown in Figure 4.

Finally, an intermediate product sp will be chosen by the
heuristic measure function f(s′) � g(sjp )pDp(sjp , s′)i+
g(skp )pDp(skp , s′)i � wjppDp(sjp , s′)i + wkppDp(skp , s′)i from
new inhibitors s′ and taken in the place of these two
inhibitors.

But the intermediate product sp is not the original two
inhibitors after all, we therefore set a weight for each
inhibitor W � wi|wi � 1, i � 1, 2, . . . , n{ }, and as the number
of hybridizations increases, the weight of the corresponding
inhibitors will be larger. In this way, when calculating the
distance, the inhibitors with more hybridization will have a
greater distance than before.

With the iteration of the algorithm, the cluster set will
remove the original two inhibitors and add an intermediate
product until there is only one inhibitor left in the cluster set.
This inhibitor is approximately the cluster center of the cluster
set. The pseudo code of the proposed algorithm is described as
follows. The code is available and can be downloaded from the
Internet at https://www.github.com/HenryHan1997/drug_
discover.

3 EXPERIMENTS AND RESULTS

3.1 The Clustering of Inhibitors
We get the weighted adjacency matrix from the active main
protease (Mpro) and papain-like protease (PLpro) inhibitors’
structure. Then, we use D2(A,B)

2 as the distance between the
pairwise inhibitors and use the average linkage davg(Ci, Cj) as the
distance between the two clusters to cluster the “seed” set by
AGNES hierarchical clustering (Kaufman and Rousseeuw,
2009).

Then, we get a tree-like hierarchical structure of the
inhibitors according to the average linkage. The threshold is
chosen as 0.0012, since it is the elbow position according to the
Figure 5. This indicates the distance between the clusters is as
large as possible, while the distance within the clusters is as
small as possible. After removing clusters less than two

inhibitors, 10 clusters are obtained, which are
C1, C2, . . . , C10{ }. They are marked with different colors in
Figure 6.

From the results, it can be seen that basically the inhibitors of
the same type are still in the same cluster after clustering,
i.e., papain-like protease inhibitors 11 − PL, 56 − PL, 64 −
PL are in the same cluster, and the main protease inhibitors 5 −
M, 13 − M, 14 − M, 15 − M, 16 − M, 19 − M are in the same
cluster. This shows that our proposed distance Dp(A,B)

i based
on the Kronecker product (p, m)-norm ‖ · ‖m⊗

p can indeed
measure the similarity between pairwise inhibitors of
different dimensions.

3.2 The Cluster Centers of Inhibitors
We chose one cluster, which contains papain-like protease
inhibitors 11 − PL, 56 − PL, 64 − PL as an example and used
Algorithm 1 with p = 2 and D2(A,B)

2 to discover new
inhibitors and count the number of occurrences. Finally, we
selected the three most frequent occurrences for analysis,
which are shown in Table 2. The new inhibitors are
considered to be valid because their SMILES representation
can be successfully parsed by the RDKit.

Algorithm 1. Cluster center generation.

To show that our discovered new inhibitors are approximately
the cluster centers, we visualized them in a two-dimensional
plane. We used principal component analysis (PCA) and sparse
PCA to reduce the dimensionality of the distance matrix, which is
calculated from these three new inhibitors, intermediate
products, and the original seeds by D2(A,B)

2. The results are
shown in Figure 7.

TABLE 2 | The three most frequently appeared inhibitors.

New inhibitor SMILES notation

First CN[C@H](COC)c1ccccc1
Second COCC
Third c1c(N)cccc1

SMILES, simplified molecular-input line-entry system.

Frontiers in Pharmacology | www.frontiersin.org February 2022 | Volume 13 | Article 8133917

Chen et al. COVID-19-Related Drug Discovery

https://www.github.com/HenryHan1997/drug_discover
https://www.github.com/HenryHan1997/drug_discover
https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


From Figure 7A, we can clearly see that the first and second
new inhibitors are probably in the center of the cluster, and the
third new inhibitor does not perform well; from Figure 7B, it is

evident that the three new inhibitors are probably in the center of
the cluster. On the whole, we calculated the sum of the distance
from the new inhibitor to the seeds, and showed that the first new
inhibitor performs best, which is shown in Figure 8.

Finally, we calculated the quantitative estimate of drug-likeness
(QED) of the new inhibitors and original inhibitors, which is
synthesized by using eight descriptors. The descriptors contain
MW, logP, HBA, HBD, PSA, ROTB, AROM, and ALERTS (Brown
et al., 2019). The QED of the first new inhibitor reached 0.731,
which is the highest and is higher than the original three inhibitors
(11 − PL, 56 − PL, 64 − PL). The results are shown in Table 3.

At the same time, we also record the synthetic route of the first
new inhibitor for analysis, which is shown in Figure 9. The first
new inhibitor is obtained by recombining papain-like protease
inhibitors 56 − PL and 64 − PL to form an intermediate product
c1(c(ccc(c1)N)C)COC, and then separating and combining the
intermediate product c1(c(ccc(c1)N)C)COC and papain-like
protease inhibitor 11 − PL.

This kind of procedure is not possible by using the
SMILE–based method directly. But using the proposed graph
representation, we can easily generate more number of potential
new drugs by combining information of currently known
related drugs.

FIGURE 7 | Two-dimensional visualization of inhibitors. (A) principal component analysis (PCA) is used to reduce the dimensionality of the distance matrix, which is
calculated from these three new inhibitors, intermediate products, and original seeds; (B) sparse principal component analysis (SPCA) is used to reduce the
dimensionality of the distance matrix, which is calculated from these three new inhibitors, intermediate products, and original seeds.

FIGURE 8 | The sum of the distance from the new inhibitor to the seeds.

TABLE 3 | Some properties of new inhibitors and original inhibitors.

Inhibitors MW logP HBA HBD PSA ROTB AROM ALERTS QED

11 − PL 416.56 5.12 3 1 41.57 7 3 0 0.581
56 − PL 334.42 4.06 3 2 64.35 5 3 1 0.692
64 − PL 294.35 4.25 3 0 47.28 0 2 1 0.682
First 165.24 1.59 2 1 21.26 4 1 0 0.731
Second 60.10 0.65 1 0 9.23 1 0 0 0.432
Third 93.13 1.27 1 1 26.02 0 1 1 0.480

The bold values indicate the best performer in that column. The values of this column are theweighted combination of the previous columns, this is the reasonwhy only the best value of this
column is bold.
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4 CONCLUSION AND FUTURE RESEARCH
DIRECTIONS

In view of the availability of the inhibitor-bound SARS-CoV-2
Mpro and PLpro crystal structure and a large amount of
proteomics knowledge, we hope to synthesize inhibitors with
similar structures or functions to discover a new inhibitor
which may has comprehensive advantages. We model it as the
discovery problem of the cluster center and propose a novel
approach to discover some new inhibitors by finding cluster
centers of known coronavirus inhibitors, such as SARS-CoV
PLpro and SARS-CoV Mpro inhibitors.

Considering the inhibitors’ different dimensions and that that
alignment-free methods may lose some important information in
feature engineering, we induce a novel norm (matrix Kronecker
product (p, m)-norm) ‖ · ‖m⊗

p from the matrix norm to define the
distance Dp(A,B)

i of inhibitors with different dimensions.
Converting the three-dimensional structure of the inhibitor into a
graph, and obtaining the corresponding two-dimensional matrix
representation, we then measure the distance by Dp(A,B)

i. This
approach preserves the inhibitors’ information as much as possible,
such that we can perform clustering to obtain those inhibitors with
similar structures or functions.Meanwhile, we propose cluster center
generation algorithm Algorithm 1 to approximate the cluster
centers by separating and reorganizing the inhibitors. In this way,
we can easily obtain some new inhibitors for subsequent screening,
which may have comprehensive advantages from the active
inhibitors.

Also, this method has some drawbacks and limitations that
require us to further consider and explore. The current method
does not consider the side effects of inhibitors, and we should
consider this matter whenmerging to hybridize the old inhibitors,
such that the new inhibitors are excellent.
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