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Regular exercise is important for reducing type 2 diabetes (T2D) and/or cardiovascular disease (CVD) risk. However, only about
40–50% of this CVD risk reduction is accounted for by adiposity, hyperglycemia, hypertension, and dyslipidemia. Herein, we
present the novel hypothesis that extracellular vesicles (EVs) are candidate biomarkers that may relate to impaired endothelial
function and insulin resistance independent of obesity risk factors. EVs are small membrane-bound particles that are generated
by cells following stimulation, stress, or activation. They carry markers of their parent cell and are thought to be potent
bioactivators and communicators. We discuss the underlying physiology of specific cell type EVs, as well as examine how acute
and chronic exercise interventions impact EV count and phenotype. We also propose that current gaps in the field are in part
related to use of different detection techniques and the lack of standardized measurements of EV affecting the pre- and
postanalytical phase. Ultimately, improving the understanding of how EVs impact cardiometabolic health and their function
will lead to improved approaches for enhancing diagnostic options as well as designing exercise interventions that treat and/or
prevent T2D and CVD.

1. Introduction

Nearly 33% of all deaths globally each year are attributed to
cardiovascular disease (CVD) [1]. In fact, CVD mortality
has increased from 12.59 to 17.82 million between 1990
and 2015 [2]. Individuals with type 2 diabetes (T2D) are 2-
3 times more likely to have CVD than their healthy counter-
parts, indicating that abnormalities in glucose metabolism
share a CVD pathogenic root [3]. However, glucose alone
may not be a primary driver of CVD in people with T2D
given recent interventions focused on lowering glucose alone
have failed to significantly lower CVD risk and mortality [4].
As such, it is not surprising that elevated blood pressure and
dyslipidemia in people with hyperglycemia are considered
critical drivers of CVD that are linked together by insulin
resistance [5]. Insulin resistance can be defined as the
reduced responsiveness of skeletal muscle, liver, adipose,

and vasculature to insulin for the maintenance of nutrient
delivery and utilization. Although the exact cause of insulin
resistance is unclear, endothelial dysfunction is a leading can-
didate for promoting these nutrient disturbances [6]. Endo-
thelial function is the ability of the endothelium to respond
to both metabolic mediators (e.g., insulin and nitric oxide)
and/or shear stress that enhance blood flow. Recently, the
American Heart Association suggested that current bio-
markers (e.g., blood pressure and lipids) do not account for
the majority of adverse outcomes and may account for only
40–50% of CVD risk [7]. Thus, there is an urgent need to
identify new treatment targets for T2D and CVD that medi-
ate health and well-being.

Extracellular vesicles (EVs) have emerged as novel bio-
markers of T2D and CVD [8, 9]. EVs belong to a heteroge-
neous population of vesicles summarized with the generic
term “Extracellular Vesicles” (EVs). Interestingly, most of
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the studies analyzing EVs in metabolic diseases have focused
on larger EVs (>100–1000 nm) (Tables 1 and 2, resp.), called
microparticles/microvesicles, generated by the low centrifu-
gation speed of up to 20,000Gs, but our own data [10] and
that of others [11–13] indicate that we also see smaller EVs
(<100nm, called exosomes) in these EV preps. As these
studies have likely analyzed a mix of larger and smaller EVs
of different densities, we will only use the term EV. EVs are
unique biomarkers as they are also believed to carry and trans-
fer proteins, lipids, and nucleic acids, and they facilitate com-
munication between cells. How EVs regulate vascular health
remains to be fully determined, but obesity-related insulin
resistancemight be a potential reason through oxidative stress
and inflammatory-related mechanisms [14]. Interestingly,
physical inactivity also increases EV levels in association with
worsening of insulin resistance and endothelial dysfunction,
suggesting that muscle contraction alters disease risk in an
EV-mediatedmanner [15]. However, there is limited research
regarding the effects of physical activity and/or exercise on
EVs in healthy and disease populations. In particular, we pro-
pose that EVs may be a novel mediator of T2D and CVD risk.
First, we highlight the biogenesis of EVs and the purported
mechanism relating EV to insulin resistance and endothelial
function. Next, we examine the gaps in knowledge regarding
the effectiveness of acute and chronic exercise onEVs.We also
discuss the mechanistic role of cell-specific EVs related to
leukocytes, platelets, and the endothelium as mediators of
cardiometabolic risk. Lastly, we analyze how current EV
methodologies could play a role in discrepancies seen across
exercise studies and discuss new methodology to advance
understanding of EVs and exosomes that could improve
diagnostic and treatment options for T2D and CVD.

2. Extracellular Vesicle Biogenesis

First described as merely “cell dust” by Wolf in 1967, EVs are
now recognized as cell bioactivators and communicators of
cardiometabolic health [16]. Smaller EVs (<100nm, also called
exosomes) are thought to derive from multivesicular bodies
inside the cells that are then secreted into different body fluids,
whereas larger EVs (>100–100nm, also called microparticles/
microvesicles) are believed to be shed from cells into body
fluids/tissue upon stimulation or activation. These larger EVs
are likely the product of outward membrane budding through
cytoskeletal rearrangement and a loss of calcium-dependent
membrane phospholipid asymmetry [17]. These vesicles con-
sist of membrane proteins and cytosolic material from the cell
they originate from. Indeed, EVs are derived from cells in cir-
culation (i.e., endothelial, platelet, and leukocyte), erythrocytes
[18], as well as progenitor cell populations [19] (Table 3). Addi-
tionally, EVs are found in many other body fluids besides
blood, including urine [20], which increase the potential for
clinical collection sites. EVs are released during conditions of
stress that initiate cell activation and/or apoptosis [21]. In par-
ticular, proinflammatory stimuli (e.g., oxidative stress/cyto-
kines), bioactive lipids [22], and hyperglycemia [23] are
considered key stimuli that impact EV release, phenotype,
and function. In particular, hyperglycemia increases
endothelium-derived EV formation, size, and reduces surface

charge that collectively prompt greater procoagulant activity
[24]. Moreover, high glucose conditions increase NADPH oxi-
dase activity in endothelial EVs that work to amplify the effects
of oxidative stress-mediated inflammation on the endothelium
[23] that decrease endothelial nitric oxide synthase (eNOS)
[25], thereby potentially impairing vascular function and rais-
ing CVD risk. There is also work suggesting that EVs may
not only release inflammatory cytokines [26] but also act as
deliverers of bioactive lipids [22], protein, and genetic material
[10] between cells. Taken together, EVs represent a potentially
novel paradigm in cell-to-cell communications between vari-
ous organs important for T2D and CVD. For a comprehensive
discussion of biogenesis of EVs, we will refer the reader to other
review papers [27].

3. Extracellular Vesicles in The Pathogenesis of
T2D and CVD

EVs are composed of parental proteins, nucleic acids, and
cytoplasm based on the stimuli [10]. This is physiologically
important because carrying markers of the parent cell allows
for specific subpopulation identification (e.g., endothelium-
or leukocyte-derived) [10] that can influence crosstalk
between tissues and cells [28]. Indeed, elevated endothelial
EVs are thought to reflect vascular injury, whereas increased
leukocyte and platelet EVs signify proinflammation and
coagulation, respectively. This notion is consistent with liter-
ature reporting that different subtypes of EVs are elevated in
people with prediabetes [29], T2D, and CVD [8, 9] as well as
hypertension [30], chronic kidney disease [31], and heart
failure [32]. Even obesity, independent of comorbidities, pre-
sents with elevated platelet EV levels [33] in relation to
reduced fibrinolytic ability. Subsequently, these observations

Table 3: Most commonly used extracellular vesicles.

EV origin Surface markers

Endothelium

CD31 + /CD41 − (PECAM + /ITGA2B − )
CD31+/CD42− (PECAM+/GPIb−)

CD31 (PECAM (platelet cell adhesion
molecule))

CD144 (VE cadherin (vascular endothelial
cadherin))

CD146 (MCAM (melanoma cell adhesion
molecule))

CD105 (endoglin)
CD106 (VCAM (vascular cell adhesion molecule))

CD62E (E-selectin (endothelial-selectin))

Platelet
CD41 (ITGA2B (integrin alpha 2b))

CD42 (GPIb (glycoprotein Ib))
CD31 (PECAM (platelet cell adhesion molecule))

Leukocyte

CD45 (PTPRC (protein tyrosine phosphate
receptor type C))

CD11b (ITGAM (integrin alpha M))
CD14 (coreceptor of lipopolysaccharide)

CD16 (on surface of neutrophils, monocytes, and
macrophages)

CD62L (L-selectin (leukocyte selectin))

Red blood cell CD235 (glycophorin A)
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support that EVs likely play a key physiologic role above and
beyond a biomarker.

Circulating EVs are believed to play an important physi-
ologic role in vascular physiology [34] (Figure 1(a)). Werner
et al. reported that elevated endothelial EVs (CD31+/
Annexin V+) are correlated with reduced endothelium-
dependent vasorelaxation [35]. This is consistent with others
reporting that elevations in these same endothelial EVs are
related to reduced flow-mediated dilation as well as increased
pulse wave velocity and carotid intima-media thickness
[36, 37]. Together, these findings suggest that higher levels
of EVs relate to poor blood flow and arterial stiffness.

There are several putative mechanisms that may explain
how EVs promote dysregulation of blood flow, althoughmost
data exists from in vitro experiments andmore humanwork is
needed. EVs are thought to directly produce reactive oxygen
species (ROS). Endothelial EVs (CD144, Annexin V+ve)
increase production of superoxide anion and hydrogen perox-
ide in cultured endothelial cells through NADPH oxidase and
mitochondria [38, 39], although others suggest that xanthine
oxidase may contribute in endothelial (CD144-PE) [40], lym-
phocytic (CD4, CD3+, CD8, CD11a, Fas, and FasL) [41], and
monocyte-derived EVs [42]. Additionally, EVs are hypothe-
sized to promote in vivo inflammation through stimulation
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Figure 1: Working hypothesis by which extracellular vesicles (EVs) interact with exercise to influence vascular function and insulin
sensitivity. Reactive oxygen species (ROS) are generated by EVs in response to bioactive lipids, glucose, and inflammatory cytokines and
act as important cellular regulators in cell health. In addition, EVs may bind to cells and interfere with receptor-related mechanisms
and/or release microRNA (miRNA) to influence cell activity. Lastly, EVs may release inflammatory cytokines and impact cell NFκB
activity, which influences cell vascular function. Exercise (b) decreases circulatory lipids, glucose, and cytokines, thereby improving EV
levels and function. We hypothesize herein that EVs not only serve as a biomarker of type 2 diabetes and cardiovascular disease but also
regulate vascular function independent of traditional obesity-related risk factors. Future work should consider studying the interaction of
EV and exercise doses in order to identify optimal treatment plans for preventing type 2 diabetes and cardiovascular disease.
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of proinflammatory cytokines and the recruitment of inflam-
matory cells [26]. In in vitro experiments, leukocyte EVs
(CD14+) promote the release of IL-6 and IL-8 in cultured endo-
thelial cells [43]. In addition, T-cell EVs promote TNF-α and
IL-1b by monocytes [44] and promote the interaction and
adhesion of leukocytes to endothelial cells [22]. These later find-
ings are consistent with work byMastronardi et al. [45] demon-
strating that injection of EVs from blood of patients with sepsis
into mice promotes increased expression of iNOS, COX-2, and
NFκB in the heart and lung, thereby supporting a direct role of
EVs at producing inflammation. Lastly, circulating EVs express
the functionally active eNOS protein [25]. This is clinically ger-
mane as patients with endothelial dysfunction have EVs with
reduced expression and release of nitric oxide [25].

Another possible mechanism by which EVs contribute to
T2D and CVD relates to the interaction and transfer of EV
contents to the cell (Figure 1(a)). EVs have been proposed to
physically alter cell target receptors that modify signal trans-
mission. For example, blocking EGF receptors in endothelial
cells inhibits EV-mediated ROS production and inflammation
[38]. Additionally, other work has suggested that EVs from
obese subjects reduce insulin-stimulated glucose uptake [46]
and macrophage-derived EVs (M0 THP-1) interfere with
GLUT-4 translocation in human adipocytes by decreasing p-
Akt, thereby inducing insulin resistance [47]. The exact cause
of this insulin resistance remains to be elucidated, but activa-
tion of NFκB was noted, suggesting that inflammation may
play a role. Indeed, it is also possible that miRNA transcripts
from EVs also play an important role in communicating sig-
nals to local and systemic tissues for the alteration of cell activ-
ity [48]. For instance, Rautou et al. [18] demonstrated that EVs
(CD31+) derived from apoptotic plaques transferred ICAM-1
to endothelial cells, suggesting that EVs play an important
inflammatory response mechanism in atherosclerosis. In addi-
tion to ICAM-1, other studies have reported adipocyte-
derived EVs (CD14+) to interfere with insulin signaling in
both the liver [49] and skeletal muscle [50] via transfer of adi-
pokine content, thereby inducing insulin resistance [46]. How-
ever, not all studies support the observation that EVs fuse and
transfer content to cells [51], as there are different ways in
which EVs promote cell-to-cell communication or even EV
uptake [52]. In either case, EVs appear tomediate angiogenesis
and induce endothelial repair [34, 53–55] by at least partially
[56] vascular endothelial growth factor-A [57] or eNOS [25].
In this way, EVs may promote increased angiogenesis and
blood flow via cargo such as eNOS-induced nitric oxide. In
turn, this compensatory response of increased blood flow
may allow nutrient delivery to tissue, thereby contributing to
insulin-mediated GLUT-4 translocation. Given the literature
linking oxidative stress and inflammation to the pathogenesis
of insulin resistance and endothelial dysfunction [58], the
identification of how EVs may be modified or targeted for
metabolic health warrants attention.

4. Effects of Acute Exercise Bouts on
Extracellular Vesicles

A majority of the chronic exercise training induced an effect
on insulin resistance and endothelial function is considered

to be the result of the last bout of exercise [59]. Subsequently,
understanding the acute exercise effect on EVs provides
insight independent of cardiorespiratory fitness adaptation
and weight/fat loss. However, to date there are limited studies
examining the effects of acute aerobic [60, 61] or resistance
exercise [62] on EVs (Table 1). For instance, Mobius-
Winkler et al. tested the effect of a 4 hr cycling protocol at
70% of the anaerobic threshold in 18 young, lean, healthy
males [63] and found no change in endothelial EVs
(CD42b−, CD42b−/CD62E+) in the immediate postexercise
period, despite increases in cytokine IL-6. It was speculated
that the lack of exercise effect might have been due to the
population studied (healthy versus diseased) or the low to
moderate intensity exercise prescribed. We add to this by
speculating that the lack of EV differences following exercise
could also be related to technical differences of EV detection.
Blood was collected and EV pellet was enriched from
platelet-poor plasma using conventional flow cytometry.
Smaller EVs (e.g., <500nm) might not have also been cap-
tured with this approach. In addition, targeted phenotyping
was limited to detection of the surface marker for CD62E
and CD42. CD62E is found on activated endothelium, but
other endothelial markers might reflect better the endothelial
changes during exercise. Nonetheless, these findings are con-
sistent with Guiraud et al. who showed that there was no
change in endothelial EVs (CD31+, CD62E+, and CD42b−)
or platelet EVs (CD42b+) in 19 male coronary heart disease
patients when measured up to 72 hr following either high-
intensity interval or moderate-intensity cycling exercise
[60]. In contrast, Chanda et al. reported that a maximal bout
of exercise (defined as a VO2max test) elicited an approxi-
mate 40% increase in platelet (CD41a) EVs in healthy adults
[61]. While these later findings suggest that exercise intensity
raises EV, it should be noted that maximal exercise would be
considered a stressful perturbation to the system and it is
known that high-intensity exercise raises oxidative stress
and inflammation in the immediate postexercise period,
thereby conferring a stimulus for metabolic adaptation [64].
Indeed, in vitro experiments by Wilhelm et al. demonstrate
that EVs generated after intense exercise in healthy young
men enhanced endothelial proliferation, migration, and
tubule formation compared with EV derived from the rest
[65]. Interestingly, platelet EVs (CD41+) from the same
patients were elevated during 1 hr of high (67% VO2max),
but not moderate (46% VO2max), intensity exercise. These
later findings are of potential significance as they suggest that
exercise intensity promotes angiogenesis for improved blood
flow and nutrient delivery. Whether EVs from people with
T2D or CVD respond to exercise comparably to lean healthy
people remains to be seen. This is particularly of interest
given recent work highlighting that single bouts of exercise
increase EVs (ACTN4, ADAM10, ALIX, ANAX11, and
CD81) andmiRNA to potentially coordinate communication
of nutrient homeostasis between muscle, endothelium, as
well as liver [66, 67].

Another possible reason explaining why acute exercise
has yielded equivocal EV results may relate to sex differences.
Toth et al. reported elevated total Annexin V EV, platelet
EV (CD63, P-selectin-exposing), and endothelial EV (CD62,
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E-selectin-exposing) in 27 young healthy women compared
to men while at rest. It was reported that elevated EVs
(Annexin V-binding EV, CD61, P-selectin-exposing EV,
and E-selectin-exposing EV) in women were related to the
menstrual luteal cycle [68]. However, no significant sex- or
menstrual cycle-dependent differences were observed in the
endothelial EV (CD144+). Lansford et al. [69] recently tested
the effect of an acute bout of exercise (60–75% VO2max)
on endothelial EVs (CD62E+, CD31+/CD42b−, CD34+) in
recreationally active men and women and demonstrated that
endothelial EV (CD62E+) increased by 107% in men but not
in women. Conversely, women displayed a 253% elevation in
mononuclear EVs (CD34+). Based on previous research
[70, 71], these results suggest that increased levels may prime
CD34+ peripheral blood mononuclear cells for paracrine
angiogenic effects in females. Interestingly, the endothelial
EVs (CD31+/CD42b−) remained unchanged following exer-
cise in either sex. These results suggest that only certain phe-
notypes of endothelial EVs (CD62E+) or other not yet tested
EV phenotypes may be affected by sex and exercise. In
another study, Durrer et al. examined the effects of high-
intensity continuous versus interval exercise on EVs in
young, overweight inactive adults and reported that both
exercises lowered EVs in men (n = 6), but endothelial EV
counts (CD31+/CD42b−) were unaffected in females (n = 7)
[72]. However, high-intensity continuous exercise increased
endothelial EVs (CD62E+) in females. Although this was a
relatively small sample size, the data suggest that sex may
be an important factor explaining differential EV responses
to exercise. Further work is needed to elucidate the mecha-
nism by which men and women differ in EV profiles in order
to individualize exercise to treat and/or prevent disease.

It reasons that dietary intake may also influence EV
responses postexercise since circulating bioactive lipids are
considered a stimulus for EV biogenesis. In fact, high-fat
meals induce endothelial dysfunction in healthy and T2D
individuals [73]. Although Jenkins et al. reported that a
high-fat meal had no independent effect on endothelial EVs,
acute exercise at 70% VO2max lowered endothelial EVs
(CD62E+ and CD31+/CD42b−) by 55% and 30%, respectively
(both P < 0 05) compared to a sedentary control in healthy,
recreationally active men [74]. Interestingly, the lowering of
endothelial EVs (CD62E+ and CD31+/CD42b−) postexercise
was associated with blunted ROS production during post-
prandial lipemia. This finding supports the notion that EVs
may induce vascular dysfunction through an oxidative
stress-mediated mechanism. The modulation of oxidative
stress postexercise may also be clinically relevant since it
relates to fasting and postprandial endothelial dysfunction
in obese individuals with prediabetes [75]. In addition, a low-
ering of endothelial EVs (CD31+, CD31+/CD42b−), which
may be indicative of endothelial activation and apoptosis, sug-
gests that exercise confers cardiovascular protection through
modulation of the EV phenotype. However, Harrison et al.
reported that high-intensity exercise performed at ~70%
VO2max for 90min had no effect on high-fat-fed-induced ele-
vations in endothelial EVs (CD31+/CD42b−) in recreationally
active youngmen [76]. This observation is in stark contrast to
Jenkins et al. [74]. Despite both studies prescribing exercise at

70% VO2max, Harrison et al. included ten 1min sprints. This
subtle difference in exercise protocols may be of relevance
since high-intensity exercise could have promoted greater
vascular injury and prohibited the lowering of EVs. Addition-
ally, differences in EV preparation and analysis, such as cen-
trifugation at 1500g for 20min at room temperature [74] as
opposed to 1600g for 15min at 4°C [76], may account for dif-
ferences between the two studies. In either case, additional
work is required to determine if exercise restores diet-
induced EV levels to optimize exercise prescription for disease
prevention in men and women given that postprandial
metabolism is a strong predictor of CVD [77].

5. Effects of Chronic Exercise Training on
Extracellular Vesicles

Exercise training improves whole body insulin sensitivity [78,
79] and glucose tolerance [80, 81] in adults with prediabetes
and T2D. Additionally, chronic exercise enhances endothelial
function in healthy individuals [82] and those at risk for [83]
or with CVD [84, 85]. Therefore, it would be expected that
long-term exercise training would also have favorable effects
on EV phenotype and count. Bruyndonckx et al. recently dem-
onstrated that 10 months of exercise training significantly
decreased endothelial EVs (CD31+/CD42b−) as measured by
conventional flow cytometry in 33 overweight children [86].
In addition to decreasing endothelial EVs, exercise training sig-
nificantly improved microvascular function (measured via
pulse amplitude tonometry), increased circulating adiponectin,
and reduced body fat and high-sensitivity C-reactive protein.
These findings are consistent with other work reporting that
12–24 weeks of aerobic exercise with weight loss significantly
lowered endothelial EVs (CD31+/CD41a; CD62E+) in
middle-aged men with erectile dysfunction [87] or prehyper-
tensive men and women [88], as well as in African American
women [89, 90] (Table 2). Interestingly, changes in endothelial
EVs (CD62E+), IL-6, and IL-10 accounted for nearly 11%of the
improvements in flow-mediated dilation following exercise
training in the later studies [89, 90].

Although exercise training appears to favorably lower
endothelial EVs (CD31+/CD41a; CD62E+), not all individ-
uals appear to respond the same [91]. Kretzschmar et al.
[89] demonstrated that endothelial EVs (CD31+/CD42b)
only decreased in premenopausal compared with postmeno-
pausal women following exercise training. It is not clear why
postmenopausal women did not respond to exercise, but it is
consistent with work suggesting some individuals are “exer-
cise resistant” [75]. Another plausible reason may relate to
the notion that estrogen provides protective heart effects
and lowers CVD risk in women [93]. Notwithstanding these
hormonal differences across the lifespan in women or com-
pared with men, fitness may be an additional determinant
of EV improvement posttraining. Indeed, recent work by
our group [94], following minimal requirements of EV detec-
tion and functional studies established by the International
Society of Extracellular Vesicles [12], as well as advanced
imaging flow cytometry (see below for details), showed that
EVs correlate with aerobic fitness and other cardiometabolic
health factors in obese adults, highlighting again the potential
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role of fitness in modulating EVs. Furthermore, Van Crae-
nenbroeck et al. reported that preintervention endothelial
EVs (CD31+/CD42b) count significantly predicted improve-
ments in VO2max despite no effect of a 12-week training pro-
gram on these EVs in 200 individuals with coronary artery
disease [95]. Together, these later findings suggest that EV
may modulate training responses through a yet to be defined
mechanism.

As exercise training promotes weight loss and decreases
adipose-derived inflammation [96, 97], it is reasonable to
expect that habitual exercise improves EVs originating from
platelets and leukocytes. Murakami et al. reported that plate-
let EVs (CD41+) were significantly correlated with a subcuta-
neous fat area in 49 obese, nondiabetic subjects following 12
weeks of a restricted caloric diet or a restricted caloric diet plus
exercise [33]. Although EVs did not correlate with visceral fat,
which is considered a chief site for inflammatory production,
this finding is reasonable since subcutaneous tissue is a pri-
mary supplier of free fatty acids, and elevated free fatty acids
may act as a bioactive lipid that stimulates coagulation and
platelet recruitment [98]. Whether exercise or exercise plus
diet alter free fatty acid mediated EV levels or function waits
to be tested. In either case, in the only studies to investigate
exercise on leukocyte EVs (CD16+, CD14+), it was shown that
training decreases neutrophil- and monocyte-derived EVs
(CD16+, CD14+). This observation highlights that exercise
has multicell EV effects that may favor improvement in car-
diometabolic health [99, 100].

6. Extracellular Vesicle Analysis and Gaps

To date, most exercise studies lack sensitivity to optimally
enrich and phenotype EVs. A leading challenge in doing
so is the lack of consensus on the nomenclature of EVs as
well as the precise detection method or sample preparation
(i.e., the preanalytical phase) [12, 101]. In fact, the preanalyti-
cal phase includes several important steps that could impact
the clarity and precision of results, including but not limited
to blood collection technique (e.g., needle size or blood draw
rate that impacts shear stress), sample centrifugation, timing
of sample processing, sample freezing, thawing, and storage
[102]. Generally speaking, EVs collected from fresh blood is
considered more accurate and reflective true in vivo EV levels
when compared with frozen samples [101, 103], but plasma
frozen for only 24 hrmay yield comparable counts when com-
pared to fresh sample [104]. In either case, it is suggested that
samples should be analyzed after the same “freezing period”
[105] to enhance accuracy of sample analysis. Centrifugation
speed crucially affects the type of EV population isolated.
Most of the studies analyzing EVs in exercise interventions
have utilized low centrifugation speeds (Tables 1 and 2, resp.).
As different speeds are used, they have likely isolated different
EV populations. In addition, they might have enriched for
larger EVs and therefore used the term microparticles.
However, this topic is still in debate and our work [10, 94]
and that of others [11–13] indicates that we also see
smaller EVs (e.g., exosomes, <100nm) in these preparations,
thereby making it difficult to distinguish between various
types of EVs [11].

Conventional flow cytometry is the most commonly used
technique for phenotyping and enumeration of EVs [106].
However, many older flow cytometer models limit the detec-
tion of smaller EVs, thereby contributing to potential gaps in
our understanding of all subtypes of EVs [10]. Indeed, recent
evidence suggests that while >80% of EVs are <500 nm, most
conventional flow cytometers have a detection threshold
greater than 500 nm, suggesting that a vast majority of EVs
may not be quantified [107] with this technique. To address
this discrepancy, an alternative approach has been devel-
oped, combining flow cytometry with imaging (called imag-
ing flow cytometry). Erdbrügger et al. found that by adding
imaging to flow cytometry, EVs can be clearly differentiated
from the beads and cells, as well as debris. It also provides
the advantage of confirming the presence of these vesicles
based not only on fluorescence but also on scatter and mor-
phology as well [108]. By detection of EV fluorescence only,
even smaller EVs can be detected. The detection threshold
is likely down to 100–200 nm. To date though, no prospec-
tive exercise research exists utilizing this approach to assess
EV phenotypes. As interest in the role of EVs as mediators
and markers of disease continues to grow, implementation
of standardized EV approaches will be needed to elucidate
the exact role of EVs in chronic disease. One approach to
close this method gap is that future studies consider using
established guidelines by the EV-TRACK Consortium to
improve transparency in reporting EV research [106] and
follow minimal experimental requirements for definition of
EVs and their functions, as published by the International
Society for Extracellular Vesicles [12]. Finally, implementa-
tion of these minimal experimental requirements described
[12] is crucial in moving forward with functional studies
combined with content analysis (genetic, proteomic, and
metabolomics) in order to better advance our understand-
ing preventing/treating chronic disease in relation to EVs.

7. Analysis of Smaller Extracellular Vesicles

Most of the studies discussed so far have used low centrifuga-
tion speeds to enrich for EVs, but likely analyzed a mix of
large and smaller vesicles in their preparations. A few studies
have focused on use of high centrifugation speed of
100,000G to enrich for smaller EVs called exosomes. It is
important to study all subtypes of EVs given that they play
roles in immune modulation [109, 110], activating tissue
repair [111], and angiogenesis as the following studies dem-
onstrate. Interestingly, Fruhbeis et al. was one of them to
report that cycling exercise increased smaller EVs (called
exosomes, positive for Flot1, Hsp/Hsc70, and IntαIIb) to a
greater extent when compared to treadmill exercise, but the
rise in these smaller EVs (exosomes) remained elevated for
a longer period of time into recovery with treadmill exercise
[112]. The reason for these differential responses between
treadmill and cycling exercise is not clear, but it might relate
to the higher heart rate and eccentric muscle contraction
associated with running. This would be consistent with prior
work [65], suggesting that EVs are important for vascular
repair and adaptation. Moreover, recent work from Safdar
et al. has suggested that smaller EVs (exosomes) may be
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essential following endurance-oriented exercise as a means to
treat metabolic disease [113]. This assertion is supported by
evidence from Bei et al. who demonstrated that exercise-
induced increases in circulating EVs enhanced the protective
effects of endogenous EVs against cardiac ischemia/reperfu-
sion injury [114]. These later findings are consistent with
new work highlighting that exosomes play critical roles
in interorgan crosstalk during exercise to regulate energy
homeostasis [66]. Taken together, these preliminary data
suggest more work is needed to characterize all subtypes of
EVs, including smaller (exosomes) and larger (microparticle)
EVs in people with T2D and CVD following different doses
of exercise, with or without diet modification, to improve
clinical practice for patient care.

8. Conclusion and Clinical Perspectives

The precise mechanism by which exercise lowers CVD is
unclear, as only 40–50% of the reduction in CVD risk in sub-
jects reporting >1500 kcal/week of exercise is attributed to
nontraditional CVD risk factors [115]. EVs have emerged
as novel markers of T2D and CVD that have potential func-
tional and therapeutic benefit by transferring proteins, lipids,
and nucleic acids. In fact, EV physiology appears critical
towards the production of oxidative stress [54], inflamma-
tion [23], and/or physical contact/release of signaling mole-
cules (i.e., miRNA) that modulate endothelial function
[116]. Herein, we present evidence that suggests EVs repre-
sent a potentially novel mechanism by which exercise could
fill a “cardio-protection risk gap.” Exercise may impact EVs
by not only reducing substrates thought to drive EV func-
tional responses but also altering the release of oxidative
stress, inflammatory cytokines, and miRNA (Figure 1).
Indeed, the acute effects of exercise on EVs are limited
to endothelium-derived EVs (CD62E+, CD31+/CD42b−,
CD144+) with little change or slight increases and few to no
work on platelet- or leukocyte-derived EVs (Table 1). In con-
trast, exercise training appears to have more robust effects on
decreasing endothelium-, platelet-, and leukocyte-derived
EVs in men and women (Table 2). However, these studies
are limited in that conventional flow cytometry has been
used, thereby providing less sensitivity to detecting a variety
of EV sizes (<500nm) as well as distinguishing EVs from
small cells/debris. Further work is needed using various tools
including imaging or high-resolution flow cytometry, tun-
able resistive pulse sensing, or nanoparticle tracking device
and electron microscopy before and after exercise interven-
tions in order to ascertain a comprehensive EV profile in
adults at risk for and with T2D or CVD. Knowledge of EV
content and function may ultimately lead to improved
patient care by enabling health care providers to provide
bioengineered agents that mitigate “cargo” released from
these EVs and/or deliver exercise-derived EVs as therapeutic
options for optimization of T2D and CVD management.
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