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The opioid family of GPCRs consists of the classical opioid receptors, designated

µ-, κ-, and δ-opioid receptors, and the orphanin-FQ receptor, and these proteins

are expressed on both neuronal and hematopoietic cells. A number of laboratories

have reported that an important degree of cross-talk can occur between the opioid

receptors and the chemokine and chemokine receptor families. As a part of this, the

opioid receptors are known to regulate the expression of certain chemokines and

chemokine receptors, including those that possess strong pro-inflammatory activity.

At the level of receptor function, it is clear that certain members of the chemokine

family can mediate cross-desensitization of the opioid receptors. Conversely, the

opioid receptors are all able to induce heterologous desensitization of some of the

chemokine receptors. Consequently, activation of one or more of the opioid receptors

can selectively cross-desensitize chemokine receptors and regulate chemokine function.

These cross-talk processes have significant implications for the inflammatory response,

since the regulation of both the recruitment of inflammatory cells, as well as the sensation

of pain, can be controlled in this way.
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INTRODUCTION

Opioid receptors are members of the seven transmembrane G protein-coupled receptor (GPCR)
superfamily, and based on amino acid sequence similarity, these receptors are a part of the class
A (or rhodopsin-like) GPCR family (1–6). The opioid receptor sub-family is composed of µ-, κ-,
and δ-opioid receptors (MOP, KOP, DOP), and the orphanin-FQ receptor, or opioid receptor
like-1 (NOP). These four receptors share roughly 70% amino acid sequence homology (7). While
opioid receptors are expressed predominantly in the nervous system, it is clear that leukocytes also
express the opioid receptors (8–11). Moreover, several functions of cells of the immune system are
modulated following the activation of the opioid receptors (12–14).

The chemokine receptors are also members of the class A GPCR family, and are classified into
four types based on the terminal cysteine amino acid sequence of the respective agonists (C, CC,
CXC, and CX3C). The chemokine receptors can play a critical role in a variety of processes,
including hematopoiesis, inflammation, resistance to infections, and organogenesis (15, 16). It
is clear that chemokine expression is critical for the inflammatory response, and an increase in
chemokine expression is associated with a wide range of inflammatory diseases. These proteins are
involved in both innate and adaptive immunity, and play important roles in leukocyte recruitment
and organ positioning, integrin activation, leukocyte degranulation, angiogenesis, and monocyte
surveillance (16, 17).
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The opioid receptors regulate inflammatory processes at
multiple levels. For example, opioid receptor activation can result
in alterations in pro-inflammatory cytokines and chemokine
gene expression. This includes MOP-mediated down-regulation
of the expression of TNFα (18), and the up-regulation of
CCL2 expression (19–21). Opioid receptor activation can also
lead to the regulation of chemokine receptor gene expression.
For example, the activation of MOP leads to a significant up-
regulation of expression of both CCR5 and CXCR4 by both
monocytes and T cells (22), while the activation of KOP leads
to an inhibition of the expression of CXCR4 (23). The signaling
processes which are responsible for the opioid-mediated control
of chemokine and chemokine receptor gene expression will be
reviewed in this paper.

Opioid receptors may also regulate the functional activity
of chemokine receptors through the process of heterologous
desensitization. This is a process in which the activation of
the opioid receptor initiates a signaling pathway which leads
to the inactivation (or desensitization) of an unrelated GPCR
in the absence of ligand for the second GPCR (24). There
is a clear degree of selectivity in the capacity of GPCRs
to carry out cross-desensitization, and certain receptors are
highly resistant to this type of regulation. Moreover, certain
chemokine receptors can mediate cross-desensitization of the
opioid receptors, and lead to a loss of sensitivity to opioid agonist
administration. Overall, the cross-talk between GPCRs can
have substantial consequences, particularly for the inflammatory
response. In this review, the biochemical basis for the bi-
directional cross-talk between opioid and chemokine receptors
will be described.

OPIOID RECEPTOR SIGNALING
PROCESSES

Both opioid and chemokine receptors are coupled to the αβγ

G protein complex, and upon activation the G proteins are
uncoupled, releasing the α and βγ chains. The Gα subunits are
classified into four groups: Gαi/o, Gαs, Gαq, andGα12. The opioid
and chemokine receptors are Gi/Go-coupled receptors, and
following receptor activation, these G proteins are then able to
initiate a variety of signaling cascades. For example, the released
G proteins inhibit adenylyl cyclase, Ca2+ channels as well as
stimulate K+ channels and increase intracellular Ca2+ levels (25).
The release of Gβγ proteins appears to serve a substantial role
in the initiation of a number of signaling pathways, and may
be essential for cell migration (26–28). Moreover, the control of
cell migration appears to be dependent on Gβγ proteins released
from Gi-coupled, but not Gs- or Gq-coupled receptors (26).

The Gβγ-initiated signal transduction pathways can regulate
a number of critical cellular functions, including cell growth
and differentiation, due in part to the induction of the mitogen-
activated protein kinases (MAPK) (29). All of the opioid
receptors have been shown to activate the ERK1 and ERK2
MAPK family members, and one or more of the opioid receptors
also induce both JNK and p38 MAPK pathways as well (30, 31).
The capacity of the opioid receptors to activate the MAPK

cascades is particularly important since these pathways play
critical roles in the function of inflammatory cells.

The opioid Gβγ subunit also signals to the downstream
effector phosphoinositide 3-kinase (PI3K), a signaling pathway
that often leads to growth activation (32). In addition, PI3K is
often required for the activation of the nuclear factor-κB (NF-
κB) signal transduction pathway, an additional critical element
involved in pro-inflammatory gene expression (33–36). Both
MOP and DOP have been shown to initiate the PI3K pathway
to promote cell survival and inflammatory pain (37, 38).

The activation of GPCRs often results in the induction of the
NF-κB signaling pathway, as a result of the up-stream signaling
cascades including protein kinase A (PKA), PI3K, or PLCβ

(39). This includes the formyl peptide receptor, CXCR4, and
CXCR1. Opioid receptors have been shown to initiate the NF-κB
pathway in cortical neurons, neuroblastoma cells, or the THP-
1 macrophage-like cell line (40–42). While the effects of opioid
receptor activation may vary with the cell type, NF-κB is clearly a
critical component of opioid function (43).

Finally, activated GPCRs can initiate signaling pathways
which lead to the stimulation of one or more of the members of
the protein kinase C (PKC) family. There are at least 15 isoforms
of this serine/threonine kinase family, and these enzymes are
expressed by a wide variety of cell types in virtually all tissues.
However, each of the PKC isozymes exhibit a unique set of tissue
distribution patterns, subcellular localizations, and functions
(44). These isoforms have been grouped into three PKC types,
conventional (or classical) (PKCα, β, and γ), novel (PKCδ, ε,
η, and θ), and atypical (PKCζ and PKCι/λ). The distinctions
between these PKC isoforms is important because they can have
significantly different activation requirements, and this in turn
can have an impact on the nature of their enzymatic substrates.
The conventional PKCs bind diacylglycerol (DAG), and this
induces kinase catalytic activity and requires calcium, while the
novel PKCs bind DAG but do not require calcium. Finally, the
atypical PKCs do not bind DAG and do not require calcium, so
the biochemical basis for enzymatic activation is distinct from
the other PKC isoforms. However, all of the PKC members
possess a highly conserved COOH-terminal catalytic domain,
and an NH2-terminal regulatory region that contains a unique
pseudosubstrate sequence that binds to the catalytic domain and
maintains the enzyme in an inactive form (in the absence of the
activating second messenger) (45).

There is accumulating evidence that the atypical PKCζ plays a
critical role in the regulation of a number of metabolic processes.
The primary PKCζ activation pathway is typically dependent
on PI3K, which produces phosphatidylinositol PI-3,4,5-
trisphosphate (PIP3) (46). PIP3 is free then to bind and activate
phophoinositide-dependent protein kinase-1 (PDK1). The
activation of PKCζ is dependent in part on the phosphorylation
of Thr-410 within the activation loop, and following this step,
autophosphorylation of PKCζ at Thr-560 (47). PKCζ also
contains a Phox/Bim1 (PB1) domain near the NH2-terminus
that mediates binding to protein scaffolds. Engagement of
binding to the scaffold protein performs the same function as
the binding of DAG to the C1 domain of conventional and novel
PKCs (48). This disengages the pseudosubstrate, resulting in full
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PKC activity, and the atypical PKCs are typically constitutively
active once bound to their scaffold protein (49). PKCζ plays
an important role in the cross-regulation of both chemokine
expression, and chemokine receptor function.

It is well-established that the PKCs participate in a number of
functional activities of the opioid receptors. Moreover, activation
of MOP by the highly selective synthetic MOP agonist [D-
Ala2, N-Me-Phe4, Gly-ol5]enkephalin (DAMGO) results in
translocation of PKC isoforms α, ε, and ζ to the plasma
membrane, and these PKCs can participate in agonist-dependent
MOP down-regulation (50). There is some evidence that KOP
and MOP have distinct signaling patterns, and that this may be
due to their ability to activate different sets of PKC isoforms and
second messengers (51).

INFLAMMATORY CELL EXPRESSION OF
OPIOID PEPTIDES

It should not be surprising that opioid agonists are present at sites
of inflammation, given the juxtaposition of cells producing both
opioid-peptides and chemokines. Endogenous opioid peptides
with agonist activities for MOP (β-endorphin, enkephalins),
DOP (enkephalins, β-endorphin), and KOP (dynorphin) are
produced by many inflammatory cells, including granulocytes,
monocytes, macrophages, and lymphocytes (52, 53). On balance,
these opioid peptides exhibit anti-inflammatory activity, which
is in line with the capacity of opiate analgesics to inhibit
inflammatory pain. For example, patients suffering with
arthritis responded to morphine administration with decreased
pain sensitivity, and a reduction in synovial inflammatory
cells (54, 55).

Published evidence suggests that leukocytes release opioid
peptides in response to a variety of stimuli. For example,
leukocytes produce opioid peptides in response to in vitro
stimulation with either corticotropic releasing factor (CRF),
IL-1, or noradrenaline (56–60). Opioid peptide producing
leukocytes have been reported to co-express chemokine
receptors, formyl peptide receptors, and receptors for certain
cytokines including IL-1 (59, 61–63). Granulocytes produce both
β-endorphin and met-enkephalin in response to stimulation
with CXCL2 or CXCL3, or mycobacteria-derived formyl
peptide expression (63, 64). Recent evidence shows that
alternatively activated macrophages (M2 macrophages)
produce β-endorphin, dynorphin, and met-enkephalin
when adoptively transferred to sites of inflammation in
vivo (65). This result is in contrast to either classically activated
macrophages (M1 macrophages) or non-polarized macrophages,
which produce substantially lower levels of these opioid
peptides. Similar results have been reported for TH cells,
which produce β-endorphin and met-enkephalin in inflamed
tissue (66, 67).

In general, the opioid peptides exhibit anti-inflammatory
activity, and there is evidence that these peptides contribute
to wound healing. Evidence has been reported which show
that opioid peptides exhibit mitogenic activity for epithelial
cells, promote re-epithelialization and keratinocyte migration,

and stimulate both cytokeratin and TGFβ (53, 68–71). In
more advanced ischemic wounds, the local application of
opioids promote wound closure, induce granulation tissue,
stimulate epidermal and dermal organization, and up-
regulate angiogenesis (72, 73). In contrast to these results,
it should be pointed out other reports have suggested that
opioid administration may slow wound healing (74, 75). The
nature of the apparently opposing results in these studies
remains uncertain.

Additional evidence that opioid peptides play a role in the
inflammatory response in vivo has been provided by studies
which show that inhibition of the extracellular degradation of
opioid peptides leads to antinociception (76). In addition, MOP-
knockout mice express increased levels of TNFα, IL-1β, IL-4,
and IFNγ at sites of inflammation (77). Taken together, the
results demonstrate that opioid peptides are produced at sites of
inflammation, are produced by inflammatory cells, and appear to
play an anti-inflammatory role in the immune response.

OPIOID-MEDIATED REGULATION OF
CHEMOKINE EXPRESSION

In general, opioids (particularly MOP agonists) mediate
immunosuppressive activity at the level of cytokine expression.
For example, the production of IFNγ, IL-2, IL-1β, TNFα are
inhibited by MOP agonists (78–81). In contrast with these
results, under the appropriate circumstances, MOP agonists may
upregulate the expression of other pro-inflammatory cytokines.
Peng et al. (82) have reported that both IL-12 and TNFα
expression by murine peritoneal macrophages is elevated in
response to morphine. Moreover, Roy et al. (83) have shown that
morphine, at low doses, up-regulates the expression of both IL-
6 and TNFα. These results establish that the MOP agonists can
induce both pro- and anti-inflammatory activities.

The MOP-selective agonist DAMGO can upregulate CCL2,
CXCL10, and CCL5 production by both non-activated and PHA-
stimulated peripheral blood mononuclear cells (PBMCs) at both
the mRNA and protein level (21). This effect is blocked by
administration of the MOP-selective antagonist H-D-Phe –Cys-
Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2 (CTAP) indicating that this
effect is mediated through MOP. In addition, Rock et al. (84)
showed that morphine stimulates CCL2 production at both the
mRNA and protein level in neurons, and this result was blocked
by the addition of the MOP antagonist, β-funaltrexamine (β-
FNA). Caco-2, an intestinal epithelial cell line, which was found
to constitutively express MOP and KOP, and treatment with
the selective MOP tetrapeptide, endomorphin-1 results in a
significant increase in CXCL8 production (85, 86).

The biochemical basis for the induction of chemokine
expression has been the subject of research reported from
several laboratories. MOP agonists, including morphine, can up-
regulate NF-κB activity in neuronal cells, including rat cerebral
cortex neurons (40), and the NT2-N neuronal cell line (87).
The activation of NF-κB has significant implications since it is
critical for the expression of a large number of pro-inflammatory
cytokines. Both morphine (83) and the synthetic MOP agonists
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endomorphin 1 and 2 (42) have been shown to induce NF-κB
activity in monocyte/macrophage cell populations.

A more detailed examination of the biochemistry of MOP-
induced CCL2 expression has shown that early, direct induction
of CCL2 expression is dependent on the activation of NF-κB (19).
These studies demonstrate that DAMGO treatment of human
primary leukocytes results in significant up-regulation of CCL2
mRNA and protein by 4 h, and inhibition of NF-κB activation
significantly reduces CCL2 expression. DAMGO administration
induces NF-κB activation by 30min, and this activation is
dependent on the phosphorylation of the p65 subunit of NF-
κB at Ser-311 (19). At this time the only kinase known to carry
out this phosphorylation/activation step is PKCζ, and additional
experiments demonstrated that the activation of MOP leads to
the activation of PKCζ. Moreover, inhibition of PKCζ activity
was found to inhibit the activation of NF-κB or the induction of
CCL2. Finally, chromatin immunoprecipitation (ChIP) analysis
demonstrated that MOP activation induced binding of NF-κB to
the CCL2 promoter (19). It has been proposed that the induction
of CCL2 following MOP activation is the result of a signaling
pathway involving Gβγ, PI3K, PDK-1, and PKCζ (19). This
signaling pathway may possibly form the biochemical basis for
theMOP-induced expression of other cytokines and chemokines.

For other chemokines, the regulation of expression mediated
by opioids may be indirect. This is true for CCL5, a chemokine
which is induced only after 18–24 h following activation of MOP.
There is some evidence that opioid-mediated modulation of
cytokine expression is due to the intermediate induction of TGFβ
(18). In this case, the inhibition of TNFα by morphine was
found to require the initial induction of TGFβ. More recent
studies were carried out to determine whether the MOP-induced
expression of CCL5 might require up-regulation of TGFβ. In
experiments with primary human monocytes, the activation of
MOP resulted in a significant induction of TGFβ by 8 h, and
the up-regulation of CCL5 was blocked in the presence of anti-
TGFβ neutralizing antibody (20). On the other hand, the MOP-
induced up-regulation of both CCL2 or CXCL10 was found to
be insensitive to anti-TGFβ antibody treatment. It should be
pointed out that TGFβ has been reported to directly induce
CCL2 expression through the activation of ERK and p38 MAPK
pathways in mesangial cells (88). Moreover, TGFβ has been
reported to up-regulate CCL2 in murine osteoblasts via the
transcription factor AP-1 (89, 90).

While most of the work in this area has been done
with MOP, there is evidence that KOP can regulate the
expression of certain chemokines. Using the κ-opioid selective
agonist U50,488H (trans-3,4-dichloro-N-methyl-N[2-(1-
pyrolidinyl)cyclohexyl]benzeneacetamide methanesulfonate)
studies have shown that activation of KOP may down-regulate
CCL2 production in primary human astrocytes stimulated with
the HIV-1 nuclear protein, Tat (91). In addition, the activation
of KOP also inhibits the expression of CXCL8 in the presence
of IL-1β (86). These results are in line with other work which
suggests that KOP generally exerts immunosuppressive activity
(13). For example, the activation of KOP results in a reduction in
the expression of IL-1β, IL-6, and TNFα in primary macrophages
and macrophage/monocyte cell lines (92).

OPIOID-MEDIATED REGULATION OF
CHEMOKINE RECEPTOR EXPRESSION

In general, the activation of MOP leads to the up-regulation of
several chemokine receptors. Morphine administration induces
the expression of CCR3, CCR5, and CXCR2 in the U87 human
astrocytoma cell line (93). The astrocytoma/glioblastoma cell
line also up-regulates CCR3 and CCR5 expression following
morphine treatment. Studies carried out with the more MOP-
selective agonist DAMGO have shown that activation of MOP
induces a substantial increase in the expression of both CCR5 and
CXCR4 (22). In contrast, activation of KOP induces a significant
down-regulation of CXCR4 (23). These studies showed that the
reduced CXCR4 expression leads to a significant reduction in the
susceptibility of T cells to HIV infection (23, 94). These results
are in contrast to results showing that KOP activation increases
expression of CCR2 by developing immature murine T cells (95).
These results are indicative of the contrasting effects of opioids
on chemokine receptor expression and function.

In an effort to understand the mechanisms involved in
the regulation of chemokine receptor expression, studies were
conducted with human primary leukocytes which showed that
the up-regulation of CXCR4 was dependent on the initial
expression of TGFβ (20). In a manner similar to the studies
reviewed above on CCL5, the results showed that treatment with
neutralizing anti-TGFβ blocked the MOP-induced expression
of CXCR4. In addition, these results also showed that both
monocytes and T cells exhibit increased CXCR4 following either
treatment with TGFβ, or the MOP agonist DAMGO (20).
Interestingly, theMOP-induced increase in CCR5 expression was
not dependent on TGFβ production, and TGFβ does not induce
CCR5 up-regulation.

It should be acknowledged that other cytokines (in addition
to TGFβ) may also regulate the opioid-induced modulation of
chemokine receptor expression. For example, results have been
reported which show that TNFα induces the expression of CCR5
(96, 97). Moreover, IFNγ is able to up-regulate the expression
of CCR5 in monocytes (98), and MOP activation can induce
an up regulation of both TNFα and IFNγ [reviewed in (14)].
The levels of expression of these and additional cytokines may
determine whether a given opioid receptor yields a pro- or
anti-inflammatory effect in physiological conditions.

Additional work to understand the biochemical basis for

opioid-regulation of chemokine receptor expression has been

carried out for KOP. Using both human peripheral blood

leukocytes, and the human microglial cell line CHME-3,

studies have demonstrated that KOP-induced down-regulation

of CXCR4 is dependent on JAK2, STAT3, and IRF2 (23). These

studies showed that the activation of KOP resulted in the

activation of several transcription factors, including the STAT

proteins 1, 3–6. KOP activation also resulted in the activation

of IRFs. More detailed analysis showed that KOP mediated

significant activation of both JAK2 and STAT3 by 5min following

KOP activation, and both JAK2 and STAT3 inhibitors blocked
the down-regulation of CXCR4 mediated by KOP (23). In
addition, KOP activation induced the expression of both IRF1
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and IRF2, and the induction of both were blocked by JAK2
and STAT3 inhibitors. CHME-3 cells which expressed inhibitory
siRNA for IRF2 failed to exhibit KOP-mediated inhibition of
CXCR4 expression, and ChIP analysis demonstrated that KOP
activation resulted in substantial binding of IRF2 to the CXCR4
promoter. These studies suggest that a KOP activation initiates
a signaling pathway which is composed of KOP–JAK2–STAT3–
IRF2–CXCR4. Taken together, these results were surprising since
this is the first evidence that KOR activates the JAK/STAT
signaling pathways. On the other hand, there is evidence that
MOP and DOP are able to induce the phosphorylation of STAT3
and STAT5 (99–102). The JAK/STAT signaling mediators are
well-known to play a critical role in the functions of receptors
for a number of cytokines, including IL-2, 3, 4, 6, 12, 13, IFNα/β,
IFNγ, and GM-CSF. On the other hand, there is limited evidence
that these proteins play a significant role in the function of the
chemokine receptors. There is evidence that JAK2 and JAK3 may
contribute to the chemotaxis activity of CXCR4 (103, 104). In
addition, the chemotaxis activity of CCR7 has been reported to be
JAK3-dependent (105). These studies remain controversial, and
Moriguchi et al. (106) have reported studies which suggest that
CXCR4 function is independent of JAK2 and JAK3.

OPIOID RECEPTOR-INDUCED
DESENSITIZATION OF CHEMOKINE
RECEPTOR FUNCTIONAL ACTIVITY

The regulation of GPCR functional activity takes place atmultiple
levels, including controls of the expression of either the receptor
or the binding ligand, traffic of the receptor to or from the
outer membrane, and expression/positioning of scaffold proteins
which associate with the receptor. However, the process of
desensitization of the receptor is a critical aspect of the regulation
of receptor function, and this process is essential in order to
maintain the normal functioning of cells. Desensitization also
works to prevent excessive signaling through the receptor, and
allow the cell to utilize the receptor for discrete periods of time.

In the first seconds following agonist binding to the GPCR,
G proteins are uncoupled, and downstream signaling pathways
are initiated (107). The response reaches a peak within seconds,
and rapidly declines while the agonist-receptor complex remains
intact. As the signaling capacity slows, the process of homologous
desensitization is initiated, and this process can bring the
signaling to an end. Responses of the receptor to re-stimulation
are reduced, and the receptor may remain on the outer
membrane (but in an unresponsive state), or more commonly,
the receptor may be internalized. Homologous desensitization,
in which the receptor is desensitized following receptor activation
by the homologous agonist, typically occurs as a result of receptor
phosphorylation by one or more G protein-coupled receptor
kinases (GRKs). The GRKs are serine/threonine kinases, there
are seven GRK subtypes, and the expression patterns for the
GRKs vary among cell types (108). Following phosphorylation,
β-arrestin may be recruited to the receptor, and this complex
can promote the processes which are required for internalization.
Once internalized, the desensitized receptor can be degraded or

re-sensitized, and in some circumstances, the sensitized receptor
may be returned to the outer membrane.

An alternative process for GPCR desensitization involves
a process in which one GPCR is activated, and initiates a
signaling process which leads to the desensitization of a second,
unrelated, and non-ligated receptor. This process is referred
to as heterologous desensitization (or cross-desensitization),
and in most cases is dependent on the activation of second-
messenger-dependent kinases. For example, the activation of
Gs coupled receptors typically activates adenyl cyclase, resulting
in the formation of cyclic AMP, and the activation of PKA.
The Gi/o coupled receptors typically result in the activation
of PKC isoforms, and PKA or PKC mediates phosphorylation
of serine/threonine residues in the carboxy-terminal tail of the
GPCR. The serine and/or threonine phosphorylation sites are
distinct for PKA, PKC, and GRK enzymes, and the location
and/or number of these sites may determine the susceptibility
of a given GPCR to heterologous desensitization (109). As
with the process of homologous desensitization, receptors that
undergo heterologous desensitization may not be internalized,
but remain on the cell surface in a refractory state (107). It is
not clear whether receptors that have undergone heterologous
desensitization associate with β-arrestin, and little is known
about the internalization biochemistry for these receptors.
Nevertheless, internalization is typically not required in order for
the receptor to be dephosphorylated and re-sensitized (110–112).

Early work on heterologous desensitization showed that
activation of the formyl peptide receptor (FPR) induced
heterologous desensitization of the C5a receptor (C5aR) and
CXCR1, but not platelet-activating factor receptor (PAFR) or the
leukotriene B receptor (LTBR) (113). On the other hand, the
activation of either PAFR or LTBR were able to cross-desensitize
FPR. These results demonstrate the existence of a hierarchy
among GPCRs in terms of susceptibility to heterologous
desensitization. For example, the strength of the receptors to
induce heterologous desensitization is approximately FPR >

C5aR > CXCR1, while the susceptibility to cross-desensitization
was reversed and approximately CXCR1 > C5aR > FPR (113).

The first report of opioid-induced heterologous
desensitization of chemokine receptors was reported by
Grimm et al. (114), in which met-enkephalin and morphine
administration inhibited the activity of CXCR1, CXCR2, CCR1,
CCR5, or CCR2. In contrast, the opioid receptor activation had
no effect on the function of FPR expressed by either neutrophils
or monocytes. Additional studies also showed that the both
MOP and DOP could mediate this cross-desensitization, and
as expected, the biochemistry of these processes involved target
receptor phosphorylation (114, 115). Additional studies have
shown that MOP-induced heterologous desensitization of CCR5
is associated with a loss of HIV co-receptor function, but the
MOP-induced cross-desensitized CCR5 is not internalized (116).
In contrast, neither MOP or DOP induce cross-desensitization
of CXCR4 in either T cells or monocytes, and in this case the
susceptibility to X4-tropic HIV is not altered by the opioid
receptor activation.

It has been suggested that the selective nature of heterologous
desensitization is due to the activation of a limited subset
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of PKC isozymes (117), and that the ability of these to
phosphorylate a potential target receptor would determine the
level of susceptibility. Zhang et al. (117) showed that activation
of MOP by either morphine or met-enkephalin activates PKC
isoforms δ, η, µ, and ζ in monocytes, and the calcium-dependent
classical PKCs are not activated. The failure to activate the
classical PKCs may indicate a limited range of target receptors for
MOP-induced cross-desensitization. Additional studies reported
by Song et al. (118) using either a selective pseudosubstrate
inhibitor peptide, inhibitor siRNA expression, or expression
of a dominant-negative mutant, showed that cross-desensitized
CCR5 is phosphorylated by PKCζ. These investigators went on to
show that the MOP-mediated induction of PKCζ is dependent on
the initial activation of PDK1, and using fluorescent resonance
energy transfer techniques and co-immunoprecipitation, the
activation of PKCζ and desensitization of CCR5 occurred as a
result of the formation of a PDK1-PKCζ-CCR5 complex. These
results are consistent with the report of Chen et al. (119) who
demonstrated MOP-CCR5 complex formation, and suggested
that the complex formation may contribute to the heterologous
desensitization. A diagram showing the signaling pathway for
the MOP-induced cross-desensitization of CCR5 is presented
in Figure 1.

The selective activation of PKC isoforms is an inherent
property of many members of the GPCR superfamily. In
addition, the capacity of a givenGPCR to utilize one ormore PKC
isozymes to mediate heterologous desensitization is an important
aspect of the hierarchy of GPCR strength of cross-desensitization.
For example, studies of the interactions between CXCR1, CXCR2
and CCR5 show that CXCR1 and CCR5 exhibit bi-directional
heterologous desensitization (120). The activation of CXCR1
and CCR5 induce strong and sustained PKCε, but weak and
transient PKCα, βI and βII. Inhibition of PKCε, but not the
other PKC isozymes, blocked this heterologous desensitization.
Moreover, CXCR2 failed to induce activation of PKCε, and failed
to desensitize either CXCR1 or CCR5. These results demonstrate
that both PKCε (when activated by CXCR1) or PKCζ (when
activated by MOP) can desensitize CCR5.

The finding of MOP-CCR5 heterodimerization offers an
interesting level of potential complexity in the cross-talk
between opioid and chemokine receptors. It has been reported
that for some GPCR heterodimers, the activation of one
dimer partner leads to an inhibition in the function of
the other partner (121). For example, in studies of the
α2A-adrenoceptor-MOP receptor heteromer, morphine binding
inhibited α2A-adrenoceptor signaling (122). Moreover, this has
been attributed to a morphine-stimulated alteration in the
conformation of the α2A-adrenoceptor, based on results from
dynamic intramolecular FRET (123). In fact, the change in α2A-
adrenoceptor conformation was found to occur within 0.4 s of the
activation of MOP, which is more rapid than the rate of G protein
activation. It is possible that for the interaction between MOP
and CCR5 there may be additional negative effects on CCR5
function mediated by MOP activation that occur at the level of
CCR5 conformation.

As noted above, the activation of either MOP or DOP do
not induce heterologous desensitization of CXCR4. However,
it is apparent that both KOP and NOP are able to mediate
cross-desensitization of this chemokine receptor. NOP is
abundantly expressed by hematopoietic cells, including T
cells. Studies with human peripheral blood T cells and
monocytes shows that CXCR4 fails to mediate a chemotaxis
response to CXCL12 following the activation of NOP (124).
The desensitization of CXCR4 occurred in the absence of
detectable internalization of this receptor, in contrast to
homologous desensitized CXCR4 in which there was substantial
internalization. Furthermore, the NOP-induced heterologous
desensitization of CXCR4 also resulted in a loss of CXCR4 HIV
co-receptor function. In addition, results have been reported
which show that CXCR4 and KOP are able to carry out bi-
directional heterologous desensitization (125). The CXCR4-
induced cross-desensitization of KOP was not associated with
significant internalization, but the KOP-induced desensitization
of CXCR4 was associated with partial CXCR4 internalization.
Nevertheless, it appears that opioid receptor-mediated cross-
desensitization of these chemokine receptors does not require

FIGURE 1 | The signal transduction process for the MOR-induced heterologous desensitization of CCR5. The diagram shows the step-wise phosphorylation steps

leading to the phosphorylation and desensitization of CCR5. Step 1 shows the activation of MOR leading to the activation of PI3K. Step 2 shows the PI3K-dependent

activation and phosphorylation of PDK1. Step 3 shows the PDK1-dependent phosphorylation and activation of PKCζ. This step appears to involve the formation of

PDK1-PKCζ heterodimers. Step 4 shows the PKCζ-dependent phosphorylation and desensitization of CCR5. This step involves the formation of a complex of

phorphorylated PKCζ and phosphorylated CCR5. It is possible that a larger complex which includes MOR may also be formed.
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a high level receptor internalization, and the mechanism of
desensitization is independent of internalization.

It is important to point out that sustained stimulation of
MOP in neurons results in the inhibition of CXCR4 functional
activity (126, 127). These studies showed that the MOP-induced
desensitization of CXCR4 required the upregulation of ferritin
heavy chain (FHC) (127, 128). FHC has been shown to negatively
regulate CXCR4 signaling activity in both neuronal and non-
neuronal cells, and FHC and CXCR4 co-immunoprecipitates
after stimulation with morphine (129, 130). This binding
interaction appears to inhibit coupling of CXCR4 to G proteins,
and in this way interfere with the signaling activity of the
receptor (131). This mechanism of opioid-mediated regulation
of CXCR4 may have significant implications for the regulation
of the immune response. Additional work on the role of FHC in
immune function will be necessary to address this issue.

CHEMOKINE-INDUCED DESENSITIZATION
OF OPIOID RECEPTORS

Pain is one of the cardinal signs of inflammation, and the
mechanisms that are responsible for the increase in sensitivity
to pain are complex. Elevated levels of pro-inflammatory
chemokines have beenmeasured at sites of chronic inflammation,
and these chemokines contribute to the increase in pain
sensitivity (132). Based on the knowledge of cross-talk between
chemokine and opioid receptors, studies have been conducted to
determine the capacity of various pro-inflammatory chemokines
to induce heterologous desensitization of opioid receptors.
Results have been reported which demonstrate that the activation
of CCR2, CCR5, CCR7, or CXCR4 rapidly induces cross-
desensitization of both MOP and DOP in primary human
monocytes and T cells (115, 133). Additional studies have
shown that the activation of CCR1, CCR2, and CXCR1 induces
the cross-desensitization of MOP in both neuronal and non-
neuronal cells (134).

In an effort to examine the physiological consequences
of the chemokine-opioid receptor cross-talk, experiments
were conducted by administration of chemokines into the
periaqueductal gray matter (PAG) of the brain, and then the
ability of MOP to elicit an analgesic response was determined.
Stimulation of the MOP in the PAG is known to elicit an
analgesic response (a depressed sensation of pain). In these
studies the pretreatment of the PAG with agonists for either
CCR5 or CXCR4 inhibited the ability of MOP to mediate a
normal analgesic response to a MOP agonist (133). More recent
work has demonstrated that the activation of CCR1, CCR5 and
CXCR4 in the PAG result in cross-desensitization of both MOP
and DOP (135). Results reported by Chen et al. (136) have
shown that the activation of CX3CR1 in the brain induces cross-
desensitization of MOP, DOP, and KOP. Finally, as mentioned
above, a study reported by Finley et al. (125) shows that activation
of CXCR4 results in cross-desensitization of KOP (125). Taken
together, these studies suggest an extensive degree of regulation
of the function of opioid receptors that is mediated by chemokine
receptors. A very recent report shows that the co-administration

of chemokine receptor antagonists potentiates the capacity of
morphine to generate an analgesic response in a model of
inflammatory pain (132). These results suggest that the results
on heterologous desensitization can be clinically translated
by interfering with the chemokine-mediated desensitization
of MOP function in conditions involving inflammatory pain.
The capacity of certain cytokines and chemokines to alter the
perception of pain has recently been reviewed, including the
cross-desensitization of opioid receptors following activation of
chemokine receptors (137, 138).

CONCLUSIONS

It is worth noting that there are several prominent physiological
consequences of the heterologous desensitization between
opioid and chemokine receptors. It should be pointed out
that most of the work reviewed above was conducted by
assessing the effects following acute administration of opioids
and/or chemokine agonists. It is conceivable that chronic
agonist administration may yield results which are qualitatively
or quantitatively distinct from those described herein. The
consequences of chemokine-induced desensitization of opioid
receptors during conditions of inflammatory pain were discussed
above. On the other hand, the consequences of selective cross-
desensitization of chemokine receptors should be discussed.
For example, the inflammatory response is dependent on the
appropriate guidance of inflammatory cells to the site of
inflammation. The recruitment of these inflammatory cells first
requires that the cells orient the expression of chemoattractant
receptors, and the underlying cytoskeletal matrix (polarization),
to prepare the cell for the journey to the inflammatory site.
However, this guidance must occur in the presence of a
mixture of a large number of chemoattractants. There must
be hierarchies of these chemoattractant stimuli that allow for
a refined directional signal. It has been pointed out that
receptor desensitization plays an important part in separating
the influence of the “strong” chemoattractant signals (“end
point signals”), and potentially overcome the influences of
less dominant chemokines (“intermediate chemokines”) (139).
It is suggested here that heterologous desensitization is an
important part of this guidance process, since its influence
is both rapid and selective. For example, the high-affinity
formyl peptide receptor, FPR1, plays a critical role in the initial
recruitment of neutrophils to sites of inflammation and/or
infection. The recruitment of these cells by this receptor is
essential for early resistance to a number of infectious agents,
and the formyl peptide agonists are produced by endogenous
cellular damage, as well as by infectious agents. In other words,
the source of agonist for FPR1 is present at an early stage
of the inflammatory process. However, other chemoattrants
are also present in the tissue, and the FPR1-mediated cross-
desensitization of the interfering chemokine receptors would
protect the function of FPR1. Studies reported by Bednar et al.
(109) show that FPR1 successfully mediates cross-desensitization
of CCR1, but not CCR2. The desensitization of CCR1 is
dependent on PKCβ, and this appears to explain the inability

Frontiers in Immunology | www.frontiersin.org 7 January 2020 | Volume 11 | Article 94

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Rogers Opioid-Chemokine Receptor Cross-Talk

of FPR1 to desensitize CCR2. Bednar et al. (109) proposed
that FPR1 uses heterologous desensitization of CCR1 (and
likely other receptors) to exert “traffic control” by rapidly
inhibiting the interference by “low-priority” chemoattractants,
without impeding the influence of “high-priority” CCR2-
mediated chemoattraction.

The contribution of heterologous desensitization to the
inflammatory response is only partially understood. The capacity
of one GPCR to inhibit the activity of another GPCR is likely to
play a role in the regulation of a number of receptor functions.
Studies reported thus far deal with receptor responses, such as
chemotaxis and calcium flux reactions, and these are important
aspects of inflammatory cell functions. However, GPCRs also
play a role in a number of other functions, including cell growth

and survival, the production of pro-and anti-inflammatory

mediators, the activation of adhesion molecules, and the
susceptibility to infection by a number of infectious agents.
We are still in the process of learning the spectrum of GPCR
functions that are regulated by heterologous desensitization.
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