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Abstract: Analysis of RNA-sequencing (RNA-seq) data is an effective means to analyze the gene
expression levels under specific conditions and discover new biological knowledge. More than
74,000 experimental series with RNA-seq have been stored in public databases as of 20 October
2021. Since this huge amount of expression data accumulated from past studies is a promising
source of new biological insights, we focused on a meta-analysis of 1783 runs of RNA-seq data
under the conditions of two types of stressors: oxidative stress (OS) and hypoxia. The collected
RNA-seq data of OS were organized as the OS dataset to retrieve and analyze differentially expressed
genes (DEGs). The OS-induced DEGs were compared with the hypoxia-induced DEGs retrieved
from a previous study. The results from the meta-analysis of OS transcriptomes revealed two genes,
CRIP1 and CRIP3, which were particularly downregulated, suggesting a relationship between OS
and zinc homeostasis. The comparison between meta-analysis of OS and hypoxia showed that
several genes were differentially expressed under both stress conditions, and it was inferred that the
downregulation of cell cycle-related genes is a mutual biological process in both OS and hypoxia.

Keywords: oxidative stress; RNA-seq; meta-analysis; hypoxia

1. Introduction

Oxidative stress (OS) is characterized by an imbalance between oxidants and antioxi-
dants, caused by an increase in the levels of reactive oxygen species (ROS) in a biological
system. ROS comprise free radicals that can damage cellular molecules and disrupt home-
ostasis when antioxidants are downregulated, or ROS levels are upregulated. Chronic
OS has been observed in various diseases such as Parkinson’s disease, hepatitis, and
cancer [1–5].

Due to its strong relationship with human health, the mechanisms of OS have been
extensively investigated to provide biological and medical knowledge. These include
the mechanism of DNA damage by the highly reactive hydroxyl radicals, the role of OS
in the appearance of carcinogenesis and the increase in OS-inducible inflammatory cells
by activation of specific transcription factors such as NF-E2-related factor-2 (NRF2) [6,7].
The past studies have also resulted in 435 genes in Homo sapiens annotated with the term
“GO:0006979 response to oxidative stress” in gene ontology (GO). On the other hand, the
broadness of OS-inducible factors and the dynamics of ROS in biological systems make
the OS studies challenging and complicated [8]. Despite attempts to list and categorize the
OS-related compounds, contributing factors for OS involve an enormous range of both
external and internal sources [1] and distinguishing oxidative and non-oxidative sources
is challenging. Therefore, the present study focused on analyzing the common features
among various sources of OS from the perspective of changes in gene expression. As for
another underdeveloped area of OS studies, a clear line between other types of stresses and
OS has not been defined. It is necessary to compare OS and other stresses such as hypoxia,
which is also an oxygen-related stress condition.
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Hypoxia is characterized by reduced oxygen availability in tissues and is known
to increase ROS levels through changes in signaling cascades and protein expression [9].
A previous study has successfully attained the collective intelligence of public hypoxic
transcriptomes by analyzing 944 runs of RNA-seq data [10]. This approach, a statistical
analysis of combined results from multiple studies, called meta-analysis, has attracted
attention. This is because the data-driven nature of meta-analysis makes it possible to
obtain new findings that are difficult to achieve with traditional hypothesis-driven research
methods [11]. The dataset and results obtained in the meta-analysis of hypoxia are valuable
sources for both hypothesis- and data-driven research.

To discover novel areas by utilizing valuable open sources, we collected OS transcrip-
tomes of human-cultured cells from public databases and performed a meta-analysis. This
study aimed to investigate the key genes and characteristics for both OS and the com-
parison between OS and hypoxia by analyzing the differentially expressed genes (DEGs)
from the meta-analysis of both OS and hypoxia. The investigation was based on 1783 sets
of RNA-seq data (839 from this study and 944 from our previous study of meta-analysis
in hypoxia [10]). These investigated genes, the curated dataset for OS, and the method
described in this study to compare the results of multiple meta-analyses are expected to be
valuable sources for promoting future studies.

2. Materials and Methods
2.1. Curation of Public Gene Expression Data

As a first step to access and view the integrated expression metadata from public
databases, we initially used a graphical web tool, All Of gene Expression (AOE) [12].
AOE provides integrated information about gene expression data integrated from Gene
Expression Omnibus (GEO) [13], ArrayExpress [14], Genomic Expression Archive [15],
and RNA-seq data only archived in the Sequence Read Archive (SRA) [16]. Extensive
keywords, including oxidative stress, rotenone, paraquat, hydrogen peroxide (H2O2), UV,
lipopolysaccharide, arsenite, and deoxynivalenol, were searched in GEO to collect a list of
experiment data series related to the RNA-seq data of OS in humans. Then, we manually
curated the adequate data with four main criteria: total RNA or polyA-RNA for extracted
molecules (sequencing library type), relation to the definition of oxidative stress, relation
to an increase in the ROS level, and availability of the corresponding control data (normal
state) to pair with the OS data.

2.2. RNA-seq Data Retrieval, Processing, and Quantification

We used Ikra for RNA-seq data retrieval, processing, and quantification. Ikra is an
automated pipeline program for RNA-seq data of Homo sapiens and Mus musculus [17]. Ikra
automates the following processes: conversion of the collected SRA format data to FASTQ
formatted files using fasterq-dump (version.2.9.6) [18], quality control and trimming of
transcript reads with trim-galore (version 0.6.6) [19], and quantification of the transcripts
in a unit of transcripts per million (TPM) by salmon (version 1.4.0) [20] with reference
transcript sets in GENCODE Release 31 (GRCh38.p12).

2.3. Calculation of ON_ratio and ON_score

We calculated the ratio of expression value of each gene in all pairs between Oxidative
stress and Normal state (termed as ON_ratio) [10,11]. Biological replicates from the same
data series were treated as individual experiments. The ON_ratio was calculated using
Equation (1):

ON_ratio =
TOS + 1

Tnormal state + 1
(1)

T corresponds to the expression value quantified in TPM. A small number (1 in
this case) was added to the expression value to avoid the calculation of zero. ON_ratio
values helped to classify each gene into three groups: upregulated, downregulated, and
unchanged. When the ON_ratio was greater than the threshold, the gene was considered
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upregulated, and when the ON_ratio was less than the threshold, the gene was treated as
downregulated, otherwise the gene was categorized as unchanged. We adopted 5- and
10-fold thresholds for upregulation and 0.2- and 0.1-fold thresholds for downregulation
after testing several thresholds.

To take all the collected RNA-seq data pairs into account, we calculated an Oxidative
stress Normal state score (termed as ON_score [11]) based on ON_ratio values using
Equation (2):

ON_score = count numberupregulated − count numberdownregulated (2)

ON_ratio and ON_score were previously introduced in the meta-analysis of OS
transcriptome in insects [11] and the meta-analysis of hypoxic transcriptome [10] (termed
as HN-ratio and HN-score in the meta-analysis of hypoxia).

2.4. Analysis and Comparison of Gene Sets

Differentially expressed gene sets were analyzed by using the web tool Metascape
(https://metascape.org/, accessed on 20 September 2021) [21], which performs gene set
enrichment analysis. We examined the corresponding terms and p-values obtained using
the gene set enrichment analysis. We also used a web Venn diagram tool [22] to search and
visualize the matched genes among different gene sets.

3. Results
3.1. Data Curation/Collection of Oxidative Stress Transcriptome Data

We collected 839 sets of RNA-seq data and curated them as the OS dataset with
386 pairs of OS and normal state transcriptome data. As OS is caused by various fac-
tors, sources of OS in the OS dataset include hydrogen peroxide (H2O2), UV, rotenone,
lipopolysaccharide, arsenite, radiation, NRF2 knockdown/KO, BRD4 KO, deoxynivalenol,
palmitate, cadmium, methylmercury, zinc dimethyldithiocarbamate, aging, paraquat, and
others (Table 1). The proportion of the data pairs of hydrogen peroxide, UV, and rotenone
against the total 386 pairs was as follows: 25%, 15%, and 12%, respectively. The percentage
of the samples derived from cancer cells was 18% (71 pairs out of 386 pairs). Other meta-
data about the OS dataset such as each SRA project ID, SRR ID, cell type, concentration of
treatment, hours of treatment, and library type of sequencing are shown in Figshare [23].

Table 1. The number of data pairs retrieved for each source of OS.

Source of OS Number of
Data Pairs

Hydrogen peroxide (H2O2) 98 (25%)
Ultra-Violet rays (UV) 59 (15%)

Rotenone 45 (12%)
Lipopolysaccharide (LPS) 38 (10%)

Arsenite 33 (9%)
Infra-Red rays (Radiation) 24 (6%)

NRF2 knockdown/KO, BRD4 KO 22 (6%)
Deoxynivalenol 10 (3%)

Palmitate/high fat/high glucose 10 (3%)
Cadmium, Methylmercury, Zinc dimethyldithiocarbamate 8 (2%)

Aging 6 (2%)
Paraquat 5 (1%)

Others (Senescence, Menadione, entinostat, etc.) 28 (7%)

Total 386

3.2. Verifying the Characteristics of DEGs Using the OS Dataset

A schematic view of the analysis is shown in Figure 1. The most upregulated 493 genes
and the most downregulated 492 genes, in a total of 985 genes (5% of the total coding genes

https://metascape.org/
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in GENCODE Release 31 (GRCh38.p12)), were retrieved by ON_score 10 as DEGs. We
performed gene set enrichment analysis using Metascape to visualize the characteristics
of the DEGs. The analysis showed that the 493 most upregulated genes by OS were
related to “GO:0009617: response to bacterium” and “M5885: NABA matrisome associated”
(Figure 2a). The 492 most downregulated genes by OS were related to “GO:0000280 nuclear
division” and “R-HAS-69278: Cell Cycle, Mitotic” (Figure 2b). We then found that 32 out of
985 genes were common to genes annotated with GO:0006979 (response to oxidative stress).
The most upregulated genes common to GO annotation were IL6, PTGS2, and MMP3, and
the most downregulated genes common to GO annotation were CDK1, SELENOP, and
KLF2 (Figure 2c). The same procedure to verify the DEGs retrieved by ON_score 5 was
also performed [23]. The use of ON_score 5 reveals a gene set that includes genes not as
differentially expressed as ON_score 10. This shows the broader characteristics of the OS.
We used ON_score 5 in the analysis of Section 3.4.

Figure 1. Schematic views of narrowing down the genes in oxidative/hypoxic transcriptome meta-analysis. (a) The
19,704 coding genes indexed for the reference genome were filtered by ON_score and by excluding Gene Ontology (GO)
annotated genes to retrieve the 20 most differentially expressed genes (DEGs). (b) The number of genes downregulated in
oxidative stress and hypoxia was then obtained as per the schematic in the figure.

3.3. Evaluation of DEGs by Oxidative Stress

To evaluate the genes exceptionally expressed by OS, the parameter of ON_score 10
was applied to retrieve 985 DEGs. Thirty-two genes that were already annotated with
GO:0006979 (response to oxidative stress) were excluded from the DEGs, thus revealing
OS-related genes which had not yet attracted attention (Figure 1a). The most upregulated
10 genes and the most downregulated 10 genes were retrieved and analyzed (Figures 1a
and 3). Five out of the ten most downregulated genes (H2BC14, PIMREG, KIF20A, CDC20,
and H2AC14) were related to the cell cycle. Two of them (H2BC14 and H2AC14) encode
the core components of histones. In addition, two genes encoding zinc binding domains
(CRIP1 and CRIP3) are included in the list of the ten most downregulated genes. In contrast,
the three most upregulated genes were CCL20, CXCL8, and CXCL1, encoding C-C motif
chemokine-20, interleukin-8, and growth-regulated alpha protein, respectively. Genes that
respond to inflammation were included in the most upregulated genes.

3.4. Comparison of the Meta-Analysis Results by OS and Hypoxia

Schematic descriptions of the retrieval and analysis of the downregulated genes in
both OS and hypoxia are shown in Figure 1b. We collected 985 DEGs of OS and hypoxia
using the ON_score and HN-score. Each set of DEGs was divided into two gene sets:
the 493 most upregulated genes and the 492 most downregulated genes. The four gene
sets derived from the two types of stress conditions were compared using Venn diagrams
to show the common differentially expressed genes (Figure 4a). We found that 44 genes
were upregulated in both stress conditions (termed as HN_up ON_up), 50 genes were
downregulated in both stress conditions (termed as HN_down ON_down), 11 genes were
upregulated in hypoxia but downregulated in OS (termed as HN_up ON_down), and
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8 genes were upregulated in OS but downregulated in hypoxia (termed as HN_down
ON_up). The number of genes upregulated or downregulated in both stress conditions
was greater than the number of genes upregulated or downregulated under either one of
the stress conditions.

Figure 2. Verifying the characteristics of differentially expressed genes (DEGs): Enrichment analysis for (a) the 493 most
upregulated genes by oxidative stress (OS) and (b) the 492 most downregulated genes by OS. The darker the bar is colored,
the more significant the p-value. (c) ON_score for 32 genes that were identified as DEGs and annotated as GO:0006979
(response to oxidative stress).
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Figure 3. ON_score for the ten most upregulated and downregulated genes after extraction of annotated genes with
GO:0006979 (response to oxidative stress).

Figure 4. Comparison of results from the meta-analysis in oxidative stress (OS) and hypoxia. (a) Visualization of comparison
among gene sets. HN_up: the 493 most upregulated genes by hypoxia; HN_down: the 492 most downregulated genes by
hypoxia; ON_up: the 493 most upregulated genes by OS; ON_down: the 492 most downregulated genes by OS. Enrichment
analysis for (b) showed 50 genes downregulated in both stresses and (c) 44 genes upregulated in both stresses. The darker
the bar is colored, the more significant the p-value.

The characteristics of each gene set in common were analyzed by performing gene set
enrichment analysis using Metascape. “R-HAS-69278: Cell Cycle, Mitotic” and “GO:1903047:
mitotic cell cycle process” are the most enriched terms with log10(p-value) of −19.21 and −18.93
for HN_down ON_down (Figure 4b). HN_up ON_up is related to the terms “M145: PID P53
Downstream pathway” and “M166: PID ATF2 pathway” (Figure 4c). HN_up ON_down and
HN_down ON_up included 11 genes and 8 genes, respectively. A list of genes in each gene set
is shown in Figshare [23].
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4. Discussion

In this study, we curated the 386 pairs of OS-related RNA-seq data collected from pub-
lic databases. The collected data were systematically processed and analyzed to identify the
DEGs related to OS. Gene set enrichment analysis was performed to identify and confirm
the characteristics of the DEGs. In addition, we implemented a new approach to analyze
the relationship between the two types of stresses, OS and hypoxia, by comparing the
results of both meta-analyses [10]. We compared the genes upregulated and downregulated
by hypoxia and OS to obtain four new gene sets, HN_up ON_up, HN_down ON_down,
HN_up ON_down, and HN_down ON_up. Each gene set was analyzed using gene set
enrichment analysis.

Meta-analysis of the OS dataset revealed two interesting genes encoding cysteine-
rich proteins (CRIP1 and CRIP3) that were the 10th and 5th most downregulated by
OS, respectively. Each encoded protein contains zinc-binding domains, and the protein
encoded by CRIP1 is considered to act as a zinc transporter and absorption agent [24,25].
Previous studies have reported several roles for zinc in antioxidant defense systems. For
example, zinc inhibits the enzyme nicotinamide adenine dinucleotide phosphate oxidase
(NADPH-Oxidase) and promotes the synthesis of metallothionein which contributes to
the reduction in ROS [26]. Zinc is also known as a component of the enzyme superoxide
dismutase (SOD) which acts to reduce and maintain ROS levels in cells [26]. On the other
hand, excess zinc exhibits other toxicities leading to symptoms such as nausea, vomiting,
fever, and headaches [27]. Therefore, zinc homeostasis is one of the key biological systems
for preventing various types of stress. As the proteins encoded by CRIP1 and CRIP3
contain zinc-binding domains, we can assume that they participate in the regulation of
zinc homeostasis. Based on this hypothesis and the results of this study, we suggest that
the regulation of zinc homeostasis is impaired in OS due to decreased expression of CRIP1
and CRIP3. Since zinc deficiency is known to be a cause of OS [3,28], we speculate that the
downregulation of CRIP1 and CRIP3 is affected by OS-induced pathways that contribute
to the reduced availability of zinc in cells. Uncovering the functions of CRIP1 and CRIP3
could be a way to clarify some of the relationships between OS and zinc homeostasis,
which may promote the development or the prevention of OS and zinc homeostasis-related
diseases such as atherosclerosis [29], Parkinson’s disease [30], cancer, and hepatitis virus
infection [31,32].

Comparing the meta-analysis results by two types of stresses, OS and hypoxia, re-
vealed gene sets that were found to be differentially expressed in both stresses. Particularly
the gene set downregulated in both stresses showed distinct characteristics with the cell
cycle (Figure 4b). This result supports the previous biological findings that DNA damage
induced by increased ROS levels causes cell cycle arrest or apoptosis [33,34]. In addition,
an increase in ROS production in mitochondria is known to be a common event in both OS
and hypoxia [35]; therefore, the downregulation of cell cycle-related genes was an expected
result. Furthermore, a meta-analysis of the OS dataset revealed five cell cycle-related
genes—H2BC14, PIMREG, KIF20A, CDC20, and H2AC14—that were, respectively, 2nd,
3rd, 6th, 7th, and 9th most downregulated by OS, supporting the above observation by
showing that DEGs associated with OS are related to the cell cycle. As these ten OS-induced
downregulated genes were not included in the genes common to hypoxia, further research
is needed to clarify whether the expression of these genes is unique to OS or shared by
types of stresses other than hypoxia.

The results of this study may play a role in elucidating the causative mechanisms and de-
velopment of treatments for such diseases as atherosclerosis (OS- and zinc homeostasis-related),
chronic kidney disease, and metabolic syndrome (both OS- and hypoxia-related) [36,37]
through further studies on the functions of the important genes revealed here. Utilization of
real-time reverse transcription polymerase chain reaction (RT-PCR) can be an effective way to
confirm the results from the meta-analysis, to give an example of potential further studies [38].
As the quantity of public expression data increases, the more accurate and detailed information
about genes that respond to OS can be obtained by updating the OS dataset in the future. We
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have also shown the possibility of revealing information about the relationships between the
types of stresses by comparing the results from the meta-analysis. Thus, the use of collective
intelligence, including the results of this study, which will continue to be produced in the
future, makes it possible to efficiently promote studies on the search for key pathways, for
causes of diseases, and treatments of diseases.
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