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In clinical genetic testing, checking the concordance between self-reported gender and
genotype-inferred gender from genomic data is a significant quality control measure
because mismatched gender due to sex chromosomal abnormalities or misregistration of
clinical information can significantly affect molecular diagnosis and treatment decisions.
Targeted gene sequencing (TGS) is widely recommended as a first-tier diagnostic step in
clinical genetic testing. However, the existing gender-inference tools are optimized for
whole genome and whole exome data and are not adequate and accurate for analyzing
TGS data. In this study, we validated a new gender-inference tool, seGMM, which uses
unsupervised clustering (Gaussian mixture model) to determine the gender of a sample.
The seGMM tool can also identify sex chromosomal abnormalities in samples by aligning
the sequencing reads from the genotype data. The seGMM tool consistently
demonstrated>99% gender-inference accuracy in a publicly available 1,000-gene
panel dataset from the 1,000 Genomes project, an in-house 785 hearing loss gene
panel dataset of 16,387 samples, and a 187 autism risk gene panel dataset from the
Autism Clinical and Genetic Resources in China (ACGC) database. The performance and
accuracy of seGMM was significantly higher for the targeted gene sequencing (TGS),
whole exome sequencing (WES), and whole genome sequencing (WGS) datasets
compared to the other existing gender-inference tools such as PLINK, seXY, and
XYalign. The results of seGMM were confirmed by the short tandem repeat analysis of
the sex chromosome marker gene, amelogenin. Furthermore, our data showed that
seGMM accurately identified sex chromosomal abnormalities in the samples. In
conclusion, the seGMM tool shows great potential in clinical genetics by determining
the sex chromosomal karyotypes of samples from massively parallel sequencing data with
high accuracy.
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INTRODUCTION

The next-generation sequencing (NGS) technology has
revolutionized human biology and medicine in the last decade.
NGS is routinely used in clinical genetic testing for molecular
diagnosis of hereditary disorders, infectious diseases, and
immune disorders, non-invasive prenatal genetic testing, and
personalized precision medicine, especially for cancer patients
(Phillips and Douglas, 2018; Phillips et al., 2020). Clinical genetic
testing is a diagnostic tool that involves genome sequencing to
identify pathogenic gene mutations (genetic variants) in human
diseases (McPherson, 2006). This may involve targeted gene
sequencing (TGS) of single or multiple genes, whole exome
sequencing (WES), or whole genome sequencing (WGS) (Di
Resta et al., 2018). TGS is highly accurate, robust, and cost-
effective. Therefore, TGS has been used for the diagnosis of
several human diseases including hearing loss, vision loss,
cardiovascular disorders, neurologic disorders, cancer risk, and
renal disorders (Lin et al., 2012; Saudi Mendeliome, 2015).

Parallelized TGS analysis of large patient cohorts requires
rigorous quality control (QC) and preprocessing to identify the
pathogenic gene variants (Lee et al., 2017). Verification of the
concordance between self-reported gender and genetically
inferred gender is an essential QC step because misregistration of
clinical information, sample swaps, sample pollution, or sex
chromosomal abnormalities can result in wrong conclusions and
affect treatment decisions (Taylor et al., 2015; Webster et al., 2019).
Sex chromosomal abnormalities are reported in approximately 1 in
448 newborn children (Nielsen andWohlert, 1990). Therefore, there
is a higher probability of gender inconsistencies in larger cohorts.
Cytogenetic karyotyping is the gold standardmethod for confirming
the gender of an individual and identifying chromosomal
abnormalities. The highly conserved sex chromosomal marker
gene, amelogenin, is widely used for identifying gender using
short tandem repeat (STR) typing (Thangaraj et al., 2002; Ma
et al., 2012). The 6 bp deletion within intron 1 of the amelogenin
gene in the X chromosome is used to distinguish the PCR amplified
products of the amelogenin gene in the X and Y chromosomes
(Sullivan et al., 1993). However, these methods are time- and labor-
consuming.

Several computational tools such as PLINK, seXY, and
XYalign, have been developed for gender inference based on
genome-wide WES or WGS data. PLINK inferred gender by
calculating F coefficients from the genotyping array data using X
chromosome homozygosity/heterozygosity rates; samples with F
coefficient values of more than 0.8 were designated as males and
samples with F coefficient values of less than 0.2 were considered
as females (Purcell et al., 2007). The seXY tool is based on the
logistic regression model and identifies gender by considering X
chromosome heterozygosity and Y chromosome missingness in
the genotyping array data (Qian et al., 2017). XYalign tool
identifies gender from both WES and WGS datasets by
extracting the read counts mapped to the sex chromosomes
and calculating the ratio of X and Y read counts in a scatter
plot (Webster et al., 2019). However, none of these tools are
optimized for analyzing TGS panel data, which contains
significantly reduced information compared to the whole

genomic or exome data. As shown in Table 1, the
performance of the existing tools was not satisfactory in
reporting gender using the TGS data. Furthermore, sex
chromosomal abnormalities were not clearly identified by the
PLINK, seXY, and XYalign tools. Few studies reported the sex
chromosomal abnormalities of individuals based on the ratio of
sequencing reads that were mapped to the X and Y chromosomes
from the genotyping array and WGS data (Bycroft et al., 2018;
Turro et al., 2020). However, this methodology has not been
automated. Therefore, there is an urgent need to construct highly
accurate bioinformatics tools for gender inference from TGS data
and reporting sex chromosomal abnormalities.

In this study, we verified the performance and accuracy of the
new gender inference tool, seGMM, using both in-house and
publicly available TGS, WES, and WGS datasets. The seGMM
tool used unsupervised learning to integrate the information of
the X and Y chromosomes from the TGS, WES, or WGS datasets
and classified the samples into one of the six sex chromosomal
karyotypes (XX, XY, XYY, XXY, XXX, and X).

MATERIALS AND METHODS

Data
We compared the performances of three existing gender-
inferring methods and seGMM using the TGS data from the
following 3 datasets: 1) Dataset 1: exon-targeted sequencing data
of 1,000 genes (34 X chromosomal genes and two Y chromosomal
genes) for a cohort of 110 males and 98 females from the 1,000
Genomes Project (Supplementary Table S1) (Genomes Project
et al., 2010); 2) Dataset 2 (in-house): massive parallel sequencing
of 785 deafness-related genes (eight genes in the X chromosome)
for an in-house cohort of 8,805 males and 7,582 females; and 3)
Dataset 3: targeted sequencing data of 187 autism risk genes (13
genes in the X chromosome) for a cohort of 42 females and 205
males from the Autism Clinical and Genetic Resources in China
(ACGC) (Guo et al., 2018).

We also used the following two publicly available datasets
(Supplementary Tables S2, S3) and one in-house dataset for
analyzing the performance of seGMM in determining gender
using WES and WGS data: 1) Dataset 4: exome sequencing data
of 164 males and 118 females from the 1,000 Genomes Project
(Genomes Project et al., 2015); 2) Dataset 5 (in-house): exome
sequencing data of 1,257 males and 1,136 females; and 3) Dataset
6: high-coverage whole genome sequencing data of 11 males and 16
females from the 1,000 Genomes Project (Genomes Project et al.,
2015).

The publicly available BAM files were previously mapped to
the reference genome (GRCh37) and directly used for
downstream analyses. For the in-house datasets, Fastp was
used to remove the adapters and low-quality reads, and the
quality of sequencing data was evaluated using measures such
as Q20, sequence duplication levels, coverage, and GC content
(Chen et al., 2018). Clean DNA sequencing reads were mapped to
the human reference genome (GRCh37) using the BWA-MEM
algorithm (Li and Durbin, 2009). Duplicated reads in the BAM
files from the public and in-house datasets were removed using
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the sambamba tool (Tarasov et al., 2015). The variants were
identified based on the Genome Analysis Toolkit best practices
recommendations (McKenna et al., 2010) and filtered with
VCFtools (Danecek et al., 2011) using parameters such as
missing data in more than 50% of samples, minor allele count
<3, overall SNP quality (QUAL) score <30, and read depth <5.

Gender Inference Using seGMM
The model for seGMM included five gender-associated features,
namely, X chromosome heterozygosity (XH), readsmapped to the X
chromosome (Xmap), reads mapped to the Y chromosome (Ymap),
the ratio of X/Y counts (XYratio), and the mean depth of the sex-
determining region of the Y chromosome (SRY) gene (SRY_dep).
The seGMM tool computed XH as the fraction of all genotypes on
the X chromosome with two different allele calls, excluding the
missing genotypes. Xmap/Ymap was computed as the fraction of
high-quality reads (mapq > 30) that mapped to the X/Y
chromosome divided by the total number of high-quality reads
that mapped to the genome using the samtools algorithm (Li et al.,
2009). XYratio was computed as the ratio of Xmap to Ymap (Xmap/
Ymap). SRY_dep was determined using the mosdepth tool
(Pedersen and Quinlan, 2018). The seGMM tool allows the users
to customize feature selection for the GMMmodel because different
TGS panel designs may only provide some features. For example, if
the gene panel contains only genes located on the X chromosome,
the relevant features on the X chromosome (XH and Xmap) are
extracted and put into the model for gender determination.

The features extracted from the BAM and VCF files were
normalized to the same level using the scale function in R 4.1.2 (R
Core Team., 2021). Then, the mclust (v.5.4.9) R package was used
to perform model-based clustering with the expectation-
maximization (EM) algorithm and the samples were classified
into two clusters (Scrucca et al., 2016). The gender was inferred
based on the cluster results for a group of samples. The outliers
were identified when uncertainty (probability of being assigned to
two different clusters) was greater than 0.1. When a single sample
was submitted, gender was inferred using the reference data that
was analyzed with the same features as those in the seGMM
model (Figure 1).

Identifying Potential Sex Chromosomal
Abnormalities in the Sequenced Samples
We defined the gates to classify individual karyotypes. The
distribution of Xmap and Ymap in the females and males of
the large cohort was normal. The ratio of samples with sex
chromosomal abnormalities was 0.022% (Nielsen and Wohlert,
1990). This data was in agreement with the empirical rule, which
states that 99.7% of normally distributed data lies within 3
standard deviations (sd) of the mean. Hence, we defined the
normal gates as mean±3sd. The fold changes in Xmap or Ymap
values indicated sex chromosomal aneuploidy.

To identify sex chromosomal abnormalities in the samples, we
first calculated the mean value and standard deviation values of

TABLE 1 | Gender prediction accuracy of different methods for samples in dataset 1.

Tools Accuracy for all samples
(%)

Accuracy for male samples
(%)

Accuracy for female
samples (%)

PLINK 81.44 48.28 100
seXY 62.5 45.45 81.63
XYalign 98.08 100 95.92
seGMM 99.52 100 98.98

FIGURE 1 | Schematic diagram of seGMM. The seGMM tool automatically collects features from the input VCF and BAM files and builds the GMM model. The
output of seGMM includes gender prediction results and identification of samples with abnormal sex chromosomes.
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Xmap (mean_xmap and sd_xmap) and Ymap (mean_ymap, and
sd_ymap) in the genetically determined male and female samples.
The values for the males and females were denoted as m and f,
respectively. The following six gates were then used to classify the
karyotypes of individuals:

• XY Gate
○ mean_xmap_m - 3 sd_xmap_m < x < mean_xmap_m + 3

sd_xmap_m
○ mean_ymap_m - 3 sd_ymap_m < y < mean_ymap_m + 3

sd_ymap_m
• XYY gate:
○ mean_xmap_m - 3 sd_xmap_m < x < mean_xmap_m + 3

sd_xmap_m
○ y > 2 mean_ymap_m

• XX gate:
○ mean_xmap_f - 3 sd_xmap_f < x < mean_xmap_f + 3

sd_xmap_f
○ mean_ymap_f - 3 sd_ymap_f < y < mean_ymap_f + 3

sd_ymap_f
• XXY gate:
○ x > 2 mean_xmap_f
○ mean_ymap_m - 3 sd_ymap_m < y < mean_ymap_m + 3

sd_ymap_m
• XXX gate:
○ x > 3 mean_xmap_f
○ mean ymap_f - 3 sd_ymap_f < y < mean_ymap_f + 3

sd_ymap_f
• X gate:
○ x < 0.5 mean_xmap_f
○ mean_ymap_f - 3 sd_ymap_f < y < mean_ymap_f + 3

sd_ymap_f

Comparing the Performance of seGMM
With Other Existing Gender-Inference
Methods
The performance of seGMM was compared to PLINK 1.9,
XYalign (v.1.1.6), and seXY (v.20170316). For PLINK 1.9, the
pseudoautosomal region of the X chromosome was first split off
with the parameter–split-x. Then, the parameter–check-sex was
run without parameters. After reviewing the distribution of F
estimates, the parameter–check-sex was rerun with parameters
corresponding to the empirical gap. XYalign was performed
following the method described in the original literature. The
CHROM_STATS module was used to obtain the depths of
chromosomes 1, X, and Y. The depths of X and Y
chromosomes were normalized relative to the depth of
chromosome 1. Then, a scatter plot of normalized X and Y
chromosomes depth was plotted to assess gender in samples.
Gender of the samples was inferred with seXY using the X.ped
and Y.ped data that was derived from PLINK. The training
dataset was provided by seXY. We expected to compare
seGMM and other existing tools for all the six datasets.
However, target gene panel data for datasets 2 and 3 did not
contain genes on the Y chromosome. Therefore, the performance
of XYalign and seXY was not available for these two datasets.

STR Analysis for Verifying Gender
The STR analysis was performed using the customized multiplex
PowerPlex® 16 System, which allowed co-amplification and four-
color detection of amelogenin and other gene loci. The
following primers were used for amplifying amelogenin:
forward, 5′- GTTAGACGTGTGCTTCAACTTCAGCTATG
AGGTAATTTTTC—3′; reverse, 5′- ATCCGACGGTAG
TGTCCAACCATCAGAGCTTAAACTGG-3′. All genetic
loci were amplified simultaneously in a single tube and
analyzed in a single lane. One of the primers for the
amelogenin gene was labeled with carboxyrhodamine (ROX).
The amplicons were separated in the ABI 3730XL Genetic
Analyzer and the data was extracted using GeneMapper ID
v3.2. The gender was inferred according to the peaks for the
amelogenin gene. If only one peak was observed for the
amelogenin locus, the gender was designated as female. If
two distinct peaks differing by 6 bp were observed in the
amelogenin locus, the gender was designated as male.

Quantitative Determination of Y
Chromosome Copy Number
Genomic DNA (gDNA) was extracted using the MagMAX High
Purity Free DNA Separation Kit (Magen, China). DNA
concentration of the samples was measured using the
NanoDrop One spectrophotometer (Thermo Fisher Scientific,
United States). The working concentration of all DNA samples
was 20 ng/µl. The primers targeting SRY, zinc finger protein
Y-linked (ZFY), and deleted in azoospermia 1 (DAZ1) genes
were designed using the Primer-BLAST online tool to determine
the Y chromosome copy number (Ye et al., 2012). RPP30 was
used as the internal control. All the primers used in this study
are listed in Supplementary Table S4. The qPCR reaction mix
included 0.6 µl of gDNA, 0.4 µl of each primer, 5 µl of iTaq™
Universal SYBR® Green Supermix (Bio–Rad, United States),
and 3.6 µl of double-distilled water. Each sample was analyzed
with three replicates. The quantitative real-time PCR assay
(RT–qPCR) was performed in the QuantStudio 5 Real-Time
PCR system (Thermo Fisher Scientific) using the following
conditions: initial hot start cycle at 98°C for 2 min followed
by 40 cycles consisting of denaturation at 98°C for 10 s,
annealing at 60°C for 10 s, and the final extension step of
30 s at 72°C.

RESULTS

The seGMM Tool Shows Better
Performance Compared to Other Tools for
the TGS Data
The distribution of XH, Xmap, Ymap, and XYratio values for
dataset 1 (n = 208) shown in Figures 2A–D. The accuracy of
seGMM was 99.52% and none of the samples were outliers
(Figure 2E; Table 1). The accuracy of seGMM in females and
males was 98.98 and 100%, respectively. The XYratio of one female
sample (NA19054) resembled that of males and was incorrectly
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classified as male by seGMM. The gender-inference performance
of seGMM for dataset 1 was superior to PLINK, seXY and XYalign.
The PLINK tool analysis showed that the F coefficients for the
dataset1 samples ranged from 0 to 0.9 and gap of F coefficients was
not observed (Supplementary Figure S1). The accuracy of PLINK
was 81.44% by running –check-sex without parameters. The
accuracy of seXY for the dataset 1 was only 62.5% (Table 1).
XYalign does not directly indicate predicted gender. Therefore,

plotting the normalized sequence depth of the sex chromosomes
and cluster samples along two ellipses using the stat_ellipse
function resulted in a confidence level of 99.99%. XYalign plot
showed that one female sample was located along with the male
samples and three female samples were located between the two
ellipses. Hence, the predicted gender of these four female samples
was ambiguous (Supplementary Figure S2) and the accuracy of
XYalign is 98.08%.

FIGURE 2 | The performance of seGMM in the TGS datasets. (A–D) Distribution of features collected from dataset 1. (E–G) Sample classification results of
datasets 1, 2, and 3 based on seGMM. The colors represent different sample clusters. Dir1 and Dir2 represent the eigenvectors that specify the discriminant subspace
generated from the features included in the GMM model.
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The performance of seGMM for the target gene panel data
was validated using dataset 2 (n = 16,387) and dataset 3 (n =
247). The read counts, base quality, and GC distribution of the
sequencing data of all the 16,387 subjects in dataset 2 was
assessed. The average total number of sequence read per
sample was 10.72 million. The average quality score for all
bases was above 30 and the average GC content was 50.11% per
subject. The average targeted sequence coverage was 90.43%,
and unique mapping rate of each sample was 99.26%. We
identified 16,988 variants in eight genes located on the X
chromosome. Because the target gene panel for dataset 2
did not contain genes on the Y chromosome, we only used
XH and Xmap to analyze the performance of the seGMM
model. XH and Xmap plots showed distinct clusters for males
and females (Supplementary Figure S3). The overall accuracy
of seGMM and PLINK was 99.92 and 87.10%, respectively
(Figure 2F; Table 2). The accuracy of seGMM in females and
males was both 99.98%. One self-reported female sample (HL-
001200) and two self-reported male samples (CTRL-002692
and CTRL-002753) were misclassified. Therefore, we
performed STR analysis with the sex chromosome marker
gene, amelogenin, to verify the gender of these three
ambiguous samples. All these three samples were identified
as males because two distinct peaks were observed with a
difference of 6 bp for the amelogenin gene (Figures 3A–C).
CTRL-002692 and CTRL-002753 were misclassified because
all other male samples had a XH value of 0, while these two
samples had a non-zero value (XHCTRL-002692 = 0.0025;
XHCTRL-002753 = 0.0046), which could be caused by the
individual variation in targeting region.

The overall accuracy of seGMM for dataset 3 was 92.31%
(97.56% for females and 84.88% for males, Figure 2G and
Table 2). The accuracy of PLINK was only 38.87% for dataset
3. The performances of seGMM and PLINK were significantly
better for datasets 1 and 2 compared to dataset 3 because the
number of X chromosome SNPs (81) were lower and sequencing
data for the Y chromosome was absent in dataset 3, thereby
affecting the distribution of XH values from the male and
female samples (Supplementary Figure S4A). In contrast to
PLINK, seGMM collected additional information for the reads
mapped to the X chromosome, thereby enabling better separation
between the female and male samples (Supplementary Figure
S4B). Furthermore, we assessed the performance of seGMM using
features only extracted from the X chromosome in dataset 1. The
seGMM tool showed that 59 samples were outliers and the
accuracy for the remaining samples was only 84.56%. We
then evaluated the computation time of different methods using
1 core, 10 cores and 20 cores on a server with 64 Intel(R) Xeon(R)
CPU E7-8895 v3 at 2.60 GHz. The analysis time for the seGMM

tool was longer than PLINK and seXY because it collected
additional features such as reads mapped to the X and Y
chromosomes. Moreover, the analysis time for seGMM with 1
core was longer than XYalign and 10 times faster than XYalign
with 20 cores (Supplementary Table S5).

The seGMM Tool Shows Better Accuracy
Than Other Known Tools for the WES and
WGS Data
We then evaluated the performance of the seGMM tool for the
WES andWGS data. First, we analyzed the publicly available WES
data (dataset 4). The accuracy of seGMMwas 100% for the samples
in dataset 4 (n = 282) (Table 3 and Supplementary Figure S5).
The accuracy of PLINK and seXY was also 100%. The accuracy of
XYalign was 99.65% (Supplementary Figure S6).

Next, we analyzed the in-house WES data (dataset 5, n = 2,393)
using seGMM and other tools. In dataset 5, the average number of
sequencing reads per sample was 114.43 million. The average Q20,
Q30 and GC content of the reads per subject was 97.36%, 93.21%,
and 51.23%, respectively. Furthermore, the average unique
mapping rate for each individual sample was 99.92%. We
identified 89,273 variants on the X chromosome and 4,866
variants on the Y chromosome. The concordance between
inferred gender and self-reported gender using the seGMM tool
based on the five features for the in-house WES dataset 5 was
99.75% (99.76% for males and 99.74% for females, Figure 4A,
Supplementary Figure S7). Six mismatched samples (HL-005584,
HL-006009, HL-006904, HL-007335, HL-007935 and HL-012246)
were identified by comparing SNP-inferred gender and self-
reported gender. This indicated misregistration of clinical
information for some samples. Therefore, we performed STR
analysis to validate the gender of these six samples. Three
samples were classified as females because they showed only
one peak for the amelogenin locus, whereas the remaining three
samples showed two distinct peaks with a difference of 6 bp and
were classified as males (Table 4). The results demonstrated that
the actual accuracy of seGMM prediction was 100%. We also
evaluated the correlation between age and reads mapped to the Y
chromosome in the male samples (Supplementary Figure S8A)
and reads mapped to the X chromosome in the female samples
from the in-house WES dataset 5 (Supplementary Figure S8B).
The results showed significant negative correlation (p = 6.899e-09;
correlation coefficient: −0.17) between reads mapped to the Y
chromosome and age, thereby indicating loss of Y chromosome
during aging.

We then compared the performances of PLINK, seXY and
XYalign for dataset 5 using the corrected gender information. The
accuracy of PLINK was 99.79% with five mismatched samples
(HL-033182, HL-020292, HL-011500, HL-019211 and HL-
012554) (Table 3). The accuracy of XYalign was 99.91% with
two mismatched samples (HL-009389 and HL-012554). Overall,
six samples were mismatched, as predicted by PLINK and
XYalign. STR analysis showed that the gender of these
samples was consistent with their self-reported gender and
matched the predicted results of seGMM analysis (Table 4).
Furthermore, the accuracy of seXY was 49.23%. The loss of

TABLE 2 | Gender prediction accuracy of different methods for samples in
datasets 2 and 3.

Methods Dataset 2 Dataset 3

PLINK 87.10 38.87
seGMM 99.92 92.31
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accuracy in seXY for dataset 5 was because the distribution of
Y chromosome missingness in the male and female samples
were confounded (Supplementary Figure S9). Finally, the

performances of these tools were assessed using the WGS data
(dataset 6, n = 27). The accuracy of all tools was 100% for dataset
6 (Table 3).

FIGURE 3 | Experimentally verified gender of HL-001200 (A), CTRL-002692 (B) and CTRL-002753 (C). The green box shows the location of the amelogenin loci.
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The seGMM Tool Identifies Samples With
Sex Chromosomal Abnormalities
The seGMM tool can identify six sex chromosomal karyotypes
(XX, XY, XYY, XXY, XXX, and X) using Xmap and Ymap. In a
large cohort, the distribution of Xmap and Ymap was normal in
females and males. The Xmap or Ymap values of samples with sex
chromosome abnormalities such as XYY and XXY were
significantly different and were recognized as outliers compared
to samples with normal sex chromosomes. Three samples in
dataset 5 (HL-029620, HL-009382 and HL-019110) were
classified as the XYY karyotype. In dataset 5, the average rate of
reads mapping to the X and Y chromosomes in the female samples
were 0.035 ± 0.0020 and 1.61e-05 ± 3.36e-05, respectively, and
0.018 ± 0.0011 and 0.00067 ± 0.00014, respectively, for the male
samples. The rate of reads mapping to the Y chromosome for the
three outlier samples was twice as high as the mean value of Ymap
in all the male samples (YmapHL-029620 = 0.0015, YmapHL-009382 =
0.0018, and YmapHL-019110 = 0.0015), thereby suggesting a XYY
karyotype by seGMM (Figure 4B). Furthermore, although HL-
009389 and HL-012554 samples were located close together in
the middle of the plot, they were correctly predicted by seGMM as
female and male, respectively (Figure 4B). This is because features
such as Xmap and SRY_dep, which are not shown in Figure 4B,
clearly separated all female and male samples (Supplementary
Figure S10). This demonstrated the significance of incorporating
key features to improve the accuracy of the gender prediction
model. In the other datasets, sex chromosomal abnormalities were
not identified.

Next, we evaluated the accuracy of the data-based sex
chromosome karyotype of these three samples by analyzing
the copy number ratios of Y chromosome-specific genes (SRY,
ZFY and DAZ1) by RT–qPCR. We used HL-007935 and HL-
012246 samples as controls for females and males based on the
STR analysis results. The copy number ratio for normal females
was 0. The copy number ratio for normal male samples was 1. We
analyzed the copy number ratios of HL-029620, HL-009382 and
HL-019110 samples in dataset 5 and found that the copy number
ratio of HL-019110 was 2 (Figure 5). This confirmed that the
karyotype for the HL-019110 sample was XYY.

DISCUSSION

In this study, we characterized the performance of the new gender
inference tool, seGMM, in comparison with the other established
gender inference tools using NGS data, especially TGS panel data.
The seGMM tool used unsupervised clustering to classify samples
based on X and Y sex chromosomal features. The performance

and accuracy of the seGMM tool were significantly better than
other existing gender inference tools using TGS, WES, and WGS
data. Furthermore, seGMM accurately predicted six different sex
chromosomal karyotypes, including those with sex chromosome
abnormalities. The mean and standard deviation values of Xmap
and Ymap were used to determine potential sex chromosome
aneuploidy in the male and female samples by seGMM. Previous
studies have identified sex chromosomal aneuploidy in samples by
measuring the intensities of X and Y chromosomes (Bycroft et al.,
2018; Turro et al., 2020). A similar strategy was incorporated into
the seGMM tool and used to validate a sample with sex

TABLE 3 |Gender prediction accuracy of different methods for theWES andWGS
datasets.

Datasets PLINK XYalign seXY seGMM

1000G phase3 WES data 100 99.65 100 100
1000G phase3 high quality WGS data 100 100 100 100
In-house WES data 99.79 99.91 49.23 100

FIGURE 4 | The prediction accuracy of seGMM in inferring the gender of
samples from the in-house WES dataset. (A) Sample clustering results of
seGMM. The colors represent different sample clusters. Dir1 and Dir2
represent eigenvectors that specify the discriminant subspace
generated from the features included in the GMM model. (B) Scatter plot
shows the reads mapped to the X and Y chromosomes. As shown, we
identified three samples (HL-029620, HL-009382 and HL-019110) with XYY
sex chromosome karyotypes.
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chromosome karyotype XYY in the in-house WES dataset.
Samples with sex chromosomal abnormalities may result in
false calling of the genotype. This can affect identification of
pathogenic variants in the sex chromosomes. Therefore, samples
with sex chromosome abnormalities should be removed or recalled
genotypes to ensure accuracy of the clinical diagnosis.

The seGMM tool applies unsupervised learning algorithm to
infer gender of samples from the TGS panel data to overcome the
pitfalls of existing tools. The TGS panel consists of a select set of
genes with known or suspected association with the disease under
study. The advantage of TGS in clinical genetic testing includes
high sequencing depth of the genes of interest, which allows
identification of rare and causative variants (Eggers et al., 2016;

Bewicke-Copley et al., 2019). The data size of TGS depends on the
number of genes included in the panel and the methods used for
targeted sequencing including target enrichment by hybridization
capture and amplicon sequencing. Hence, the number of variants
and sequencing depth of the X and Y chromosomes varies for
different TGS panels. The accuracy of existingmethods in inferring
gender using TGS data is unsatisfactory because the algorithms are
either based on a data-dependent threshold or supervised learning
on a fixed sample set (Purcell et al., 2007; Qian et al., 2017). PLINK
uses a data-dependent threshold strategy that determines gender
by computing the F coefficients based on the observed and
expected number of homozygous markers and requires
reasonable minor allele frequency estimates. However, variants

TABLE 4 | Experimental verification of gender prediction results for samples in the in-house WES data.

Sample ID Size of PCR
products in the

amelogenin loci (bp)

Self-reported gender seGMM inferred gender Experimentally
validated gender

HL-005584 209.15 Male Female Female
-

HL-006009 209.06 Male Female Female
-

HL-006904 209.04 Female Male Male
214.8

HL-007335 209.06 Female Male Male
214.85

HL-007935 209.11 Male Female Female
-

HL-012246 209.18 Female Male Male
214.92

HL-033182 209.02 Female Female Female
-

HL-020292 209.19 Female Female Female
-

HL-011500 209.25 Male Male Male
215.07

HL-019211 209.19 Male Male Male
215.04

HL-009389 209.27 Female Female Female
-

HL-012554 209.26 Male Male Male
215.03

FIGURE 5 | Quantitative determination of Y chromosome copy number.
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detected in the TGS datasets tend to have lower minor allele
frequency and the number of variants detected in the X
chromosome are limited. Therefore, F coefficient of the male
and female samples based on the TGS data is ambiguous.
Furthermore, the logistic regression classifier for the seXY tool
was based on GWAS data collected from prostate cancer and
ovarian cancer samples, and was not suitable for TGS panels
because the distribution of X chromosome heterozygosity and Y
chromosome missingness varied between the TGS panel dataset
and the training dataset. In contrast, seGMM applied a Gaussian
mixture model to infer gender. Therefore, the performance and
accuracy of seGMMwere higher for data with different covariance
structures and were adaptable to include fresh samples.

Our study also demonstrated that the gender-inference accuracy
of seGMM improved when the information from both X and Y
chromosomes was available. For example, the accuracy of seGMM
for dataset 1 was 84.56% when the data included only X
chromosomal features, but the accuracy increased to 99.52%
upon adding Y chromosomal features. Moreover, the accuracy of
seGMMwas lower for male samples compared to female samples in
datasets 2 and 3 because the sequencing data did not contain
information on genes in the Y chromosome. Our data also
suggested that addition of probes that target unique regions of
the Y chromosome such as the SRY exon, which is involved in
typical male sex development (Gubbay et al., 1990; Parma and Radi,
2012), is helpful for inferring genders using the TGS panel data.

DNA sequencing data from the lymphoblastoid cell lines (LCLs)
established from the EBV-infected peripheral blood mononuclear
cells (PBMCs) may confound the prediction of sex chromosomal
karyotypes. A previous study demonstrated that EBV
transformation adversely affected the genomic DNA stability;
mosaic loss of X chromosome was observed in 7% (2/29) of the
samples analyzed (Shirley et al., 2012). The false-positive rates due
to EBV-induced mutations in LCLs may reduce the accuracy of
predicting the sex chromosomal karyotypes. The majority of
samples in the 1000G WES data were derived from LCLs, but
we did not identify any sample in this dataset with abnormal sex
chromosomal aneuploidy. The box plots of reads mapped to the Y
chromosome showed a much lower value for one male sample
(NA12413) compared to the others, thereby indicating potential
loss of chromosome Y (Supplementary Figure S11). However, we
could not confirm if the loss of Y chromosome was due to LCLs or
as a result of authentic sex chromosome abnormalities since
experimental validation is required for further analysis.

A few critical considerations are necessary while applying
seGMM. First, seGMM is not applicable when the targeted
sequencing data does not include genes located on the X and
Y chromosomes. Secondly, seGMM requires a sufficient sample
size to train an accurate model. Therefore, prediction accuracy
should be enhanced for small sample datasets by including
reference data (using –reference function parameter). We have
provided two reference datasets that were generated from the
1000G WES and WGS datasets. In addition, samples sequenced
with the same version of TGS panel can be used to build a user’s
own reference to maximize the accuracy of gender prediction.
When applying seGMM, the experimental and analytical methods
between reference data and testing data need to be consistent to

prevent bias. Thirdly, parallel computing (using –num_threshold
function parameter) is recommended to speed up the analysis since
the seGMM tool collects more features than the other existing
tools. Lastly, the use of Empirical Rule to classify individual
karyotypes improves the recall rate, but may magnify false
positives rate, as has been reported in previous study using this
strategy (Turro et al., 2020). In addition, many factors may
contribute to false positive predicition results, including the
copy number variations such as large deletions or insertions on
the sex chromosomes or genetic chimerism. Therefore, to
overcome this limitation, karyotyping of predicted abnormal
samples is recommended to confirm the sample karyotype.

In conclusion, we demonstrate that the performance and
accuracy of seGMM, a new tool to infer sex chromosomal
karyotypes based on a Gaussian mixture model, was
significantly higher and satisfactory for TGS, WES, and WGS
datasets, including those with samples containing sex
chromosomal abnormalities compared to other existing tools.
Hence, seGMM is a promising tool for inferring the gender of
samples in TGS, WES, and WGS datasets.
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