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ABSTRACT

Background and objective: Respiratory viral infec-
tions are a major cause of asthma exacerbations.
Neutrophils accumulate in the airways and the mecha-
nisms that link neutrophilic inflammation, viral infec-
tions and exacerbations are unclear. This study aims to
investigate anti-viral responses in neutrophils from
patients with and without asthma and to investigate if
neutrophils can be directly activated by respiratory
viruses.
Methods: Neutrophils from peripheral blood from
asthmatic and non-asthmatic individuals were isolated
and stimulated with lipopolysaccharide (LPS) (1 μg/
mL), f-met-leu-phe (fMLP) (100 nM), imiquimod (3 μg/
mL), R848 (1.5 μg/mL), poly I:C (10 μg/mL), RV16
(multiplicity of infection (MOI)1), respiratory syncytial
virus (RSV) (MOI1) or influenza virus (MOI1). Cell-free
supernatants were collected after 1 h of neutrophil
elastase (NE) and matrix metalloproteinase (MMP)-9
release, or after 24 h for CXCL8 release.
Results: LPS, fMLP, imiquimod and R848 stimulated
the release of CXCL8, NE and MMP-9 whereas poly I:C
selectively induced CXCL8 release only. R848-induced
CXCL8 release was enhanced in neutrophils from asth-
matics compared with non-asthmatic cells (P < 0.01).
RSV triggered the release of CXCL8 and NE from
neutrophils, whereas RV16 or influenza had no effect.
Conclusion: Neutrophils release CXCL8, NE and
MMP-9 in response to viral surrogates with

R848-induced CXCL8 release being specifically
enhanced in asthmatic neutrophils. Toll-like receptor
(TLR7/8) dysregulation may play a role in neutrophilic
inflammation in viral-induced exacerbations.
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Abbreviations: ANOVA, analysis of variance; DMSO, dimethyl
sulfoxide; ELISA, enzyme-linked immunosorbent assay; FEV1,
forced expiratory volume in 1 s; fMLP, f-met-leu-phe; FVC, forced
vital capacity; ICS, inhaled corticosteroid; IL, interleukin; LPS,
lipopolysaccharide; MDA-5, melanoma differentiation-associated
protein 5; MMP, matrix metalloproteinase; MOI, multiplicity of
infection; NE, neutrophil elastase; PAMPs, pathogen-associated
molecular patterns; RSV, respiratory syncytial virus; RV, rhinovi-
rus; TLR, toll-like receptor.

INTRODUCTION

Neutrophilic asthma is a distinct asthmatic pheno-
type with poor therapeutic response and a lack of
mechanistic insights.1 In these patients, neutrophil
numbers and their secretory products, such as
CXCL8, neutrophil elastase (NE) and matrix
metalloproteinase (MMP)-9, are elevated in the
airways, particularly during exacerbation. These
levels also correlate with greater severity of asthma
symptoms.2,3
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SUMMARY AT A GLANCE

We aimed to investigate and compare neutrophil
responses to bacterial compounds and viral
mimetics as well as compare responses between
people with and without asthma. We also investi-
gated neutrophil responses to live respiratory
viruses. Here we provide a novel comprehensive
comparison showing differential and specific acti-
vation in innate immune cells.
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Respiratory viral infections are a major cause of
asthma exacerbations with rhinovirus (RV) account-
ing for up to 80% of all exacerbations.4 Airway
neutrophilia can also occur transiently in response to
viral infections.5 Neutrophils appear to be implicated
both in asthma and during infections; however, the
immune responses that regulate virus-induced exac-
erbations and, in particular, neutrophilic inflamma-
tion remain poorly defined.

Neutrophils contain a range of receptors that rec-
ognize pathogen-associated molecular patterns
(PAMPs) present on bacteria, fungi and viruses. The
majority of respiratory viruses are RNA viruses that
can be detected by toll-like receptors (TLRs) 3, 7 and
8. Studies have already described the expression of
TLR7 and 8 in neutrophils with conflicting evidence
for TLR3.6–8

It has been reported that asthmatic epithelial cells
produce a deficient immune response in the context
of a viral infection.9 Furthermore, airway neutrophils
from asthmatics produce less inflammatory cytokines
in response to lipopolysaccharide (LPS).10 It is cur-
rently unknown if there is dysfunction in the anti-viral
capacity of asthmatic neutrophils and whether this
may contribute to viral-induced exacerbations.

We hypothesize that neutrophils in asthmatic
patients have a deficient anti-viral response that may
contribute to the pathogenesis of viral-induced exac-
erbations. In this study, we aimed to determine
whether neutrophils from asthmatics have an altered
anti-viral response and whether neutrophils can
detect and respond to replication competent (live) RV,
respiratory syncytial virus (RSV) and influenza virus
infections.

METHODS

Patient recruitment

The project protocols were approved by the Human
Research Ethics Committee, The University of Sydney,
prior to commencement. Patients were recruited by
ethically approved flyers placed around the Univer-
sity of Sydney campuses and were included in the
study if they were over the age of 18 and fluent in
English. Exclusion criteria included pregnancy, faint-
ing during venipuncture, having a blood-borne infec-
tion or condition, or if asthmatics were exacerbating.
All patients provided written informed consent and
were asked to complete a standardized questionnaire
regarding age, sex, asthma symptoms and asthma
medication use. Patients also completed baseline
spirometry for forced expiratory volume in 1 s (FEV1)
and forced vital capacity (FVC) (Table 1).

Neutrophil isolation

Neutrophils were isolated from peripheral blood col-
lected from asthmatic and non-asthmatic volunteers
by a modified standard protocol with CD16-positive
selection.10 Further details are provided in Sup-
plementary Appendix S1. HE stain was used to assess
purity of neutrophils that was typically 99%. The main
contaminating cell was eosinophils.

RV16, RSV and influenza virus

RV16 was generously donated by Professor Sebastian
Johnston, Imperial College, London. RV16 was grown
in HeLa cells by standard procedures and infectivity
titre determined by a titration assay as described.11

RSV (A2) was grown in Hep2a cells by standard pro-
cedures, and infectivity titre was determined by
a plaque assay on Hep2a cell monolayers as
described.12

Influenza A virus strain A/California/7/2009
(A(H1N1)pdm09) from the WHO Collaborating
Centre for Reference and Research on Influenza, Mel-
bourne, Australia, was grown in 10-day embryonated
hen’s eggs by standard procedures and infectivity titre
was determined by plaque assay on MDCK cell
monolayers as described.13

Stimulation of neutrophils with TLR agonists

and respiratory viruses

Neutrophils were resuspended in 1% foetal bovine
serum (Glendarach Biologicals, Melbourne, Victoria,
Australia), 1% 1 M N-[2-hydroxyethyl]piperazine-N′-
[2-ethanesulphonic acid] (Life Technologies,
Mulgrave, Victoria, Australia) 1% penicillin/
streptomycin RPMI 1640 (Life Technologies) at
1 × 106 cells/mL. Cells were unstimulated (negative
control) or stimulated with EC50 concentrations of
each TLR agonist based on dose–response curves
generated for CXCL8 release (data not shown):
1 μg/mL LPS (Sigma Aldrich, Castle Hill, New South
Wales, Australia), 3 μg/mL imiquimod (Invivogen,
San Diego, CA, USA), 1.5 μg/mL R848 (Invivogen),
10 μg/mL poly I:C (Sigma Aldrich), except f-met-leu-
phe (fMLP; Sigma Aldrich) (100 nM), which was based
on previous reports.14 Neutrophils were also stimu-
lated with RV16 at a multiplicity of infection (MOI) of
1 infectious particle per cell as previously published.15

This remained consistent with RSV (MOI1) and influ-
enza virus (MOI1). Cells were incubated at 37°C with
5% CO2 for 1 h NE and MMP-9 measurements, or 24 h
for CXCL8 measurements. Cell-free supernatant and
neutrophil cell pellets were collected and stored at
−80°C for analysis.

Table 1 Patient characteristics

Non-asthmatic Asthmatic

n 28 19
Age years, mean (± SEM) 26.11 (1.34) 34.89 (4.45)
Gender (M/F) 15/13 9/10
FEV1 % pred. (± SEM) 96.14 (2.13) 77.42*** (4.33)
FEV1/FVC % pred. (± SEM) 94.5 (3.6) 87.95* (3.04)
Short acting β2 agonist use

(daily/weekly/less
than weekly)

7/4/8

ICS use (daily/weekly/less
than weekly)

10/3/6

*P < 0.05, ***P < 0.001 when compared with non-asthmatic
controls.

FEV1, forced expiratory volume in 1 s; FVC, forced vital capac-
ity; ICS, inhaled corticosteroid; SEM, standard error of the mean.
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CXCL8 enzyme-linked immunosorbent assay

(ELISA)

CXCL8 production was measured using a sandwich
ELISA in duplicate. Specific ELISA kits from R&D
Systems (Minneapolis, MN, USA) were used accord-
ing to the manufacturer’s instructions. Detection
limit was 15.6 pg/mL.

NE activity assay

NE activity was measured in duplicate using a fluo-
rescent assay from Cayman Chemicals (Ann Arbor,
MI, USA) according to the manufacturer’s instruc-
tions. Florescence readings from samples were com-
pared with a standard curve of known concentrations
of NE to determine the concentration. Detection limit
was 3.1 ng/mL.

MMP-9 zymography

A bicinchoninic acid assay (Sigma Aldrich) was run
for all samples according to the manufacturer’s
instructions to obtain the total protein concentration.
Zymography was carried out according to previously
published methods.16 Further details are provided in
Supplementary Appendix S1.

Statistical analysis

Data are represented as the mean ± standard error of
the mean. Data sets with greater than 10 patients were
deemed to have a normal distribution if it passed one
or more of the three normality tests provided
(Kolmogorov–Smirnov, D’Agostino and Pearson and
Shapiro–Wilk normality tests; GraphPad Prism 5, La
Jolla, CA, USA). Non-parametric data were log10 trans-
formed and normality tested again. A paired t-test
or one-way analysis of variance (ANOVA) with
Bonferroni post-test was performed if the data fol-
lowed a normal distribution, or a Wilcoxon matched
t-test or Friedman test with Dunn’s multiple compari-
son test if data were non-parametric. Two-way
ANOVA was performed for groups comparing asth-
matic cells versus non-asthmatic cells. Significant
changes were identified where P < 0.05.

RESULTS

Patient characteristics

The mean age of the non-asthmatic group was 26.11
years, whereas the asthmatic patients were slightly

older (34.89 years). There were approximately equal
numbers of males and females in each group. The
asthmatics had a significantly lower % predicted FEV1

and % predicted FEV1/FVC compared with the non-
asthmatic group and all were on a short-acting β2

agonist and an inhaled corticosteroid (ICS) (Table 1).

Bacterial compounds and viral mimics trigger

the release of CXCL8 from neutrophils

We first wanted to confirm that neutrophils were able
to be activated by TLR agonists that mimic viral infec-
tions and compare their response to known bacterial
activators. The bacterial compounds, LPS and fMLP,
induced CXCL8 with LPS inducing approximately
10-fold more CXCL8 than fMLP. The viral surrogates
(imiquimod, R848 and poly I:C) also induced release
of CXCL8 from neutrophils with the TLR7/8 agonist,
R848, inducing the greatest levels that was of similar
magnitude to LPS stimulation (Table 2). Interleukin
(IL)-6 was not detectable after stimulation with any of
the TLR agonists and, therefore, this cytokine was not
quantified in subsequent experiments.

Bacterial compounds and viral mimics trigger

degranulation of neutrophils

NE is the most prominent azurophilic granule
product and is a measure of degranulation. fMLP and
LPS increased NE release as did imiquimod and R848;
however, poly I:C did not (Table 2).

MMP-9 is predominately found in neutrophil
gelatinase granules and zymography was used to
detect its release by means of activity (gelatin diges-
tion). fMLP was a potent inducer of MMP-9 release
causing approximately 3.5-fold increase in release
compared with basal levels. LPS also induced MMP-9
but to a lesser degree. R848 was also a potent inducer
of MMP-9 release with similar levels to fMLP while
imiquimod-induced release was similar to LPS. In
contrast, poly I:C did not induce MMP-9 release from
neutrophils (Table 2).

Neutrophils derived from asthmatics had

enhanced R848-induced CXCL8 release

We next were interested in whether neutrophils from
people with asthma had inherently altered immune
responses to viral mimics that could contribute to the

Table 2 CXCL8, NE and MMP-9 release from neutrophils stimulated with bacterial compounds and viral mimics

CXCL8 (pg/mL) NE (ng/mL) MMP-9 (fold change of control)

Control 173.3 (± 22.72) 46.56 (± 5.98) 1
DMSO 241.6 (± 59.64) 49.92 (± 7) 1.23 (± 0.08)
LPS (1 μg/mL) 11 080 (± 1782)*** 60.76 (± 7.08)* 2.53 (± 0.28)***
fMLP (100 nM) 1 103 (± 258.4)*** 91.23 (± 6.54)*** 3.44 (± 0.5)***
Imiquimod (3 μg/mL) 1 630 (± 275)*** 69.92 (± 7.66)** 2.65 (± 0.42)***
R848 (1.5 μg/mL) 8 898 (± 1616)*** 63.6 (± 6)* 3.76 (± 0.88)***
Poly I:C (10 μg/mL) 992.6 (± 271.5)*** 52.1 (± 8.36) 1.29 (± 0.12)

CXCL8, NE and MMP-9 release from pooled data from asthmatic and non-asthmatic neutrophils. *P < 0.05, **P < 0.01, ***P < 0.001
compared with control conditions.

DMSO, dimethyl sulfoxide; fMLP, f-met-leu-phe; LPS, lipopolysaccharide; MMP-9, matrix metalloproteinase-9; NE, neutrophil
elastase.
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inflammatory milieu in the airways of these patients.
We found that upon R848 stimulation (TLR7/8
agonist) neutrophils from asthmatics produced
nearly twice as much CXCL8 as non-asthmatic
neutrophils (Fig. 1b). However, there were no differ-
ences found between these groups when we looked at
LPS- and fMLP-induced CXCL8 (Fig. 1a), NE release
(Fig. 2a,b) or MMP-9 release (Fig. 3a,b).

Respiratory viruses differentially modulate

neutrophil responses

As neutrophils released CXCL8, NE and MMP-9 in
response to TLR agonists, we next determined the
ability of infectious RV16 to induce these mediators
from neutrophils. RV was chosen due to the high
prevalence in the community and did not induce
CXCL8, NE or MMP-9 release from neutrophils
(Fig. 4a–c).

Influenza virus also has been detected in the
airways of exacerbating asthmatics.17 Neutrophils
stimulated with influenza virus also did not induce
CXCL8, NE or MMP-9 (Fig. 5a–c).

We next investigated RSV as it is another common
respiratory virus detected in the airways of exacerbat-
ing asthmatics, particularly in children.17 Unlike RV16
or influenza virus, RSV did induce CXCL8 (Fig. 6a) and
NE (Fig. 6b); however, MMP-9 was not detected
(Fig. 6c).

We also assessed viral interaction with neutrophils
by detecting viral RNA in a subset of neutrophil cell

pellets by reverse transcription polymerase chain
reaction. We found that RV and RSV RNA were present
in neutrophil cell pellets 24 h post-stimulation (Sup-
plementary Figs S1 & S2). We were unable to detect
influenza in our samples due to technical limitations.

DISCUSSION

This is the first study to comprehensively explore clas-
sical neutrophil functions utilized against bacteria in
the context of viral infections. We compared
neutrophil responses against simulated bacterial and
viral infections, immune responses between asth-
matic and non-asthmatic neutrophils and finally
neutrophil responses between viral surrogates and
live viruses. We found that neutrophils were able to
respond, by means of CXCL8, NE and MMP-9 release,
to a variety of TLR agonists that mimic viral infections.

Notably, asthmatic neutrophils produced signifi-
cantly more CXCL8 in response to R848 that has not
been previously demonstrated. R848 non-specifically
binds to both TLR7 and 8 and as no difference was
observed with the specific TLR7 agonist, imiquimod,
it can be concluded that the observation is due to
dysregulated TLR8 activation. This may have substan-
tial implications as the expression of TLR8 in
neutrophils is the greatest of the three TLRs investi-
gated, and TLR8 is not expressed in eosinophils.6,7

Oxidative stress has been confirmed in asthmatic
airways by analysis of bronchial alveolar lavage fluid18

Figure 1 CXCL8 release sub-analysis of
neutrophils from asthmatic versus non-
asthmatic patients following stimulation
with bacterial compounds and viral sur-
rogates. CXCL8 release from asthmatic
(n = 11 (a), n = 10 (b), black bars) and non-
asthmatic (n = 18, white bars) neutrophils
stimulated with (a) bacterial compounds:
lipopolysaccharide (LPS) (1 μg/mL),
f-met-leu-phe (fMLP) (100 nM) and
dimethyl sulfoxide (DMSO) (vehicle
control) and (b) viral surrogates: imi-
quimod (3 μg/mL), R848 (1.5 μg/mL) and
polyinosinic : polycytidylic acid (poly I:C)
(10 μg/mL) after 24 h. **P < 0.01 com-
pared with non-asthmatics.

Figure 2 Neutrophil elastase (NE)
release sub-analysis of neutrophils from
asthmatic versus non-asthmatic patients
following stimulation with bacterial com-
pounds and viral surrogates. NE release
from asthmatic (n = 8, black bars) and
non-asthmatic (n = 13, white bars)
neutrophils stimulated with (a) bacterial
compounds: lipopolysaccharide (LPS)
(1 μg/mL), f-met-leu-phe (fMLP) (100 nM)
and dimethyl sulfoxide (DMSO) (vehicle
control) and (b) viral surrogates: imi-
quimod (3 μg/mL), R848 (1.5 μg/mL) and
polyinosinic : polycytidylic acid (poly I:C)
(10 μg/mL) after 1 h.
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and has been reported to augment TLR8 activation,19

which may potentially exacerbate neutrophilic
inflammation. Genetic studies have also linked
TLR7 and TLR8 polymorphisms to increased risk of
asthma.20

Interestingly, out of the three respiratory viruses
tested, only RSV was able to activate neutrophils even
though TLR ligands could cause release of all media-

tors investigated. Neutrophils, in principle, are unable
to differentiate between different types of viruses;
rather they recognize PAMPs via TLRs. The majority of
respiratory viruses are single-stranded RNA viruses
that are detected by TLR3,7 and 8 of which
neutrophils predominately express TLR8, low levels of
TLR7 and little to no TLR3.6–8 We speculate that the
inability of RV and influenza to replicate in

Figure 3 Matrix metalloproteinase
(MMP)-9 release sub-analysis of
neutrophils from asthmatic versus non-
asthmatic patients following stimulation
with bacterial compounds and viral sur-
rogates. MMP-9 release from asthmatic
(n = 8 (a), n = 9 (b), black bars) and non-
asthmatic (n = 13, white bars) neutrophils
stimulated with (a) bacterial compounds:
lipopolysaccharide (LPS) (1 μg/mL),
f-met-leu-phe (fMLP) (100 nM) and
dimethyl sulfoxide (DMSO) (vehicle
control) and (b) viral surrogates:
imiquimod (3 μg/mL), R848 (1.5 μg/mL)
and polyinosinic : polycytidylic acid (poly
I:C) (10 μg/mL) after 1 h. (c) Representa-
tive image of a zymogram gel from one
patient.

Figure 4 CXCL8 levels and degra-
nulation products of neutrophils stimu-
lated with RV16. (a) CXCL8, (b) neutrophil
elastase (NE) and (c) matrix metal-
loproteinase (MMP)-9 release from
pooled asthmatic and non-asthmatic
neutrophils stimulated with RV16. n = 29
(a), n = 21 (b), n = 22 (c).
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neutrophils could explain our results as the limited
amount of viral RNA derived from the initial infection
may be insufficient to activate the TLRs. Furthermore,
RSV has a limited capacity to replicate within
neutrophils that agrees with this explanation.21

Our study suggests that direct activation of
neutrophils by virus may not be the main mechanism
involved in these infections, particularly RV infec-
tions. Many respiratory viruses primarily infect the
epithelium and the resulting immune response may
initiate a robust neutrophilic response. Other
immune cells may also be activated and could poten-

tially cross-talk with neutrophils to activate them,
which could be an area of further investigation. As live
viruses, in general, had a limited capacity to activate
neutrophils, we did not have the statistical power
required for sub-analysis between asthmatic and
non-asthmatic neutrophils stimulated with respira-
tory viruses. We speculate that differential responses
to RSV might occur given our observation with R848.

Neutrophils are associated with a variety of lung
diseases including asthma and are believed to be dys-
functional in disease states. Baines et al. demon-
strated that airway neutrophils had impaired CXCL8,

Figure 5 CXCL8 levels and degra-
nulation products of neutrophils stimu-
lated with influenza virus. (a) CXCL8, (b)
neutrophil elastase (NE) and (c) matrix
metalloproteinase (MMP)-9 release from
pooled asthmatic and non-asthmatic
neutrophils stimulated with influenza
virus. n = 6, except (a) where n = 5.

Figure 6 CXCL8 levels and degra-
nulation products of neutrophils stimu-
lated with RSV. (a) CXCL8, (b) neutrophil
elastase (NE) release and (c) matrix
metalloproteinase (MMP)-9 release from
pooled asthmatic and non-asthmatic
neutrophils stimulated with RSV. n = 5,
except (a) where n = 4. *P < 0.05 com-
pared with control.
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IL-1β and tumour necrosis factor α release in
response to LPS; however, blood neutrophils did not,
albeit there was a similar trend.10 Similarly, we also
found that blood neutrophils did not have impair-
ment of the LPS response in respect to CXCL8 release.
This demonstrates the potential differences between
sputum and blood neutrophils. Alternatively, the dif-
ferences between this and the previous study may be
due to age differences between the asthmatics (35 in
this study versus 59) as neutrophil function changes
with age,22 or the severity of their asthma as we
recruited patients who had milder asthma in com-
parison with the previously published study.

In this study, we were limited to the use of periph-
eral blood neutrophils and despite their limitation
they still provide valuable insights into the patho-
physiology of asthma. Neutrophils are short-lived
inflammatory cells (12–24 h), and during viral infec-
tions neutrophilia occurs as a result of neutrophil
migration from the blood. Therefore, we believe that
studying blood neutrophils is an appropriate model
to use for investigating the effects of acute viral
infections.

Viral surrogates have been extensively used by our
group to mimic viral infections as well as to study TLR
activation.23 We demonstrated that neutrophils have
the relevant receptors to become activated and
release CXCL8 in the context of both bacterial and
viral infections. CXCL8 is a potent chemoattractant
for neutrophils which is released by a variety of cells,
including neutrophils,24 which can therefore amplify
recruitment in a positive feedback manner if not
tightly regulated. Interestingly, CXCL8 could not be
detected in supernatants 1 h post-stimulation, dis-
playing de novo synthesis of this cytokine. All the
stimulants used were able to induce CXCL8 release,
albeit to varying degrees. It may be tempting to relate
these differing responses to receptor expression levels
but different potencies of our agonists, being full or
partial agonists, or intrinsic differences in down-
stream signalling cascades could explain our observa-
tions; however, exploration of this mechanism was
beyond the scope of this study.

Degranulation is an important effector function of
neutrophils. NE and MMP-9 are two of many compo-
nents found in granules and are particularly impor-
tant in clearing Gram-negative bacteria and
migration, respectively.25,26 All stimulants, except poly
I:C, induced release of NE and MMP-9. Poly I:C also
had low potency in CXCL8 release. TLR3, the receptor
for poly I:C, is believed to not be present in
neutrophils that would partly explain our observa-
tions.7 Poly I:C may also be a ligand for other intrac-
ellular RNA receptors such as melanoma
differentiation-associated protein 5 (MDA-5),27 and
induction of CXCL8 may be due to MDA-5 activation
rather than TLR3.

The patients in this study were predominately mild
asthmatics who were regularly taking ICS. Inhaled
steroid use is potentially a confounding and limiting
factor of this study as steroids increase the lifespan of
neutrophils by inhibiting apoptosis28 If steroids were
effecting neutrophil function, it may be reasonable to
assume that all outputs would be different; however,

we only observed greater responses with the TLR8
agonist. As this study mainly consisted of mild asth-
matics, it would be interesting to investigate if differ-
ences would be seen in neutrophils from a more
severe cohort.

In conclusion, we have found that neutrophils
contain the relevant components to detect and
respond to both bacteria and viruses. Of importance,
was our finding that TLR8 activation resulted in
greater CXCL8 production from asthmatic
neutrophils, which may contribute to neutrophilic
inflammation in the airways. Our data suggest that
neutrophils are unlikely to be directly activated by RV
during asthma exacerbations. We propose that airway
epithelium or smooth muscle, both of which are
known to be significantly modulated in the context of
asthma,29,30 may play an important role in initiating a
cascade of events during infection that results in
extensive neutrophilic inflammation. Alternatively, it
is not activation of neutrophils that is significant
during exacerbations, rather the resolution or regula-
tion of neutrophilic inflammation following infection
that may be the determining factor in exacerbations.
Animal models of lung viral infection clearly show
that inhibition of lung neutrophilia causes detrimen-
tal outcomes,31–33 and defective resolution of inflam-
mation is hypothesized to contribute to the chronicity
of the disease.34 The question now posed is; are
asthma exacerbations prolonged by excessive
neutrophilic inflammation?
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