Contents lists available at ScienceDirect

Heliyon

journal homepage: www.cell.com/heliyon

Valence state switching and reversible emission tunability of A_2SiO_4 (A = Ba, Sr, and Ca) with two-site substitution of Eu ions through simple thermal treatment

M.J. Jeong, S.W. Lee, S.W. Wi, K.C. Lee, Y.S. Lee

Department of Physics and Integrative Institute of Basic Sciences, Soongsil University, Seoul, 06978, Republic of Korea

ARTICLE INFO

CelPress

Keywords: A₂SiO₄ Eu²⁺/Eu³⁺ Photoluminescence Valence state switching Thermal treatment Two-site occupation

ABSTRACT

We investigated the changes in the structural and luminescent properties of Eu-ion-doped A₂SiO₄ (A₂SiO₄:Eu, A = Ba, Sr, and Ca) by annealing in oxidizing and reducing atmospheres. The initially synthesized samples displayed distinct, intense red emissions at approximately 600 and 700 nm, which can be attributed to the presence of Eu^{3+} ions. The emission intensity of Eu^{3+} was the strongest in Ca₂SiO₄:Eu, which exhibited the lowest lattice symmetry among the three samples. Remarkably, following annealing in a reducing atmosphere (H₂), the previously observed red emission vanished, and instead, a strong green emission at around 500 nm, which is characteristic of Eu^{2+} ions. Because of the two occupation sites of the Eu ions in A₂SiO₄, the emission of Eu^{2+} strongly depends on the excitation wavelength, which is the most evident in Ca₂SiO₄:Eu. Conversely, after annealing in an oxidizing atmosphere (O₂), the emission in the green region was suppressed and the emission in the red region returned. The reversible transition between two oxidation states occurred repeatedly by alternating H₂ and O₂ annealing, resulting in good color tunability in wide visible region with a simple ambient annealing process in a single compound.

1. Introduction

Rare earth (RE) ion-doped oxides, that is, phosphors, have attracted considerable attention for several photoelectronic applications such as three-dimensional displays, solid-state lighting, bio-imaging, and photocatalysis [1–3]. The colors of the phosphors are determined mainly by the RE ions, whose 4f-4f and 4f-5d transitions are the origin of the luminescent properties. Each RE ion has its own 4f orbital energy levels, which are rather insensitive to the host material owing to the screening effect of the 5s and 5p orbitals. Because the color of the phosphor depends strongly on the RE elements, color tunability of the phosphor is an important issue. Changes in the host material, doping concentration, multiple doping, site occupancy engineering, and charge transfer between RE ions can be employed to improve the color tunability of phosphors [4].

Eu ions have good color tunability according to their valence state [5]. Eu ions can be stably present as Eu^{2+} or Eu^{3+} . The luminescence of trivalent Eu^{3+} ions is caused by $4f^6 \rightarrow 4f^6$ transitions, resulting in narrow and weak emission spectra. Under ultraviolet and violet-blue excitation, Eu^{3+} ions show emissions in a range of 570–710 nm because of the ${}^5D_0 \rightarrow {}^7F_J$ (J = 0, 1, 2, 3, and 4) transitions. In contrast, the divalent Eu^{2+} ion shows a broad and strong emission spectrum owing to the allowed $4f^65d^1 \rightarrow 4f^7$ transition. The energy levels of the 5d orbitals in Eu^{2+} ions are significantly influenced by the crystal field. As a result, the absorption and emission bands of

* Corresponding author. *E-mail address:* ylee@ssu.ac.kr (Y.S. Lee).

Received 24 August 2023; Received in revised form 6 September 2023; Accepted 8 September 2023

Available online 9 September 2023

https://doi.org/10.1016/j.heliyon.2023.e20006

^{2405-8440/© 2023} The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

 Eu^{2+} ions exhibit considerable variation, depending on the specific host crystal material. These bands can span a wide range of wavelengths, extending from the ultraviolet (UV) to the blue region of the electromagnetic spectrum [6,7]. Thanks to the above-mentioned sharp contrast between two luminescent behaviors, we could have good tunability of the luminescence in oxide phosphors doped with the Eu ions under control of their valence states, e.g., 2+/3+, which could lead to high optoelectronic application potential [8]. However, few studies have demonstrated the broad color tunability of the european ions according to their valence states of a single material.

A₂SiO₄ (A = Ba, Sr, and Ca) compounds have proven to be suitable hosts for luminescent lanthanide ions with several advantages, such as good chemical and thermal stability, abundant crystal structure, and relatively easy synthesis, including low sintering temperatures and inexpensive raw materials [9–11]. Therefore, they have been considered for applications in phosphors and scintillators. In addition, the crystalline structures of A₂SiO₄ change considerably with the A ion. The structure of Ba₂SiO₄ is orthorhombic and its space group is *Pnma* [12]. Sr₂SiO₄ has two stable structural phases, α' and β . α' -Sr₂SiO₄ has an orthorhombic structure with the space group *Pnma*, whereas β -Sr₂SiO₄ has a monoclinic structure with the space group *P2*₁/*c* [13–15]. Ca₂SiO₄ has two phases, γ - and β -phases are stable at room temperature. The γ -phase has an orthorhombic structure (space group *Pnma*), whereas the β -phase has a monoclinic structure with the space group *P2*₁/*c*. In addition, A₂SiO₄ (A = Ba, Sr, and Ca) compounds have two cation sites where Eu ions can be doped. Two cation sites in A₂SiO₄ result in different Eu²⁺ emissions depending on site occupancy. Moreover, because the ionic radii of two cation sites are similar to those of Eu²⁺ and Eu³⁺ ions, Eu ions can exist in both divalent and trivalent states in A₂SiO₄ [16]. Therefore, this series of compounds can be a good platform for investigating the relationship between structural and luminescent properties for Eu ion emission.

There have been several studies focusing on the luminescent properties of high efficiency emitting [17,18], and systematic peak shift [19] of the Eu ion in A₂SiO₄, no studies have been conducted on the switching through thermal treatment between the divalent and trivalent states and the related changes in the structural and luminescent properties of Eu ion-doped A₂SiO₄. In this study, A₂SiO₄ (A = Ba, Sr, or Ca) doped with Eu ions was synthesized using a solid-state reaction method. The structural and luminescent characteristics of the phosphors were studied by changing the valence state of the Eu ions through annealing in oxidizing and reducing atmospheres. The emission properties of Eu²⁺ and Eu³⁺ vary significantly depending on the ions at A-site, which are relevant to the lattice distortion in the compounds. We confirmed that the Eu-ion-doped A₂SiO₄ showed good color tunability with a simple ambient annealing process.

2. Experimental

We synthesized Eu-ion-doped A_2SiO_4 (A_2SiO_4 :Eu) compounds, where A = Ba, Sr, or Ca, through a solid-state reaction method. The synthesis process involved blending high-purity raw materials: SiO_2 (99.9%), Eu_2O_3 (99.99%), $BaCO_3$ (99.98%), $SrCO_3$ (99.9%), and CaCO₃ (99.95%) in a specific ratio of SiO_2 : Eu_2O_3 : ($Ba/Sr/Ca)CO_3 = 1:0.01:1.98$, enabling the substitution of Eu ions for A ions. The doping concentration of Eu^{3+} was set at 0.02. The resulting mixture was calcined at 1100 °C for 2 h and then formed into pellets. Subsequently, the pellet samples were sintered at 1250 °C for 4 h in an ambient air atmosphere. For an investigation into the environmental dependence of the materials, we subjected the sintered samples to the 900 °C annealing processes (4 h) in two different atmospheres: O_2 and H_2 (H_2 :Ar = 0.04:0.96).

We performed X-ray diffraction (XRD) patterns in examine the structural characteristics of our samples. We measured luminescent spectra using a JASCO FP-8500 spectrofluorometer, which utilized a Xe lamp as the excitation source. Time-resolved photoluminescence (TRPL) spectra were obtained using a spectrofluorometer (FluoroMax Plus, HORIBA) equipped with a Xe arc lamp.

Fig. 1. The structure of (a) Ba₂SiO₄, (b) α'-Sr₂SiO₄, β-Sr₂SiO₄, and (c) β-Ca₂SiO₄. Two cation sites (A(I) and A(II)) are indicated under each structure.

3. Results and discussion

3.1. Structural properties of A₂SiO₄:Eu

First, we review the structural properties of A_2SiO_4 (A = Ba, Sr, and Ca), which strongly depend on the A ions. Fig. 1 shows the structure of A_2SiO_4 . As explained in the Introduction section, The structure of Ba_2SiO_4 is orthorhombic and its space group is *Pnma* [12]. The Ba ion has two cation sites: Ba(I) in a 10-coordinate system and Ba(II) in a 9-coordinate system (Fig. 1(a)) [20]. Sr₂SiO₄ has a two stable structural phases, α' and β . α' -Sr₂SiO₄ has an orthorhombic structure with the space group *Pnma*, whereas β -Sr₂SiO₄ has a monoclinic structure with the space group *P2*₁/*c* [13–15]. Both phases are stable at room temperature and coexist easily. The transition between the two phases is possible with a coordination structure rearrangement at a short distance [20–22]. Similar to Ba₂SiO₄, both phases of Sr₂SiO₄ have two cation sites: Sr(I) with 10 coordinates and Sr(II) in a 9-coordinate (Fig. 1(b)) [20,21,23,24]. Ca₂SiO₄ has five phases that are stable at high temperatures in the order of α , α'_{L} , α'_{H} , β , and γ . Among them, the γ - and β -phases are stable at room temperature, but in general, the γ -phase has higher thermal stability than the β -phase. According to a recent study, impurity ions could make the β -phase stabler, acting as a stabilizer [25–28]. The γ -phase has an orthorhombic structure (space group *Pnma*), whereas the β -phase has a monoclinic structure with the space group *P2*₁/*c*. In both phases, the Ca ion has two cation sites: Ca(I) and Ca(II) in the 6-coordinate space in the γ -phase and Ca(I) in the 8-coordinate space and Ca(II) in the 7-coordinate space in the β -phase (Fig. 1(c)) [25].

Fig. 2 shows the XRD patterns of A₂SiO₄:Eu before and after H₂/O₂ annealing. Our Ba₂SiO₄:Eu samples exhibited the same XRD patterns as undoped Ba₂SiO₄ (JCPDS 26–1403), and no change in the XRD patterns was observed upon H₂/O₂ annealing (Fig. 2(a)). The XRD pattern of the as-synthesized Sr₂SiO₄:Eu appeared to be a mixture of the two phase ratios of α' -Sr₂SiO₄ (JCPDS 39–1256) and β -Sr₂SiO₄ (JCPDS 38–2071) (Fig. 2(b)). The characteristic peaks for each phase were observed at $2\theta = 27.2^{\circ}$ for α' -Sr₂SiO₄ and $2\theta = 27.7^{\circ}$ and 32.4° for β -Sr₂SiO₄. Interestingly, the intensity of the peak at $2\theta = 27.2^{\circ}$ increased in the H₂ annealed samples and decreased in the O₂ annealed samples, whereas those at $2\theta = 27.7^{\circ}$ and 32.4° exhibited the opposite trend. This change implies that the H₂ annealing process increased the volume fraction of the α' -phase, as detailed by the Rietveld refinement analysis. In Ca₂SiO₄:Eu, the XRD pattern matched well with that of β -Ca₂SiO₄ (JCPDS 33–0302) before and after H₂/O₂ annealing (Fig. 2(c)). This indicates that doping with Eu ions makes the β -phase more stable than then γ -phase in Ca₂SiO₄ [25–28].

To quantitatively analyze the structural changes induced by H_2/O_2 annealing, we performed Rietveld refinement analysis of the XRD patterns of A_2SiO_4 :Eu (Fig. 3(a–f)). Rietveld refinement analysis showed agreement between the XRD data and the theoretical data calculated using the relevant lattice constants and atomic positions [29]. The calculated data, measured data, and the difference between the two sets of data are represented by the red lines, empty circles, and blue lines, respectively. The weighted profile R-factors (R_{wp}) from the Rietveld refinement results were in the range of 7.78–21.05, and the goodness of fit (χ^2) values from the results were in the range of 1.13–3.71. These values indicate that the Rietveld refinement results were appropriate. Through Rietveld refinement analysis, we confirmed that the structure of Ba₂SiO₄:Eu was orthorhombic (*Pnma*), the structure of Sr₂SiO₄:Eu was a mixture of orthorhombic (α' , *Pnma*) and monoclinic (β , *P2*₁/*c*), and the structure of Ca₂SiO₄:Eu was monoclinic (β , *P2*₁/*c*) [6,18,30]. Interestingly, the weight ratios of the α' - and β -phases of Sr₂SiO₄:Eu were approximately 1:1 in the H₂ annealed sample, but the ratio changed to 1:2 in the O₂ annealed sample. This result suggests that the α' -phase prefers an oxygen-deficient environment. According to Catti et al. the bond valence sums (BVS) are lower in the α' -phase than in the β -phase: BVS = 1.58 in α' -phase and 1.78 in β -phase [15]. In the oxygen deficient environment (H₂ annealing), the Sr(I) atoms are no longer bonded with the oxygen atoms, which reduces the BVS and thus makes the α' -phase preferred [31]. We summaried the lattice constant of A₂SiO₄:Eu obtained through Rietveld refinement and the

Fig. 2. The XRD patterns of (a) Ba₂SiO₄:Eu (JCPDS 26–1403), (b) Sr₂SiO₄:Eu (JCPDS 39–1256, 38–2071), and (c) Ca₂SiO₄:Eu (JCPDS 33–0302) before and after H_2/O_2 annealing. In (b), the triangles indicate the characteristic peaks of the α' - and β phases.

Fig. 3. The Rietveld refinement analysis data of (a) $Ba_2SiO_4:Eu^{2+}$ (b) $Ba_2SiO_4:Eu^{3+}$, (c) $Sr_2SiO_4:Eu^{2+}$ (d) $Sr_2SiO_4:Eu^{3+}$, (e) $Ca_2SiO_4:Eu^{2+}$, and (f) $Ca_2SiO_4:Eu^{3+}$. The open circles (\odot) represent the XRD data, and the solid line (red) is calculated ones. A difference (Obs.-Cal.) plot is shown beneath. Tick marks above the difference data indicate the Bragg position (orange tick mark is α' -Sr_2SiO₄.

weight ratio of the α' - and β -phases of Sr₂SiO₄:Eu in Table 1. Our results suggest that the symmetry of the lattice should be lower for A = Ba (orthorhombic), Sr (orthorhombic + monoclinic), and Ca (monoclinic).

3.2. Luminescence of A_2SiO_4 : Eu in H_2 and O_2 annealing: Eu^{2+} vs. Eu^{3+}

Fig. 4 shows the photoluminescence (PL) of our samples before and after the H₂ and O₂ annealings. The excitation wavelength (λ_{ex}) was set to 395 nm, which is the photoexcitation wavelength for both Eu²⁺ (4f-5d transition) and Eu³⁺ (7F_0 - 5L_6 transition). The assynthesized A₂SiO₄:Eu exhibited emission peaks at approximately 600 and 700 nm, corresponding to the $^5D_0 \rightarrow ^7F_j$ (j = 0, 1, 2, 3, and 4) transitions of Eu³⁺ (Fig. 4(a)), whereas the emissions corresponding to the $^5D_0 \rightarrow ^7F_4$ transition (703 nm) were the strongest. This observation clearly indicates that the Eu ions in the as-synthesized state were trivalent. Among the three species, Ca₂SiO₄:Eu exhibits the strongest emission, possibly because of its low lattice symmetry.

To investigate the ambient dependence of the emission properties of A2SiO4:Eu, we performed the post-annealing of the as-

Table 1

Results of Rietveld refinement analysis of A₂SiO₄:Eu (A = Ba, Sr, and Ca): lattice constants (a, b, and c), angle (β), and cell volume (V).

	Anneal	Phase	Weight ratio (%)	a(Å)	b(Å)	c(Å)	β(°)	V(Å ³)	χ^2	R _{wp} (%)
Sample										-
Ba ₂ SiO ₄ :Eu	H_2	-	-	7.51	5.81	10.22	-	445.93	1.13	21.05
	O ₂		-	7.51	5.81	10.22		445.93	1.15	19.27
Sr ₂ SiO ₄ :Eu	H ₂	α'	50.64	7.07	5.67	9.74	-	390.45	3.71	10.68
		β	49.36	5.66	7.08	11.05	118.13	442.80		
	O_2	α′	33.35	7.07	5.66	9.73	-	389.36	2.91	7.78
		β	66.65	5.65	7.08	11.03	118.15	441.22		
Ca ₂ SiO ₄ :Eu	H ₂	β		5.51	6.75	10.44	117.21	388.29	3.34	14.20
	02	β		5.51	6.76	10.44	117.21	388.86	1.15	11.39

Fig. 4. (a) As-synthesized, (b) H_2 annealed, and (c) O_2 annealed PL spectra of A_2SiO_4 :Eu (A = Ba, Sr, and Ca).

synthesized samples under an H₂ atmosphere. Interestingly, we observed strong and broad peaks at approximately 400–600 nm, which were assigned to the 5d-4f transition of Eu²⁺ (Fig. 4(b)). The PL intensity was the highest for Ca₂SiO₄:Eu²⁺. The emergence of Eu²⁺ emission suggests that the Eu ions in A₂SiO₄:Eu can be easily converted from a trivalent state to a divalent state through the reduction process of annealing in H₂ atmosphere. We re-annealed the samples in an O₂ ambience, and their luinescnece re-exhibited a typical f-f emission in the range of 600–700 nm (Fig. 4(c)). This finding indicates that Eu²⁺ changed to Eu³⁺, and that the annealing process in an O₂ environment can easily convert Eu ions from a divalent state to a trivalent state by oxidation.

To confirm the reversibility of the Eu ion valence state conversion, successive annealing in H₂ and O₂ atmospheres was repeated for

Table 2
Integration of PL intensities of A ₂ SiO ₄ :Eu at $\lambda_{ex} = 330$ nm (Eu ²⁺) and 395 nm (Eu ³⁺). The emission peak was calculated around 500 nm (Eu ²⁺) and
600–700 nm (Eu ³⁺).

Sample	As-synthesized	1st H ₂ anneal	1st O_2 anneal	2nd H ₂ anneal	2nd O ₂ anneal
Ba ₂ SiO ₄ :Eu	773.8	94627.1	747.1	97489.4	741.2
Sr ₂ SiO ₄ :Eu	177.1	125935.2	172.8	109949.2	161.3
Ca2SiO4:Eu	20307.5	271654.7	19582.3	361257.3	18509.6

the A_2SiO_4 :Eu samples. For the quantitative analysis of the change in PL intensity, we estimated the PL intensities of Eu^{2+} and Eu^{3+} by integrating the PL spectra in the spectral ranges of 450–550 nm and 580–720 nm, respectively (Table 2). The reversible behaviors in the integrated intensity of PL were clearly observed in A_2SiO_4 :Eu for all three A ions under successive redox process (Fig. 5(a–c)). This result shows that the emission properties of A_2SiO_4 :Eu could be easily manuplated by converting the Eu ion valence state through ambient treatment.

3.3. Luminescence properties of A2SiO4:Eu

3.3.1. Luminescent properties of $A_2SiO_4:Eu^{2+}$

To investigate the emission properties of Eu^{2+} in $A_2SiO_4:Eu^{2+}$ in depth, we recorded the emission spectra of the H₂ annealed samples at $\lambda_{ex} = of 330$ nm (Fig. 6(a–c)). We observed broad 5d-4f emission in Eu^{2+} near 500 nm [6,19,32–35]. Notably, Eu ions occupy two A-sites in A_2SiO_4 , that is, the A(I) and A(II)sites. We denote the Eu ions substituted at the A(I) and A(II) sites as Eu(I) and Eu (II), respectively. The absorption and emission spectra of Eu^{2+} depend on the substitution sites because of different local lattice environments. We fitted the emission spectrum of $A_2SiO_4:Eu$ with two bands, Peaks I and II, as shown in Fig. 6. We estimated the positions of Peak I to be 500 nm (2.48 eV), 490 nm (2.53 eV), and 510 nm (2.43 eV) and those of Peak II to be 535 nm (2.31 eV), 540 nm (2.30 eV), and 570 nm (2.18 eV); therefore, the difference in the two peak positions was 0.17 eV, 0.23 eV, and 0.25 eV for A = Ba, Sr, and Ca, respectively. The positions of the two emissions and their differences are associated with the crystal field strengths at the two cation sites doped with Eu ions in these materials. The details are discussed in Section 3.3.2.

The photoluminescence excitation (PLE) spectra were also measured by monitoring the emissions of Peaks I and II. As shown in Fig. 6, for the PLE spectra of Peak I (black line), all three A_2SiO_4 :Eu samples exhibited a wide excitation band in the range of approximately 220–450 nm. The PLE spectra of Peak II (blue line) were measured and compared with those of Peak I. In Ba_2SiO_4 :Eu²⁺, the range of the PLE spectrum of Peak II was the same as that of Peak I, but weaker. The compounds Sr_2SiO_4 :Eu²⁺ and Ca_2SiO_4 :Eu²⁺ exhibited a weak peak II excitation intensity, but the excitation spectra spread up to 500 nm.

Interestingly, owing to the two substitution sites, the emission spectra depend strongly on the excitation wavelength. For a more detailed analysis, we measured the PL intensity of A₂SiO₄:Eu²⁺ at different excitation wavelengths (Fig. 7). In Fig. 7(a), the PL intensity of Ba₂SiO₄:Eu²⁺ hardly depended on the excitation wavelength because the excitation wavelength ranges of Peaks I and II were nearly identical. In Sr₂SiO₄:Eu²⁺, as shown in Fig. 7(b), the PL intensity of Peak I was dominant near the short excitation wavelength, $\lambda_{ex} = 310-360$ nm, but with the photoexcitation of λ_{ex} increasing up to 400 nm, Peak I was suppressed, and then Peak II developed [19]. Similarly, the wavelength of the maximum PL intensity of Ca₂SiO₄:Eu²⁺ changed significantly from 500 to 600 nm as the excitation

Fig. 5. Integrated PL intensities of the Eu²⁺ (blue squares) and Eu³⁺ (black squares) of (a) Ba₂SiO₄:Eu, (b) Sr₂SiO₄:Eu, and (c) Ca₂SiO₄:Eu.

Fig. 6. The PL and PLE spectra of (a) $Ba_2SiO_4:Eu^{2+}$, (b) $Sr_2SiO_4:Eu^{2+}$, and (c) $Ca_2SiO_4:Eu^{2+}$ annealed in an H_2 atmosphere.

Fig. 7. Contour plot of the PL intensity of (a) $Ba_2SiO_4:Eu^{2+}$, (b) $Sr_2SiO_4:Eu^{2+}$, and (c) $Ca_2SiO_4:Eu^{2+}$ annealed in H_2 atmosphere, measured while varying the photoexcitation wavelength (y-axis).

wavelength increased from 420 to 470 nm (Fig. 7(c)). The strong dependence of the emission wavelength on the substitution doping sites resulted in good tunability of the emission color with excitation wavelength in Sr_2SiO_4 : Eu^{2+} and Ca_2SiO_4 : Eu^{2+} .

3.3.2. Electric potential calculation using point charge model

The positions of peaks I and II are associated with the crystal-field strength of the 5d orbitals of Eu^{2+} . To estimate the strength of the crystal field at the A-site of $A_2SiO_4:Eu^{2+}$, we calculated the electric potential at the A-site caused by the oxygen atoms in the A- O_N complex (N: coordination number) using a simple point-charge model, considering each oxygen ion as a point charge in threedimensional space. To calculate this, we used the positions of the oxygen ions around the A-site ions obtained from Rietveld refinement. The electric potential V originating from the oxygen complex was estimated using the following equation:

$$V(r) = \sum_{i=1}^{N} \frac{1}{4\pi\epsilon_0} \frac{q_i}{|r - r_i|}$$
(1)

in the calculation, the variables N, ε_0 , q_i , and r_i represent the coordinate number of the oxygen complex, the dielectric permittivity in vacuum, the charge of oxygen, and the position of the *i*th oxygen, respectively. The calculated *V* values at the A(I) and A(II)sites of A₂SiO₄:Eu are summarized in Table 3. The comparison of the *V* value according to the A ion used the average of the *V* values of the α' -phase and β -phases of Sr₂SiO₄.

Remarkably, the *V* of A₂SiO₄ was in good agreement with the results obtained from the PL spectra. Specifically, as we mentioned above, the positions of Peak I were determined to be 2.48, 2.53, and 2.43 eV for A = Ba, Sr, and Ca, respectively. Correspondingly, the calculated *V* values at the A(I) site were found to be -87.227×10^{-10} , -89.551×10^{-10} , and -79.840×10^{-10} V for A = Ba, Sr, and Ca, respectively. Similarly, the results obtained for Peak II were consistent with the observations from the PL spectra. As mentioned earlier, the positions of Peak II were determined to be 2.31, 2.30, and 2.18 eV for A = Ba, Sr, and Ca, respectively. The calculated values of *V* at the A(II) site were found to be -83.105×10^{-10} , -82.983×10^{-10} , and -62.293×10^{-10} V for A = Ba, Sr, and Ca, respectively. Furthermore, the differences in *V* (ΔV) between Peaks I and II of A₂SiO₄ were 4.122•10⁻¹⁰, 6.567•10⁻¹⁰, and 17.548•10⁻¹⁰ V for A = Ba, Sr, and Ca, respectively. The differences are in good agreement with the PL spectra; the largest ΔV value in Ca₂SiO₄:Eu is consistent with the largest separation between Peak I and Peak II.

3.3.3. Luminescent properties of $A_2SiO_4:Eu^{3+}$

To investigate the emission properties of Eu^{3+} in A_2SiO_4 , we examined the emission spectra of the O_2 annealed samples at $\lambda_{ex} = 395$ nm (${}^{3}F_{0}-{}^{5}L_6$ transition of Eu^{3+}). The emission spectra were in good agreement with those reported in previous studies [6,13,36]. As shown in Fig. 8(a–c), the emission peaks of all three samples were commonly observed at approximately 575, 590, 613, 650, and 700 nm, corresponding to the transitions from ${}^{5}D_0$ to ${}^{7}F_0$, ${}^{7}F_1$, ${}^{7}F_2$, ${}^{7}F_3$, and ${}^{7}F_4$ in Eu^{3+} ions, respectively. The common emission pattern in the three $A_2SiO_4:Eu^{3+}$ complexes is in good agreement with the general idea that the transitions between the 4f orbitals are insensitive to the crystal field owing to the screening effect of the 5s and 5p orbitals. For a similar reason, the emission spectra do not clearly reflect the two-site occupation of Eu^{3+} in A_2SiO_4 , unlike the emission properties of Eu^{2+} in the H₂ annealed samples. The emission intensity of Eu^{3+} was the highest for $Ca_2SiO_4:Eu^{3+}$, which is in good agreement with the lowest lattice symmetry of $Ca_2SiO_4:Eu^{3+}$ among our samples.

PLE measurements were performed on $A_2SiO_4:Eu^{3+}$. The emission at 700 nm, corresponding to the 5D_0 - 7F_4 transition in Eu^{3+} , was monitored for this measurement. The PLE spectra revealed a broad absorption band in the range of 200–300 nm, which corresponds to the charge transfer (CT) transition from the 2p orbital of the oxygen ion to the 4f orbital of the Eu^{3+} ion. Additionally, sharp peaks were observed at 319, 362, 383, and 395 nm, corresponding to the 7F_0 - 5H_3 , 7F_0 - 5D_4 , 7F_0 - 5L_6 transition of Eu^{3+} , respectively.

3.3.4. Contrast in luminescent features between Eu^{2+} and Eu^{3+}

Few studies have compared the emission spectra of Eu^{2+} and Eu^{3+} ions in a single-host material [37,38]. In this study, we successfully obtained the luminescent spectra of Eu^{2+} (H₂ annealing) and Eu^{3+} (O₂ annealing) from our samples by simple ambient annealing. Trivalent Eu^{3+} with no electrons in the 5d and 6s orbitals typically exhibits transitions between energy levels of 4f orbitals [39]. It is noted that the parity forbiddent transition between f-orbitals could be forcedly allowed in the non-centrosymmetric structure around Eu^{3+} , without significant disturbance of the crystal field due to the shielding effect on the 5s and 5p outer electrons. For these

Table 3		
The calculated electric potential ((V)) of A ₂ SiO ₄ :Eu using the point charge model.

Sample	A-Site	Coordinate	$V_{(0,0,0)} (10^{-10} \text{ V})$	$\Delta V_{(0,0,0)} (10^{-10} \text{ V})$
Ba ₂ SiO ₄ :Eu	Ba(I) Ba(II)	10 9	-87.227 -83.105	4.122
α'-Sr ₂ SiO ₄ :Eu	Sr(I) Sr(II)	10 9	-91.887 -86.165	5.722
β-Sr ₂ SiO ₄ :Eu	Sr(I) Sr(II)	10 9	-87.215 -79.802	7.413
Ca ₂ SiO ₄ :Eu	Ca(I) Ca(II)	8 7	-79.840 -62.293	17.548

Fig. 8. The PL and PLE spectra of (a) Ba₂SiO₄:Eu³⁺, (b) Sr₂SiO₄:Eu³⁺, and (c) Ca₂SiO₄:Eu³⁺ annealed in an O₂ atmosphere.

reasons, despite the difference in the crystal structure of A_2SiO_4 with respect to the A ion (orthorhombic for A = Ba, a mixture of orthorhombic and monoclinic for A = Sr, and monoclinic for A = Ca), the emission spectral patterns of our samples at approximately 600 nm were quite similar, as shown in Fig. 8. In addition, the f-f transitions in Eu³⁺, that is, forced electric dipole transitions, should be sensitive to the lattice distortion of the host material. Indeed, the emission intensity of Eu³⁺ increases as the crystal symmetry of A_2SiO_4 decreases in the order of A = Ba, Sr, and Ca; the intensity is much stronger by an order of 2 in Ca₂SiO₄:Eu than in Ba₂SiO₄:Eu. Moreover, Stark splitting was clearly observed for A = Ca because the number of Stark splittings was larger in the lower lattice symmetry.

On the other hand, Eu^{2+} with one more 4f electron than Eu^{3+} shows a $4f^{n}-4f^{(n-1)}5d$ transition, which can be the origin of absorption and emission bands in strong and broad features. Due to the outer 5d orbitals, the spectra of Eu^{2+} lie in a wide spectra ranges with respect to the host material. In Fig. 6, the emission spectra of A_2SiO_4 with Eu^{2+} depend strongly on the A ion (equivalently, the lattice structure of A_2SiO_4) as well as the occupation sites. The emission of Eu^{2+} for A = Ca increased from 500 to 650 nm, whereas the emission for A = Ba was confined to approximately 500 nm. In contrast, the emission intensity of Eu^{2+} appears to be insensitive to the lattice symmetry compared to the emission of Eu^{3+} . The enhancement factor from A = Ca to A = Ba in the Eu^{2+} emission was approximately 2–3, whereas that in the Eu^{3+} emission was approximately 100. Because the 5d-4f transition is parity allowed, symmetry lowering is not essential for the emission of Eu^{2+} .

The TRPL spectra of A₂SiO₄:Eu were obtained to compare the emission decay characteristics of Eu²⁺ and Eu³⁺ (Fig. 9). The PL lifetimes (τ) were calculated using least square fitting with a single (Eu³⁺)/double (Eu²⁺) exponential functional form. The intensity-weighted average PL lifetime (τ_{avg}) is defined as [40,41].

$$\tau_{avg} = \frac{\sum_{i} A_i \tau_i^2}{\sum_{i} A_i \tau_i}$$
(2)

where A_i is the amplitude of the ith component and τ_i is the lifetime of the ith component. The decay curves of $A_2SiO_4:Eu^{2+}$ were measured at $\lambda_{em} = 500$ nm upon excitation at $\lambda_{ex} = 395$ nm. As shown in Fig. 9(a), the average PL lifetimes were found to be 4.03–7.33 µs, which are reasonable for the values of the 5d-4f transitions of Eu^{2+} [42]. The decay curves of $A_2SiO_4:Eu^{3+}$ at $\lambda_{em} = 700$ nm were measured at $\lambda_{ex} = 395$ nm excitation. As shown in Fig. 9(b), the average decay times were found to be 1.47–2.51 ms, which are reasonable for the values of the 5D_0 - 7F_4 transitions of Eu^{3+} [43,44]. The decay times of Eu^{2+} are much shorter than those of Eu^{3+} . The obtained parameters of $A_2SiO_4:Eu$ from the TRPL curves are summarized in Table 4.

Fig. 9. Measured TRPL decay curves of (a) $A_2SiO_4:Eu^{2+}$ and (b) $A_2SiO_4:Eu^{3+}$ annealed in an H_2/O_2 atmosphere.

Table 4	
PL lifetime obtained from fitted TRPL decay and average lifetime of the A ₂ SiO ₄ :Eu.	

Sample	Anneal	Relative amplitude		PL lifetime			
		A ₁	A ₂	$ au_1$	τ_2	τ_{avg}	
Ba ₂ SiO ₄ :Eu	H ₂ O ₂	0.783 1	0.217	0.93 μs 1.47 ms	9.59 µs	7.33 μs 1.47 ms	
Sr ₂ SiO ₄ :Eu	H ₂ O ₂	0.968 1	0.032	1.13 μs 2.37 ms	12.18 μs	4.03 μs 2.37 ms	
Ca ₂ SiO ₄ :Eu	H ₂ O ₂	0.964 1	0.036	1.02 μs 2.51 ms	11.73 μs	4.21 μs 2.51 ms	

3.4. CIE coordinates of A₂SiO₄:Eu

The CIE chromaticity coordinates (x, y) calculated from the PL spectra of A_2SiO_4 :Eu are shown in Fig. 10 [45]. The CIE coordinates of A_2SiO_4 with Eu^{2+} are marked with solid squares, whereas those of the O_2 annealed A_2SiO_4 :Eu (trivalent) are marked with open squares. Interestingly, the CIE coordinates of the H_2 annealed A_2SiO_4 :Eu (divalent) varied depending on the excitation wavelength. Sr_2SiO_4 :Eu²⁺ and Ca_2SiO_4 :Eu²⁺ exhibited turquoise-to-yellow and green-to-red color changes, respectively, depending on the excitation wavelength, whereas Ba_2SiO_4 :Eu²⁺ emitted fixed green colors. In contrast, irrespective of the excitation wavelength, the O_2 annealed A_2SiO_4 :Eu (trivalent) exhibited red colors: (0.435, 0.325) for A = Ba, (0.621, 0.379) for A = Sr, and (0.63, 0.352) for A = Ca. These results indicate that the emission color of A_2SiO_4 :Eu could be fine-tuned over a spectral range from turquoise to red through controling the valence states of Eu ions and the photo-excitation energy.

4. Conclusion

We report on the structures of A_2SiO_4 with doping of Eu ion (A_2SiO_4 :Eu), where A = Ba, Sr, or Ca, and their emission properties. Through Rietveld refinement analysis of the XRD measurement data, we found that the structure of Ba_2SiO_4 :Eu was orthorhombic, Sr_2SiO_4 :Eu existed in a mixed phase of orthorhombic (α' -phase) and monoclinic (β -phase), whereas Ca_2SiO_4 :Eu was defect-induced

Fig. 10. The CIE coordinates of A_2SiO_4 :Eu. The color coordinates of Sr_2SiO_4 :Eu²⁺ and Ca_2SiO_4 :Eu²⁺ that vary depending on the excitation wavelength are indicated by black arrows.

monoclinic (β -phase). After synthesis, A₂SiO₄:Eu showed typical Eu³⁺ emissions near 600 and 700 nm. With H₂ ambient annealing, a blue-green Eu²⁺ emission emerged near 500 nm, with suppression of the Eu³⁺ emission. The emission of Eu²⁺ depended strongly on the excitation wavelength owing to the two-site occupation of Eu ions, which was most clearly observed in Ca₂SiO₄:Eu. The O₂ annealing restored the Eu³⁺ emission. Conversion between the divalent and trivalent states can be repeated through H₂ and O₂ alternative annealing. Our results show that A₂SiO₄:Eu is a suitable material for comparing the emissions of two Eu ions in a single material and has the potential for use in turquoise-to-red-emitting phosphors for various lighting applications with good tunable color via simple ambient thermal annealing.

Author contribution statement

M. J. Jeong: Conceived and designed the experiments; Performed the experiments; Analyzed and interpreted the data; Wrote the paper.

- S. W. Lee: Performed the experiments.
- S. W. Wi: Analyzed and interpreted the data; Contributed reagents, materials, analysis tools or data.
- K. C. Lee: Analyzed and interpreted the data.
- Y. S. Lee: Wrote the paper; Analyzed and interpreted the data.

Data availability statement

Data will be made available on request.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education (NRF–2021R1A6A1A10044154).

References

- [1] Y. Wang, G. Shen, T. Tang, J. Zeng, R.U.R. Sagar, X. Qi, T. Liang, Electrochim. Acta 412 (2022), 140099.
- [2] A. Kumawat, K.P. Misra, S. Chattopadhyay, Mater. Technol. 37 (2022) 1595–1610.
- [3] E. Radha, D. Komaraiah, R. Sayanna, J. Sivakumar, J. Lumin. 244 (2022), 118727.
- [4] J. Wu, L. Zhao, W. Chen, Y. Yang, Y. Wang, X. Xu, Inorg. Chem. Front. 10 (2023) 2474–2483.
- [5] S. Qiao, Y. Wang, L. Yin, L. Pan, M. Zhang, P. Townsend, J. Lumin. 243 (2022), 118667.
- [6] A. Baran, J. Barzowska, M. Grinberg, S. Mahlik, K. Szczodrowski, Y. Zorenko, Opt. Mater. 35 (2013) 2107–2114.
- [7] S. Jang, S. Wi, H. Lim, J.-S. Chung, S. Bu, H. Noh, Y. Lee, J. Alloys Compd. 860 (2021), 157910.
- [8] C. Wang, Q. Lv, J. Ma, Y. Li, B. Shao, X. Zhao, G. Zhu, Adv. Powder Technol. 33 (2022), 103394.

- [9] I. Nettleship, J.L. Shull Jr., W.M. Kriven, J. Eur. Ceram. Soc. 11 (1993) 291–298.
- [10] Y. Luo, D. Jo, K. Senthil, S. Tezuka, M. Kakihana, K. Toda, T. Masaki, D. Yoon, J. Solid State Chem. 189 (2012) 68–74.
- [11] C. Guo, Y. Xu, F. Lv, X. Ding, J. Alloys Compd. 497 (2010) L21-L24.
- [12] Z. Wang, S. Guo, Q. Li, X. Zhang, T. Li, P. Li, Z. Yang, Q. Guo, Phys. B Condens. Matter 411 (2013) 110-113.
- [13] Q. Yanmin, X. Zhang, Y. Xiao, C. Yan, G. Hai, J. Rare Earths 27 (2009) 323–326.
- [14] M. Catti, G. Gazzoni, Acta Crystallogr. Sect. B Struct. Sci. 39 (1983) 679-684.
- [15] M. Catti, G. Gazzoni, G. Ivaldi, Acta Crystallogr. Sect. C Cryst. Struct. Commun. 39 (1983) 29-34.
- [16] K. Yamazaki, H. Nakabayashi, Y. Kotera, A. Ueno, J. Electrochem. Soc. 133 (1986) 657.
- [17] Y. Quanmao, L. Yufeng, W. Shan, L. Xingdong, X. Huang, L. Xiaoxia, J. Rare Earths 26 (2008) 783–786.
- [18] W. Zhi-Jun, Y. Zhi-Ping, G. Qing-Lin, L. Pan-Lai, F. Guang-Sheng, Chin. Phys. B 18 (2009) 2068.
- [19] Y. Sato, H. Kuwahara, H. Kato, M. Kobayashi, T. Masaki, M. Kakihana, Opt Photon. J. 5 (2015) 326.
- [20] S. Poort, W. Janssen, G. Blasse, J. Alloys Compd. 260 (1997) 93-97.
- [21] L.-C. Ju, C. Cai, Q.-Q. Zhu, J.-Y. Tang, L.-Y. Hao, X. Xu, J. Mater. Sci. Mater. Electron. 24 (2013) 4516-4521.
- [22] L.-C. Ju, X. Xu, L.-Y. Hao, Y. Lin, M.-H. Lee, J. Mater. Chem. C 3 (2015) 1567–1575.
- [23] S.-Y. Zheng, J.-W. Chiou, Y.-H. Li, C.-F. Yang, S.C. Ray, K.-H. Chen, C.-Y. Chang, A.R. Shelke, H.-T. Wang, P.-H. Yeh, Sci. Rep. 10 (2020), 12725.
- [24] M.G. Ha, J.-S. Jeong, K.-R. Han, Y. Kim, H.-S. Yang, E.D. Jeong, K. Hong, Ceram. Int. 38 (2012) 5521–5526.
- [25] X. Lu, S. Wang, S. Liu, P. Du, Z. Ye, X. Geng, X. Cheng, J. Phys. Chem. C 123 (2019) 13877–13884.
- [26] J. Wen, Y.-Y. Yeung, L. Ning, C.-K. Duan, Y. Huang, J. Zhang, M. Yin, J. Lumin. 178 (2016) 121-127.
- [27] Y.M. Kim, S.H. Hong, J. Am. Ceram. Soc. 87 (2004) 900-905.
- [28] Z. Hao, J. Zhang, X. Zhang, Y. Luo, L. Zhang, H. Zhao, J. Lumin. 152 (2014) 40-43.
- [29] I. Gupta, S. Singh, P. Kumar, S. Bhagwan, V. Kumar, D. Singh, Curr. Appl. Phys. 43 (2022) 78-89.
- [30] R. Cao, X. Wang, X. Ouyang, Y. Jiao, Y. Li, H. Wan, W. Li, Z. Luo, J. Lumin. 224 (2020), 117292.
- [31] S. Xiaoyuan, J. Zhang, X. Zhang, L. Yongshi, W. Xiaojun, J. Rare Earths 26 (2008) 421-424.
- [32] J. Sun, H. Lin, D. Zhang, R. Hong, C. Tao, Z. Han, Ceram. Int. 45 (2019) 23643–23650.
- [33] M. Grinberg, J. Barzowska, A. Baran, B. Kukliński, Materials Science-Poland 29 (2011) 272-277.
- [34] K. Asami, J. Ueda, K. Yasuda, K. Hongo, R. Maezono, M.G. Brik, S. Tanabe, Opt. Mater. 84 (2018) 436-441.
- [35] S.S.B. Nasir, K. Yakura, N. Horiuchi, M. Tsuta, A. Kato, J. Phys. Chem. Solid. 133 (2019) 135–141.
- [36] D.H. Kim, J.H. Kim, J. Kor. Phys. Soc. 80 (2022) 257–264.
- [37] M.-F. Volhard, T. Jüstel, Opt Commun. 410 (2018) 617–622.
- [38] D. Lee, M. Kwark, D. Kim, S. Wi, J.-S. Chung, I.W. Kim, Y.-J. Kwark, Y. Lee, J. Kor. Phys. Soc. 81 (2022) 646-652.
- [39] D. Lee, I. Chan, M. Jeong, Y. Lee, Curr. Appl. Phys. 46 (2023) 14-20.
- [40] J. Solé, L. Bausa, D. Jaque, An Introduction to the Optical Spectroscopy of Inorganic Solids, John Wiley & Sons, 2005.
- [41] A. Pradhan, P. Pal, G. Durocher, L. Villeneuve, A. Balassy, F. Babai, L. Gaboury, L. Blanchard, J. Photochem. Photobiol. B Biol. 31 (1995) 101-112.
- [42] A. Sillen, Y. Engelborghs, Photochem. Photobiol. 67 (1998) 475–486.
- [43] S. Poort, A. Meyerink, G. Blasse, J. Phys. Chem. Solid. 58 (1997) 1451-1456.
- [44] S.K. Gupta, M. Mohapatra, S. Kaity, V. Natarajan, S. Godbole, J. Lumin. 132 (2012) 1329–1338.
- [45] I. Gupta, S. Singh, P. Kumar, S. Bhagwan, V. Kumar, D. Singh, Curr. Appl. Phys. 43 (2022) 78-89.