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Abstract 

Background:  Cytokine release syndrome (CRS) is a strong immune system response that can occur as a result of the 
reaction of a cellular immunotherapy with malignant cells. While the frequency and management of CRS in CAR T-cell 
therapy has been well documented, there is emerging interest in pre-emptive treatment to reduce CRS severity and 
improve overall outcomes. Accordingly, identification of genomic determinants that contribute to cytokine release 
may lead to the development of targeted therapies to prevent or abrogate the severity of CRS.

Methods:  Forty three clinical CD22 CAR T-cell products were collected for RNA extraction. 100 ng of mRNA was used 
for Nanostring assay analysis which is based on the nCounter platform. Several public datasets were used for valida-
tion purposes.

Results:  We found the expression of the PFKFB4 gene and glycolytic pathway activity were upregulated in CD22 CAR 
T-cells given to patients who developed CRS compared to those who did not experience CRS. Moreover, these results 
were further validated in cohorts with COVID-19, influenza infections and autoimmune diseases, and in tumor tissues. 
The findings were similar, except that glycolytic pathway activity was not increased in patients with influenza infec-
tions and systemic lupus erythematosus (SLE).

Conclusion:  Our data strongly suggests that PFKFB4 acts as a driving factor in mediating cytokine release in vivo by 
regulating glycolytic activity. Our results suggest that it would beneficial to develop drugs targeting PFKFB4 and the 
glycolytic pathway for the treatment of CRS.
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Introduction
Cytokine release is a systemic inflammatory response that 
occurs when immune cells are activated by foreign sub-
stances and release large amounts of cytokines into the 
body such as: interleukins, interferons, tumor necrosis 

factors and growth factors [1, 2]. All of these cytokines 
are small proteins which play a vital role in host defense 
when regulated normally. However, when the immune 
response is dysregulated, high levels of cytokines may 
be produced which causes increased inflammation 
throughout the body and which results a condition called 
cytokine release syndrome (CRS). CRS can present with 
a variety of symptoms ranging from mild to severe and 
life-threatening manifestations [3, 4]. Mild symptoms of 
CRS include cough, fever, headache, fatigue, rash, and 
myalgia [1]. While severe cases are characterized by 
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hypotension and high fever which may progress to an 
uncontrolled systemic inflammatory response resulting 
in vascular leakage, circulatory shock, and multi-organ 
system failure [1]. Thus, effective treatment is required 
when patients develop severe CRS.

To date, CRS has been observed in infectious diseases 
(pandemics of influenza [5, 6], SARS-CoV and COVID-
19 [7, 8]), certain acquired or inherited autoimmune 
diseases [9, 10], and following chimeric antigen recep-
tor T-cell (CAR T-cell) therapy [11, 12]. Patients with 
severe CRS are treated with therapies designed to block 
specific cytokines, as well as more general immunosup-
pressive drugs. The anti-cytokine drugs, tocilizumab 
and siltuximab (anti-IL-6 receptor antibodies) have been 
widely used to minimize rates of life-threatening CRS 
in patients receiving CAR T-cell therapy and in patients 
with severe COVID-19 [13–15]. Corticosteroids such as 
methylprednisolone or dexamethasone, are also used to 
help mitigate inflammatory and immune responses by 
providing broad immunosuppression in individuals with 
autoimmune diseases and COVID-19 [16–18]. However, 
while the usage of tocilizumab may decrease CRS sever-
ity, it may increase the  risk of neurotoxicity, another 
common toxicity during CAR T-cell therapy [19, 20]. In 
addition, not all patients with severe CRS respond well 
to tocilizumab or corticosteroid treatments [21, 22], thus 
pre-emptive strategies are being tested [23, 24]. An early 
clinical trial showed a 69% response rate to tocilizumab 
in patients with severe or life-threatening CRS [22]. As 
for corticosteroids, there is still conflicting data as to 
whether its use compromises CAR T-cell potency [25, 
26]. Improved CRS treatment and prevention requires a 
greater understanding of molecular and cellular deter-
minants contributing to cytokine release. The current 
understanding of factors that trigger and drive cytokine 
release remains incomplete.

In recent years, the Nanostring nCounter gene expres-
sion platform has emerged and developed quite quickly 
[27–29]. It is a high-fidelity, simple protocol that allows 
for the detection of 800 mRNA molecules of inter-
est at one time using specific probes. This method has 
proven  to be simpler and more effective compared to 
real-time qPCR,  and time-saving and easier to analyze 
compared to RNA-seq [30, 31]. Here, in order to explore 
candidate targets for CRS treatment, we systematically 
explored the genomic factors found in CAR T-cell clini-
cal products using the Nanostring nCounter platform. In 
this study, we analyzed 43 pre-infusion CD22 CAR T-cell 
products and their corresponding clinical CRS grade. 
After analyzing gene expression using the nSolver soft-
ware, we compared the differentially expressed genes and 
pathways among CAR T-cell products associated with 
different CRS grades. We found that the PFKFB4 gene 

and its regulated glycolytic pathway activity were gradu-
ally upregulated among CAR T-cell products grouped 
from mild to severe CRS. Moreover, using public data-
sets  we validated our results in several other human 
diseases where CRS can occur including: COVID-19, 
influenza, autoimmune diseases and human tumors. 
These analyses suggest that the PFKFB4 gene may act as 
a driving factor in triggering the cytokine release pro-
cess. Drugs targeting PFKFB4 and glycolytic pathway or 
a combination strategy might be beneficial for the clinical 
management of cytokine release syndrome.

Materials and methods
CAR T‑cell products
CD22 CAR T-cell products were obtained from excess 
products manufactured for patients enrolled on a phase 
I trial of CD22 CAR T-cells in B-cell malignancies. 
(Clinicaltrials.gov NCT02315612). The clinical trial was 
approved by the National Cancer Institute Institutional 
Review Board. Products that were analyzed were from 
patients who consented to additional genomic testing 
and were enrolled on a companion study for study of bio-
logic correlatives (Clinicaltrials.gov NCT01109394). CRS 
was graded using ASTCT consensus grading [32].

mRNA extraction
Total RNA was isolated from 43 cryopreserved pre-infu-
sion CD22 CAR T-cell products [33] using miRNeasy 
Mini Kit (Qiagen). Quantity and Quality were measured 
by Nanodrop 8000 (Thermo Fisher Scientific) and 2100 
Bioanalyzer (Agilent).

Gene expression profiling by Nanostring
Hundred ng of total RNA was hybridized in solution with 
the nCounter CAR-T Characterization panel (human 
codeset) at 65 ℃ for 17 h. The hybridized samples were 
loaded into the nCounter CAR-T cartridge (NanoString 
Technologies), which was then sealed and placed in the 
instrument for processing and analysis. RCC files con-
taining raw counts for 780 genes were generated and 
loaded into nSolver Analysis Software 4.0 for normali-
zation by housekeeping genes and positive controls. The 
normalized data were imported to Partek Genomics 
Suite 7.0 to remove any batch effects. Downstream analy-
sis was performed in a Rstudio environment with custom 
code.

Calculation of differentially expressed genes
The limma R package was used to generate p-values 
and fold change (FC) for each gene between sam-
ples with different CRS grade. Wald’s Test was used 
to calculate the p value or significance that a gene is 
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differentially expressed. Genes with a p-value ≤ 0.01 and 
a │log2 (FC)│ ≥ log2(1.5) were identified as differen-
tially expressed genes (Additional file 4: Table S1).

Gene set analysis
Gene set variant analysis (GSVA) was used to look at 
enrichment scores for custom pathways in order to check 
pathway activity based on GSVA R package. p-value 
under 0.05 represents statistical significance.

Public datasets
Publicly available gene-expression profiles were used to 
validate findings in our studies were downloaded from 
GEO and TCGA datasets. Among them, cells were col-
lected from whole blood (GSE196822, GSE111368 
and GSE72326), peripheral blood mononuclear cells 
(GSE152418, GSE179627 and GSE114588), and mono-
cytes (GSE147608). PFKFB4 gene expression data and 
association with immune cells in pan-cancer downloaded 
from TIMER website.

Statistical analysis
All statistical analysis was performed with GraphPad 
Prism software and related R package. A p-value less than 
0.05 was considered significant.

Results
PFKFB4 gene expression is gradually upregulated 
among CAR T‑cells grouped according to recipient 
cytokine release syndrome grade
In order to identify gene expression signatures that drive 
the development of CRS, we collected 43 pre-infusion 
CD22 CAR T-cell products and analyzed gene expression 
using the Nanostring nCounter gene profiling system. 
First, we divided the CAR T-cell samples into four groups 
based on maximum clinical CRS grade in the associated 
recipient: Without CRS (n = 3), CRS grade 1 (n = 16), 
CRS grade 2 (n = 19), CRS grade 3 and 4 (n = 5). Then, 
we compared differentially expressed genes between 3 
combinations of two groups (without CRS vs CRS grade 
1, CRS grade 1 vs CRS grade 2, CRS grade 2 vs CRS grade 
3 and 4) in order to find genes whose expression gradu-
ally changed as CRS great increased. As the volcano plot 
shows in Fig.  1A–C, we identified some differentially 
expressed genes based on different comparisons (Addi-
tional file  4: Table  S1). Interestingly, we found that the 
PFKFB4 gene was gradually up-regulated as CRS became 
more severe (Fig. 1D).

Based on this finding, we sought to explore other CAR 
T-cell trials. Based on data generated from a CD19 CAR 
T-cell trial, we found similar results [34]. Based on this 
study’s supplementary data, we extracted the PFKFB4 
gene expression and CRS grade information. As shown 

in Fig.  1E, PFKFB4 gene expression was up-regulated 
in patients receiving CD19 CAR T-cells  with grade 4 
CRS  (p = 0.062). Our results indicate that PFKFB4 gene 
may act as an essential factor in triggering the develop-
ment of cytokine release syndrome.

PFKFB4 triggers cytokine release through the regulation 
of glycolytic activity
It has been reported that interleukin and JAK-STAT sign-
aling pathways play a key role in the cytokine release 
process and blocking/inhibiting these pathways can sig-
nificantly reduce the severity of CRS induced by CAR 
T-cells [35]. Consequently, we explored additional key 
signaling pathways in order to facilitate the develop-
ment new targeted therapies. As described in Fig. 1, four 
groups were divided to compare each signaling path-
way activity. We selected 18 related signaling pathways, 
including JAK-STAT and interleukin signaling. First, 
we recognized the trend that JAK-STAT and interleu-
kin signaling pathway activity was gradually enhanced 
with higher statistical power during the development of 
more severe CRS (Fig.  2A and B, Additional file  1: Fig. 
S1). In addition, a similar and more obvious trend was 
observed in glycolytic activity (Fig.  2C). We found that 
the expression of most genes involved in glycolytic sign-
aling pathway were positively correlated with PFKFB4 
gene expression (Fig. 2D) including the important regu-
lators of glycolytic process GPI, PGK1, and PKM. Given 
these results, we speculated that PFKFB4 is a driving fac-
tor that plays a vital role in the development of cytokine 
release possibly through regulation of glycolytic pathway 
activity.

PFKFB4 expression and glycolytic pathway activity 
is enhanced in other diseases associated with cytokine 
release
Currently, a considerable number of patients with 
COVID-19 have developed cytokine release syndrome 
and the resulting CRS severity positively correlated 
with the pathogenesis and severity of COVID-19. To 
validate our findings in COVID-19 cohort, we ana-
lyzed three public datasets from the GEO platform. In 
general, PFKFB4 gene expression was significantly up-
regulated in COVID-19 patients compared to healthy 
donors (Fig.  3A). Moreover, its expression was higher 
in patients with severe syndrome compared to patients 
with moderate syndrome (Fig. 3B). In addition, we noted 
that PFKFB4 gene expression in asymptomatic people 
infected with SARS-CoV-2 and in COVID-19 convales-
cent people were stable and at the same level as in healthy 
subjects. While, PFKFB4 expression increased following 
re-infection by SARS-CoV-2 (Fig.  3C). Concerning gly-
colytic pathway activity, the results showed that pathway 
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activity also increased during SARS-CoV-2 infection and 
COVID-19 development (Fig. 3D–F).

Since people with seasonal influenza infections 
and autoimmune diseases can also develop CRS, we 
explored PFKFB4 expression in these diseases. As 
shown in Fig. 3G–I, we found that PFKFB4 expression 
was up-regulated in influenza-infected (H1N1, H3N2, 
Influenza B) individuals in the early stages of infection, 
and decreased in the recovery stage. Among autoim-
mune diseases, we selected systemic lupus erythema-
tosus (SLE) and systemic juvenile idiopathic arthritis 
(SJIA) for further validation. We found that patients 
with severe or active disease showed higher PFKFB4 
gene expression (Fig.  3J and K). However, glycolytic 
pathway activity showed mixed results. Its activity was 
lower in early stage of influenza-infected patients and 
SLE patients with severe status (Additional file  2: Fig. 
S2A–D), while it was higher in SJIA patients with active 
disease status (Additional file 2: Fig. S2E).

These results provide further validation of our findings 
that PFKFB4 gene and glycolytic pathway play a key role 
in cytokine release.

Up‑regulated PFKFB4 gene and glycolytic activity 
during tumor development
It has been widely accepted that various cytokines are 
released into the  tissue microenvironment during the 
tumorigenesis and tumor development process. These 
cytokines may inhibit tumor development but alterna-
tively may contribute to the  chronic inflammation that 
supports tumor growth and has been linked to poor clin-
ical outcomes [36]. In order to investigate whether the 
PFKFB4 gene is also involved in the cytokine-mediated 
inflammatory microenvironment and subsequent metas-
tasis process in tumor tissues, we evaluated the cor-
relation of PFKFB4 expression and tumor pathological 
stages in several types of cancer. First, we used the Tumor 
Immune Estimation Resource (TIMER2.0) database to 
explore the expression of PFKFB4 in several cancers. 

Fig. 1  PFKFB4 gene is gradually up-regulated with the development of cytokine release syndrome in CAR T-cell therapy. A–C Volcano plot of CRS 
grade-related differentially expressed genes between the different groups. Fold Change > 1.5 and p-value < 0.05 were set as screening criteria. 
Genes that have both a significant p-value (lower than 0.05) and a fold change (higher than 1.5) are represented as red dots. Genes that either have 
a significant p-value (lower than 0.05) or a fold change (higher than 1.5) are represented as blue and green dots. Gray dots mean genes neither have 
a significant p-value nor fold change. PFKFB4 gene expression in CD22 CAR T-cell (D) and CD19 CAR T-cell products (E) based on different CRS grade 
group
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We found its expression was significantly up-regulated 
in 18 cancer types (i.e., breast invasive carcinoma, liver 
hepatocellular carcinoma, colon adenocarcinoma, kid-
ney renal clear cell carcinoma, kidney renal papillary cell 

carcinoma) when compared with corresponding normal 
tissues (Fig.  4A). Furthermore, we analyzed the correla-
tions between PFKFB4 expression and pathological stages 
in several tumor types. We selected liver hepatocellular 

Fig. 2  Glycolytic pathway activity is enhanced in groups with higher CRS grades. A–C Relative signaling pathway activity score was calculated 
based on GSVA analysis. JAK-STAT, Interleukin, and glycolysis signaling pathways showed higher activity in the high CRS grade group. The x-axis 
represents different CRS grades. D Correlation between PFKFB4 gene expression and genes involved in glycolysis signaling pathway. Correlation 
coefficient and p-values are listed at the up-left corner. The x-axis represents relative PFKFB4 gene expression. The y-axis shows the expression of 
genes that are involved in the glycolysis pathway

Fig. 3  PFKFB4 expression and glycolytic pathway activity is also enhanced in some human diseases associated with cytokine release syndrome. 
PFKFB4 gene expression profile in COVID-19 patients vs healthy donor (A), COVID-19 patients with severe symptoms vs moderate symptoms (B), 
healthy donors vs asymptomatic vs recovered vs re-infected COVID-19 patients (C). Glycolytic activity score in COVID-19 patients vs healthy donors 
(D), COVID-19 patients with severe symptoms vs moderate symptoms (E), healthy donors vs asymptomatic vs recovered vs re-infection COVID-19 
patients (F). PFKFB4 gene expression in people infected with influenza based on early and late stage infection (G–I). PFKFB4 gene expression in 
different stages of SLE (J) and SJIA (K). HD healthy donor, As asymptomatic, SLE systemic lupus erythematosus, SJIA systemic juvenile idiopathic 
arthritis

(See figure on next page.)
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Fig. 3  (See legend on previous page.)
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carcinoma and renal cancer, which includes kidney chro-
mophobe, kidney renal clear cell carcinoma, and kidney 
renal papillary cell carcinoma. We found PFKFB4 gene 
was significantly up-regulated in patients with higher 
pathological stage (Fig.  4B and C) and shorter survival 
time (Additional file  3: Fig. S3A and B). Furthermore, 
the activity of the glycolytic pathway was also enhanced 
in patients with late pathological stage (Fig.  4D and E). 
Moreover, we found PFKFB4 gene expression showed a 
strong correlation with genes involved in glycolytic path-
way in all cancers studied (Additional file  3: Fig. S3C). 
These data indicate that the PFKFB4 gene regulates glyc-
olytic activity and can promote tumor metastatic process 
possibly through the induction of a pro-inflammatory 
microenvironment in tumor tissue by mediating cytokine 
release.

PFKFB4 induces a pro‑inflammatory microenvironment 
in cancer
To further validate PFKFB4 expression and its role in pro-
inflammatory microenvironment in tumors, we analyzed 
PFKFB4 expression in assorted immune cell infiltration 

in several algorithms including CIBERSORT, XCELL, 
EPIC, QUANTISEQ and TIDE. Interestingly, PFKFB4 
was significantly negatively correlated with CD8 + T cells 
(include naïve, central memory, and effector memory), 
hematopoietic stem cells, and M2 macrophage (anti-
inflammatory subsets of macrophage) in most cancer 
types (Fig.  5A), but it was positively related with neu-
trophils, cancer-associated fibroblasts (CAF), myeloid-
derived suppressor cells (MDSCs), and M0 macrophage 
in various cancer types (Fig. 5B). These data strongly sug-
gested that PFKFB4 induces a pro-inflammatory micro-
environment via mediating cytokine release to recruit 
neutrophils, CAF, MDSCs and also suppresses CD8 + T 
cells and M2 macrophages in tumor microenvironment.

Discussion
Currently, the primary challenge in the management 
of CRS is to identify more effective targets for specific 
therapeutic intervention while maintaining the thera-
peutic efficacy of CAR T-cells. Our study explored the 
genomic determinants which trigger cytokine release in 
immunotherapy and several other diseases. We found 

Fig. 4  The relationship between the level of PFKFB4 expression and clinicopathological stages in cancer. A Overview of PFKFB4 gene expression 
in all cancers. Red represents tumor tissue, blue represent adjacent normal tissue. B, C Upregulation of the PFKFB4 gene in higher pathological 
stage of liver hepatocellular carcinoma and renal cancer. D, E Enhanced activity of glycolysis in different pathological stage in liver hepatocellular 
carcinoma and renal cancer. The x-axis represents different pathological stages of the tumors
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that PFKFB4 gene and glycolytic pathway activity were 
gradually upregulated with the development of increas-
ing severity of cytokine release syndrome in CAR T-cell 
therapy. Moreover, these results were further validated 
in cohorts of people with COVID-19, influenza, autoim-
mune diseases and in tumor tissues although there was 
no change in glycolytic activity in flu infection and sys-
temic lupus erythematosus (SLE).

Cytokines are regulators of the immune response to 
infection and inflammation. They function as a double-
edged sword in that cytokines commonly alert immune 
cells to the presence of infections and tissue damage [37], 
however persistent cytokine production can, in turn, 

stimulate immune cells to secrete more cytokines that 
work in both autocrine and paracrine manners leading 
to a chronic inflammation state and even caused severe 
cytokine release syndrome when the immune system is 
hyperactivated. Therefore, it is important to find trigger 
factors to control cytokine release and maintain normal 
levels. To date, cytokine release has been increasingly 
explored in different fields, such as viral infection, auto-
immune diseases, and immunotherapy. Most studies 
report that the JAK-STAT, NF-κB, and type I IFN signal-
ing pathways are the main factors mediating the cytokine 
release process [38–40]. FDA-approved drugs targeting 
these pathways have already been used for the treatment 

Fig. 5  Association between PFKFB4 expression and tumor immunity several types of cancer. A Correlations of PFKFB4 gene expression with 
CD8 + T cells, hematological stem cells, and M2 macrophages. B Correlations of PFKFB4 gene expression with neutrophil, cancer associated 
fibroblast, myeloid-derived suppressor cells, and M0 macrophages. Purple and red colors represent negative and positive correlations
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in patients with cytokine release syndrome in CAR T-cell 
therapy, SARS-CoV-2 infection, and autoimmune dis-
eases [39, 41–43]. In this study, we also found the activ-
ity of JAK-STAT signaling pathway was enhanced when 
patients developed higher grades of CRS, but not that of 
NF-κB and type I IFN signaling pathways. Furthermore, 
we found that the glycolytic activity was more notice-
ably upregulated than the other signaling pathways. Thus, 
drugs targeting glycolytic pathway may be beneficial for 
patients who have less/no response to anti-IL6 antibody, 
JAK inhibitors. Moreover, for the clinical management of 
cytokine release syndrome a combination of drugs tar-
geting different pathways might be more effective than 
single-treatment approaches.

To date, most studies of PFKFB4 have focused on its 
increased expression in cancer tissues and its role in car-
cinogenesis [44–46], there is little knowledge about the 
biological mechanism on its upregulation under afore-
mentioned situations. This gene encodes a bifunctional 
enzyme with kinase/phosphatase activity that is the most 
potent regulator of the PFK-1 gene, which is a key rate-
limiting enzyme of glycolysis [47]. It has been reported 
that immune cells will adapt their metabolism upon 
infection and become highly glycolytic. For example, the 
SARS-CoV-2 infection triggers mitochondrial ROS pro-
duction, which induces stabilization of hypoxia-inducible 
factor-1α (HIF-1α) and consequently promotes glyco-
lysis [48]. As an enzyme involved in glycolysis, PFKFB4 
gene may also change its expression level to deal with the 
situation. Our study is the first to report that the expres-
sion of  PFKFB4 increases under these conditions and 
is a driving force in triggering cytokine release through 
the  involvement of   glycolytic pathway activity in CAR 
T-cells, viral infections and autoimmune diseases. Inter-
estingly, PFKFB4 may even regulate the infiltration 
of immune cells in tumor tissues, which suggests that 
PFKFB4 may also be a promising target for the regula-
tion of tumor immunity in some types of cancer. Given 
the apparent role of PFKFB4 in cytokine release, further 
studies aimed at developing effective drugs target on 
PFKFB4 and glycolysis appear particularly promising.

Unlike transcription factors, which can regulate gene 
expression through direct binding to gene promot-
ers, PFKFB4 is an enzyme with kinase and phosphatase 
activity. The key point is to find the transcription factor 
to bridge the PFKFB4 enzyme and cytokine gene expres-
sion. One study suggests that PFKFB4 ectopic expression 
elevates lactate levels (synthesized from pyruvate, which 
is the final product of glycolysis) in the culture medium 
which initiates NF-κB activation and nuclear transloca-
tion. NF-κB within the nucleus binds to the IL-6 pro-
moter region and then enhances IL-6 expression [49]. 

Another study found   that  PFKFB4 could interact with 
ICMT, a post-translational modifier of RAS, and activate 
RAS/AKT signaling pathway [50]. Several reports have 
implicated RAS in the ability to promote the production 
of inflammatory cytokines and chemokines (IL-6, IL-8, 
GM-CSF et al.) [51–54]. These results suggest that  inves-
tigations concerning how PFKFB4 engages in cytokine 
release in CAR T-cell, primary T cells, and assorted 
immune cells should be conducted in the future.

Our study has some limitations. First, we only evalu-
ated 43 pre-infusion CD22 CAR T-cell products. Ana-
lyzing more samples will not only enhance the statistical 
power, but will  also increase the possibility of finding 
more candidate driving genes. For this reason we used 
public datasets to validate our findings. However, 
the use of these public datasets brings along another 
limitation,since these public  datasets and related back-
ground information included in them were out of our 
control. This limitation makes it difficult to explain some 
results from these datasets. For example, we saw that the 
PFKFB4 gene was upregulated in SLE patients with no 
change in glycolytic activity, but we could not provide 
a reasonable explanation for this finding since   we had 
no access to additional  clinical information concern-
ing  these SLE patients. Another limitation is  that we 
did not obtain  information about the pro-inflammatory 
and anti-inflammatory cytokines levels in each patients’ 
serum after infusion of the CD22 CAR T-cell products or 
in the patients with the other diseases. This information 
would have helped to better understand which cytokines 
were mediated by PFKFB4 gene.

In summary, our results strongly indicate that PFKFB4 
is a promising target for controlling cytokine release in 
immunotherapy and other cytokine release related dis-
eases. More effort should be focused on the identifica-
tion and development of drugs that target PFKFB4 and 
glycolysis.
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Additional file 1: Figure S1. Signaling pathway activity in different CRS 
grade groups. Associated signaling pathway score was calculated based 
on GSVA analysis. No obvious trend or statistical significance in these path-
ways. x-axis represent different CRS grade.

Additional file 2: Figure S2. Glycolytic activity in influenza infection 
and autoimmune disease. Glycolytic activity score in influenza infected 
diseases based on early and late stages (A–C). Glycolytic activity score in 
different stages of SLE (D) and SJIA (E).

Additional file 3: Figure S3. Association between PFKFB4 expression and 
survival time in cancer. Correlation between PFKFB4 expression and over-
all survival time in patients with liver hepatocellular carcinoma (A) and 
renal cancer (B). The x-axis the represents overall survival time. The y-axis 
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represents survival probability. The different colors indicate the expression 
level of PFKFB4. (C). Expression correlations between PFKFB4 and genes 
involved in the glycolytic pathway.

Additional file 4: Table S1. Differentially expressed genes based on dif-
ferent CRS grade group.
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