
RESEARCH ARTICLE

Transcriptomic Analysis of Tea Plant
Responding to Drought Stress and Recovery
Sheng-Chuan Liu1,2☯, Ji-Qiang Jin1☯, Jian-Qiang Ma1, Ming-Zhe Yao1, Chun-Lei Ma1,
Chun-Fang Li1, Zhao-Tang Ding3, Liang Chen1*

1 Tea Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Tea Plant
Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, Zhejiang, China, 2 Guizhou Tea
Research Institute, Guiyang, Guizhou, China, 3 Tea Research Institute, Qingdao Agricultural University,
Qingdao, Shandong, China

☯ These authors contributed equally to this work.
* liangchen@tricaas.com; lct973@gmail.com

Abstract
Tea plant (Camellia sinensis) is an economically important beverage crop. Drought stress

(DS) seriously limits the growth and development of tea plant, thus affecting crop yield and

quality. To elucidate the molecular mechanisms of tea plant responding to DS, we per-

formed transcriptomic analysis of tea plant during the three stages [control (CK) and during

DS, and recovery (RC) after DS] using RNA sequencing (RNA-Seq). Totally 378.08 million

high-quality trimmed reads were obtained and assembled into 59,674 unigenes, which

were extensively annotated. There were 5,955 differentially expressed genes (DEGs)

among the three stages. Among them, 3,948 and 1,673 DEGs were up-regulated under DS

and RC, respectively. RNA-Seq data were further confirmed by qRT-PCR analysis. Genes

involved in abscisic acid (ABA), ethylene, and jasmonic acid biosynthesis and signaling

were generally up-regulated under DS and down-regulated during RC. Tea plant potentially

used an exchange pathway for biosynthesis of indole-3-acetic acid (IAA) and salicylic acid

under DS. IAA signaling was possibly decreased under DS but increased after RC. Genes

encoding enzymes involved in cytokinin synthesis were up-regulated under DS, but down-

regulated during RC. It seemed probable that cytokinin signaling was slightly enhanced

under DS. In total, 762 and 950 protein kinases belonging to 26 families were differentially

expressed during DS and RC, respectively. Overall, 547 and 604 transcription factor (TF)

genes belonging to 58 families were induced in the DS vs. CK and RC vs. DS libraries,

respectively. Most members of the 12 TF families were up-regulated under DS. Under DS,

genes related to starch synthesis were down-regulated, while those related to starch

decomposition were up-regulated. Mannitol, trehalose and sucrose synthesis-related

genes were up-regulated under DS. Proline was probably mainly biosynthesized from gluta-

mate under DS and RC. The mechanism by which ABA regulated stomatal movement

under DS and RC was partly clarified. These results document the global and novel

responses of tea plant during DS and RC. These data will serve as a valuable resource for

drought-tolerance research and will be useful for breeding drought-resistant tea cultivars.
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Introduction
Drought is a major factor influencing the growth and development of crops; thus, it affects
crop quality and yield worldwide. Given the changes in climate, especially global warming, and
the increasing demand for water for non-agricultural use, breeding elite cultivars with high
drought resistance and recoverability is an important target for crop breeders. Some recent
studies have documented and explained plant system responses to drought stress (DS) [1,2].
The morphological and physiological mechanisms of drought tolerance in many plants have
been fully elucidated, but the global transcriptome profiles of some plants in response to DS
and rehydration are still lacking.

The molecular responses of plants to DS include perception, signal transduction, gene
expression, and ultimately metabolic changes that lead to stress tolerance [3]. Various regula-
tory and functional genes are involved in these processes, since drought tolerance is a complex
multigenic trait [4]. For example, abscisic acid (ABA) has been shown to play crucial roles in
regulating the drought response, and its metabolic pathway involves multiple steps and genes
[5]. 9-cis-Epoxycarotenoid dioxygenase (NCED) is a key enzyme for ABA biosynthesis, but
only one of the five NCED genes in Arabidopsis, AtNCED3, was significantly triggered by DS
[6]. The pyrabactin resistance (PYR)/PYR-like(PYL)/regulatory components of ABA receptor
(RCAR) -type ABA receptors, type 2C protein phosphatases (PP2C), and sucrose non-fer-
menting 1-related protein kinase 2 (SnRK2) constitute the core regulatory network of ABA
signaling, which can activate a series of transcription factors (TFs) to cope with DS [5]. Also
involved in the responses to drought and rewatering is a myriad of genes involved in the
metabolism and signaling of other phytohormones, osmolyte metabolism, regulation of anti-
oxidant activity and stomatal movement, etc [7]. However, the functions of most these genes
and their regulatory networks have remained elusive. Therefore, further research is required
to explore the gene networks involved in drought response and tolerance, and to identify new
drought-related genes.

Tea plant (Camellia sinensis) is one of the most popular beverage crops in the world [8].
Drought is a major constraint for the growth, yield and quality of tea plant. It was reported that
drought reduced tea production by 14–33%, and caused 6–19% plant mortality [9]. As previ-
ously reported, tea plants adapt to resist DS through a series of physiological responses such
as osmotic adjustment, scavenging reactive oxygen species (ROS), and phytohormone regula-
tion [8,10,11]. A set of drought-responsive genes in tea plant were identified using cDNA-
amplified fragment length polymorphism or suppression subtractive hybridization analyses
[12–14]. However, compared with other woody species, less is known about the drought toler-
ance mechanisms of tea plant at the genome-wide transcriptional level.

Recently, rapid advances in RNA sequencing (RNA-Seq) and associated bioinformatics
tools have provided revolutionary tools for transcriptomic research on plants [15]. For exam-
ple, the global transcriptomic profiles of drought responses have been surveyed in Populus
[16], Phaseolus vulgaris [17], and Ammopiptanthus mongolicus [18] using this approach.
Therefore, the aim of this study was to identify drought-responsive genes, and to deeply elu-
cidate the signaling, regulatory and metabolic mechanisms that operate during drought and
rewatering. To achieve these aims, five C. sinensis libraries were subjected to RNA-Seq analy-
ses. The experimental materials were 10-year-old plants of the drought-tolerant tea cultivar
‘Ningzhou 2’, an elite clone selected from Jiangxi Province, China [8]. The plants were sub-
jected to DS for eight days and then allowed to recover (RC) after rewatering. The data
obtained in this study not only contribute to our understanding of the molecular mechanisms
of this species in response to DS and rewatering, but will also be useful for breeding drought-
resistant tea plant.
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Materials and Methods

Stress treatment and RNA isolation
The experiment was conducted at the China National Germplasm Hangzhou Tea Repository
(latitude, 30° 100 808ʺN; longitude, 120° 050 370ʺ E; altitude, 27 m a.s.l.) from July to August
2013. The tea plants were subjected to severe DS and then allowed to recover (RC) after rewa-
tering in field conditions [8]. We selected 10-year-old plants of the drought-tolerant tea culti-
var ‘Ningzhou 2’ for this work, because our previous study had documented the drought-
resistance characteristics of this cultivar [8]. The control (CK) tea plants were sampled on July
22, a cloudy day when the soil had 79% of field moisture capacity. The plants under DS were
sampled from July 26 to July 31. As in our previous study, drought-stressed plants were consid-
ered to be rehydrated at 96 h after rewatering [8]. Under CK, during DS, and under RC, ‘two
and a bud’ samples (one young shoot with two leaves and a bud) were collected from 20 plants,
immediately frozen in liquid N2, and stored at −80°C. Leaf materials were collected once every
4 days from 17:00 to 17:30.

Total RNA was extracted using the RNeasy Plant Mini Kit according to the manufacturer’s
instructions (Qiagen, Hilden, Germany) and treated with RNase-free DNase II (Takara, Dalian,
China). The quantity and purity of total RNA were assessed using a NanoDrop ND-2000 spec-
trophotometer (NanoDrop Technologies, Wilmington, DE, USA) and 1% formaldehyde-aga-
rose gel electrophoresis. RNA samples with A260/A280 values ranging from 1.9 to 2.1 and
A260/A230 ratios greater than 2.0 were chosen. The cDNA libraries were constructed from
approximately 25 μg of total RNA (with an RNA concentration of� 650 ng/μL) from the CK,
DS, and RC samples. The remaining RNA was used for quantitative real-time polymerase
chain reaction (qRT-PCR) analyses.

Illumina cDNA library preparation and sequencing
After total RNA extraction and DNase I treatment, poly (A) mRNA was first enriched using
magnetic beads with oligo (dT). After mixing with fragmentation buffer, the mRNA was cut
into short fragments, and then cDNA was synthesized using these cleaved mRNA fragments as
the templates. Short fragments were purified and resolved with EB buffer for end-repair and
single nucleotide A (adenine) addition. Then, the short fragments were connected with adap-
tors. Suitable fragments were selected as templates for PCR amplification. During the quality
control steps, Agilent 2100 Bioanaylzer (Agilent Technologies, Santa Clara, CA, USA) and the
StepOnePlus™ Real-Time PCR System (Applied Biosystems, Foster City, CA, USA) were used
to analyze the size and quality of the sample libraries. The libraries were sequenced with the
Illumina HiSeq™ 2000 to generate raw data with an average read length of 100 bp.

Preprocessing and de novo assembly
Raw reads produced from HiSeq™ 2000 sequencing were preprocessed to remove reads with
adaptors, reads containing more than 5% unknown bases, and low-quality reads (>20% of
the bases with a quality score of� 10). The filtered reads were de novo assembled by Trinity
software [19] to construct contigs with large volumes of RNA-Seq reads. The contigs were
realigned to construct unigenes using Trinity software. The paired-end reads were used to fill
intra-scaffold gaps to obtain sequences with the least number of nonsense sequences and that
could not be extended at either end. After clustering and assembly using TGICL software [20],
a non-redundant unigene set from all five assembled datasets was finally constructed. After
assembly, a series of sequential BLASTx (E-value� 10−5) searches against non-redundant pro-
tein (NR), Swiss-Prot, Kyoto Encyclopedia of Genes and Genomes (KEGG), and Clusters of

RNA-Seq Analysis in Tea under Drought Stress and Recovery

PLOS ONE | DOI:10.1371/journal.pone.0147306 January 20, 2016 3 / 21



Orthologous Groups (COG) were performed. The best alignments were used to decide the
direction of unigene sequences. The sequence orientation of the unigenes that were not found
in the above databases was determined using ESTScan software [21].

Unigene annotation and classification
To obtain information on the expression and functional annotation of the unigenes, all assem-
bled unique sequences were aligned to NR, Swiss-Prot, KEGG, COG, and The Arabidopsis
Information Resource (TAIR) using BLASTx, and to the non-redundant nucleotide (Nt)
sequence database with BLASTn (E-value� 10−5). The protein with the highest sequence simi-
larity to each given unigene was retrieved. Based on NR annotations, gene ontology (GO)
annotations were assigned to unigenes using Blast2GO software [22], and then GO functional
classification was performed using WEGO software [23] to understand the distribution of gene
functions. The unigenes were also aligned to the COG database to predict and classify gene
functions. The unigene products related to metabolism in the cellular processes group were
analyzed and annotated according to the KEGG database.

Protein coding region prediction and transcription factor analysis
To predict protein coding sequences (CDSs), unigenes were first aligned by BLASTx (E-
value� 10−5) to protein databases in the following order of priority: NR, Swiss-Prot, KEGG,
and then COG. Unigenes that had been aligned to a higher-priority database were not aligned
to a lower-priority database. The coding-region sequences (50–30) of unigenes were decided
based on the highest ranks in the BLAST results. The coding-region sequences were translated
into amino acid sequences (50–30) with the standard codon table. TFs were predicted according
to protein sequences obtained from CDSs prediction. The TFs were identified and classified by
searching PlantTFDB3.0 (the plant TF database 3.0) [24] with E-values� 10−5.

Expression and KEGG analysis for differentially expressed unigenes
The expression levels of unigenes were calculated as fragments per kilobase of exon per million
fragments mapped (FPKM) [25]. Gene expression profiles from RNA-Seq data were analyzed
using Expectation-Maximization (RSEM) software [26] bundled with the Trinity package. Dif-
ferentially expressed unigenes [false discovery rate (FDR)<10−3, E-values� 10−5, |log2

ratio|� 1]
among the five libraries were identified. Heat maps were generated and hierarchical clustering
was conducted using Cluster 3.0 software [27].

To further clarify the biological functions of differentially expressed genes (DEGs), GO
term and KEGG pathway enrichment analyses of DEGs were conducted with BINGO (P-
values� 0.05 after Bonferroni correction) [28].

Quantitative PCR analysis
Although RNA-Seq is a highly efficient sequencing procedure to screen for DEGs, errors still
occur because the transcriptome is assembled from billions of short RNA-Seq reads [29]. To
validate the reliability of the expression profiles observed in the RNA-Seq data, 20 genes were
randomly selected for qRT-PCR analyses using a Power SYBR Premix Ex TaqTM II Kit (Per-
fect RealTime, Takara, Dalian, China) with an ABI 7500 Real-Time PCR system (Applied
Biosystems, Foster City, CA, USA) according to the manufacturer’s instructions. The glyceral-
dehyde-3-phosphate dehydrogenase (GAPDH) gene (KA295375.1, C. sinensis) was utilized as
an internal control. The relative expression value was calculated by the delta-delta CT method
and expressed as the fold change relative to expression in the null controls (expression = 1)
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[30]. Primers used in the qRT-PCR analyses were listed in S1 Table. Three technical replicates
per sample were analyzed to ensure statistical credibility.

Results

RNA-Seq and de novo assembly
As we reported previously, DS was imposed gradually by withholding water for up to eight
days, until the soil volumetric moisture content (SWC) decreased to approximately 12.5%,
compared to about 21.0% in CK [8]. Our result was largely consistent with that of Maritim
et al. (2013), who reported that tea plant suffered from severe DS with SWC less than 53.0% of
that in CK [11]. Then, SWC was returned to the normal moisture level by rewatering. Changes
in leaf morphological and physiological traits were also monitored, ensuring that the stress lev-
els were adequate and equivalent for this species [8]. RNA-Seq of five libraries (one library for
CK, two repeats for DS, and two repeats for RC) resulted in 407.96 million reads with more
than 98% exhibiting a quality score of Q20 (99% accuracy) (Table 1). These data were then
deposited in the National Center for Biotechnology Information (NCBI) with accession num-
ber of PRJNA297732 (http://www.ncbi.nlm.nih.gov/bioproject/297732). In total, 378.08 mil-
lion high-quality trimmed reads were de novo assembled into contigs by the software Trinity
(Table 1 and S1A Fig). The contigs were assembled into 59,674 unigenes with an average length
of 760 bp and an N50 length of 1,123 bp (Table 1). All unigenes were longer than 200 bp and
17.1% (10,340) of them were longer than 1,000 bp (S1B Fig).

Functional annotation and classification of unigenes
A total of 26,696 (44.1%), 31,159 (51.4%), 45,570 (75.2%), 29,191 (48.2%) and 41,569 (68.6%)
unigenes had significant hits (E-value�10−5) in KEGG, COG, NR, Swiss-Prot, and TAIR,
respectively. Of the 59,674 high-quality unique sequences, 48,089 (80.59%) unigenes signifi-
cantly matched a sequence in at least one of the five databases and 19,457 unigenes showed
similarity to proteins in all of the five databases (Fig 1).

Within the C. sinensis unigene set, 31,159 (51.4%) unigenes were categorized (E-value
�10−5) in 25 COG clusters (Fig 2). The five largest categories were: 1) general function predic-
tions only (16.7%), 2) transcription (10.2%), 3) replication; recombination and repair (9.4%),
4) post-translational modification, protein turnover, chaperones (8.2%), and 5) signal trans-
duction mechanisms (7.5%).

Table 1. Overview of sequencing and assembly.

Sequences CK DS1 DS2 RC1 RC1 Total

Total raw reads (million) 90.77 68.50 93.63 75.83 79.23 407.96

Total clean reads (million) 84.25 63.48 86.72 70.28 73.35 378.08

Clean bases (Gb) 8.43 6.35 8.67 7.03 7.34 37.82

Q20 (%) 98.42 98.40 98.45 98.41 98.39 98.41

N (%) 0.00 0.00 0.00 0.00 0.00 0.00

GC (%) 46.65 46.29 46.00 46.01 47.10 46.41

N50 of contigs (bp) 291 309 228 238 213 398

Mean length of unignes (bp) 516 542 437 437 420 760

N50 of unigenes (bp) 781 870 593 599 566 1,213

CK: control samples; DS1, DS2: drought treated samples; RC1, RC2: rewatering treated samples.

doi:10.1371/journal.pone.0147306.t001
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Based on classification of GO terms, a total of 35,304 unigenes were assigned with at least
one GO term. The largest subgroups in the biological process category were cellular process,
metabolic process, single-organism process, and response to stimulus (Fig 3). In the cellular
component category, the largest subgroups were cell, cell part, organelle, and membrane. In the
molecular function category, catalytic activity and binding accounted for 85.12% and 84.73%
of all unigenes in the DS vs. CK and RC vs. DS libraries, respectively.

Protein coding sequence prediction
A total of 45,775 unigenes CDSs were identified by the BLASTx protein database searches
described above. Of the unigenes with CDSs, the majority (24,655 unigenes; 53.9%) were longer
than 500 bp and 10,249 unigenes were longer than 1,000 bp (S2 Fig). Using the ESTScan pro-
gram, we assigned another 1,709 unigene CDSs that could not be aligned to above databases,

Fig 1. Venn diagram showing BLAST results of Camellia sinensis transcriptome against five
databases. De novo reconstructed transcript sequences were used in BLAST searches against public
databases: KEGG, COG, NR, Swiss-Prot, and TAIR. Number of unigenes with significant hits (E-value
�10−5) against five databases is shown at each intersection of Venn diagram.

doi:10.1371/journal.pone.0147306.g001
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and obtained the length frequency distributions of these unigene CDSs and their correspond-
ing amino acid sequences (S2 Fig).

Metabolic pathway analysis of differentially expressed genes under
drought stress and recovery
Totally 6,959 (26.1%) and 8,525 (31.9%) of the 26,696 unigenes had significant matches in
KEGG. These genes were assigned to 127 KEGG pathways in the DS vs. CK and RC vs. DS
libraries. Among the KEGG pathways, the largest groups were metabolic pathway, biosynthesis
of secondary metabolites, plant—pathogen interaction, and plant hormone signal transduction
(Fig 4). The KEGG pathway enrichment analysis showed that 13 and 7 of the KEGG pathways
were significantly enriched under DS and RC, respectively (S3 Fig). Under DS, the metabolic
pathway group had the largest number of unique sequences (1,623 unigenes) (ko01100). These
sequences encoded products that were involved in various metabolic pathways; for example,
energy metabolism, and metabolism of carbohydrates, glycans, nucleotides, amino acids, and
lipids [31]. By contrast, pathways associated with biosynthesis, especially biosynthesis of sec-
ondary metabolites, were mainly enriched during RC. Our data revealed that these metabolic
and biosynthetic pathways may be crucial for the response to dehydration and rehydration in
tea plant.

Fig 2. COG functional classification of Camellia sinensis transcriptome. In total, 31,159 unigenes with significant homologies in COG database (E-value
�10−5) were classified into 25 COG categories. Capital letters on x-axis indicate COG categories as listed at right of histogram; y-axis indicates the number of
unigenes.

doi:10.1371/journal.pone.0147306.g002
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Based on GO functional annotations and pathway enrichment analysis of the DEGs, the
results showed that the DEGs involved in major biological processes and metabolic pathways
mainly encoded regulatory proteins (TFs, protein kinases, protein phosphatases, signaling mol-
ecules, and other regulatory proteins) and functional proteins (osmotin, membrane proteins,
metabolic enzymes, channel proteins, chaperones, transport proteins, and various proteases)
(Figs 3 and 4).

Differentially expressed genes among the three stages
The expression levels of 5,955 DEGs differed significantly among the three stages (Fig 5A); 1,517
DEGs that were down-regulated under DS were then up-regulated after RC, while the opposite
trend was observed for 3,792 DEGs, but 490 DEGs and 156 DEGs were down-regulated and up-
regulated during the three stages respectively (Fig 5A). In the DS vs. CK library, there were a
total of 3,948 up-regulated DEGs and 2,007 down-regulated DEGs; in the RC vs. DS library,
there were 1,673 up-regulated DEGs and 4,282 down-regulated DEGs in total (Fig 5B).

Unigene validation and expression analysis
To confirm RNA-Seq results, qRT-PCR was conducted on 20 randomly selected DEGs based
on transcriptional profile analysis. These DEGs involved in signaling, metabolism, transcrip-
tional regulation, and physiological responses (S4 Fig). These unigenes determined by

Fig 3. Function classifications of GO terms ofCamellia sinensis transcripts. Based on highscore BLASTx matches in NR plant proteins database, a
total of 35,304 unigenes were classified into three main GO categories and 31 sub-categories. Number of genes in a specific category within the main
category is shown on y-axis; number of unigenes is shown in x-axis.

doi:10.1371/journal.pone.0147306.g003
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qRT-PCR shared similar expression tendency with those from RNA-Seq data (R2 = 0.91; Fig
6). Detailed comparisons between qRT-PCR and RNA-Seq results were shown in S4 Fig.

Unigenes related to phytohormone metabolism and signaling during and
after drought stress
Under DS, two key genes (NCED1 and NCED4) of ABA biosynthesis were up-regulated; 12
genes (PYL4, PYL8, PP2C1-6, SnRK2.2, SnRK2.3, SnRK2.5, SnRK2.6) coding the core compo-
nent of ABA signal transduction were also induced (S5A Fig). In addition, ABA key degrada-
tion enzyme gene CYP707A (cytokinin trans-hydroxylase), ABA sugar ester (ABA-GE)
degrading enzyme gene BG1 (β-D-glucopyranosyl abscisate β-glucosidase) and nicotinamide
adenine dinucleotide phosphate oxidase gene RbohD (respiratory burst oxidase homolog D)
were triggered. After rehydration, ABA synthesis and signal transduction related genes, as well
as CYP707A gene were inhibited. Isochorismate synthase (ICS) pathway for salicylic acid (SA)
synthesis was probably activated under DS, while phenylalanine ammonia-lyase (PAL) path-
way was likely to be employed under RC (S5B Fig). It seemed probable that the dependent-
nonexpressor of pathogenesis-related gene 1(NPR1) SA signaling pathway was inhibited,

Fig 4. Largest number of unigenes for 30 main KEGG pathways in tea plant during and after drought stress.Number of genes in each pathway is
shown on x-axis; pathway categories are shown on y-axis.

doi:10.1371/journal.pone.0147306.g004
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whereas the independent-NPR1 pathway was activated by a regulator, suppressor of npr1-1,
constitutive 1 (SNC1). In general, the expression levels of genes encoding jasmonic acid (JA)
precursors [phospholipase A1 (PLA1), lipoxygenase 2 (LOX2), LOX3, allene oxide synthase
(AOS), allene oxide cyclase (AOC)] decreased under DS, while the expression levels of genes
encoding JA intermediates [12-oxophytodienoic acid reductase (OPR), OPC-8:0 CoA ligase 1
(OPCL1), acyl-CoA oxidase 2 (ACOX2)] increased, inducing enhancement of signal transduc-
tion. However, the opposite trend was observed during RC (S5C Fig). The expression of ethyl-
ene (ET) synthesis-related genes [ACS (1-aminocyclopropane-1-carboxylate synthase) and
ACO (aminocyclopropanecarboxylate oxidase)] and signal transduction-related genes [ETR
(ethylene receptor), EIN2 (ethylene-insensitive protein 2), and EIN3] were also induced by
drought (S5D Fig). Tea plant probably employed the 3-indoleacetaldoxime (IAOx) and indole-
3-pyruvic acid (IPA) pathway for indole-3-acetic acid (IAA) synthesis under DS, while after
rehydration the 3-indoleacetonitrile (IAN) pathway was mainly used (S5E Fig). Under DS, the
expression levels of cytokinins (CKs) synthesis-related genes were slightly increased and
decreased following rehydration (S5F Fig). Genes involved in IAA signaling were generally
down-regulated under DS but up-regulated after RC (S5E Fig). Unexpectedly, genes involved
in cytokinin signaling were slightly up-regulated under DS, and did not change significantly
after RC (S5F Fig).

Protein kinases, protein phosphatases, and transcription factors
responding to dehydration and rehydration
Totally 762 and 950 protein kinases belonging to 26 families were found to be differentially reg-
ulated under DS and RC respectively (S6 Fig). In total, 53 and 81 differentially expressed pro-
tein phosphatases were observed under DS and RC respectively. These protein phosphatases

Fig 5. Changes in transcript levels of differentially expressed genes (DEGs) in tea plant during and after drought stress. (A) Heat-maps of all DEGs.
Columns and rows in heat maps represent samples and DEGs, respectively. (B) Number of up- and down-regulated DEGs under dehydration and
rehydration (FDR<10−3, P-value<10−5, |log2ratio|�1).

doi:10.1371/journal.pone.0147306.g005
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were clustered into two families: the protein tyrosine phosphatase mainly including mitogen-
activated protein kinase phosphatases (MKPs), and serine/threonine-protein phosphatase
including PP2C, PP2A and PP1 (S6 Fig). Most members of 12 protein kinase families were acti-
vated by drought (S6 Fig). At the same time, most of the protein phosphatase genes were also
up-regulated. After rehydration, the expression levels of protein phosphatase genes decreased.
Correspondingly, the expression levels of protein kinase genes reduced. However, most mem-
bers of eight protein kinases were up-regulated after rewatering.

In total, 547 and 604 TF genes were identified as DEGs in the DS vs. CK and RC vs. DS
libraries, respectively (|log2

ratio|�1). These TFs were classified into 58 families based on their
putative DNA-binding and kinase domains (S7 Fig). Under DS, 260 TF genes were up-regu-
lated and 287 were down-regulated. After RC, 276 TF genes were up-regulated and 328 were
down-regulated. Most members of the 12 TF gene families were up-regulated under DS. These
up-regulated genes included those encoding basic leucine zipper (bZIP), squamosa promoter
binding protein-like (SPL), Arabidopsis response regulator (ARR), heat stress TF (HSF),
WRKY, homeobox-leucine zipper protein (HD-ZIP), NAC domain-containing protein
(NAC), scarecrow-like protein (SCL), myeloblastosis oncoprotein (MYB), APETALA2/

Fig 6. Consistency between RNA-Seq data and qRT-PCR data. Relationship between RNA-Seq data (x-axis) and qRT-PCR data (y-axis) using log2
ratio

measure of transcript levels of 20 genes.

doi:10.1371/journal.pone.0147306.g006
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ethylene-responsive element-binding protein (AP2/EREBP), basic helix-loop-helix protein
(bHLH) and zinc-finger protein TFs. After rehydration, most members of the AP2/EREBP,
bHLH, HD-ZIP, MYB, SCL, and SPL gene families were still up-regulated. In addition, most
members of three TFs families [domain-containing transcription repressor (B3), growth-regu-
lating factor (GRF), and TCP] were up-regulated.

Changes in non-structural carbohydrate and proline metabolism in
response to drought stress and recovery
The ribulose-1,5-bisphosphate carboxylase oxygenase (Rubisco) gene was down-regulated
under DS and then up-regulated after rewatering (S8A Fig). Under DS, two key starch synthesis
genes [AGPase (ADP-glucose pyrophosphorylase) and SS (starch synthase)] were inhibited,
whereas three starch-degrading genes [AAMY (α-amylase), BAMY (β-amylase), and SP (starch
phosphorylase)] were induced. In contrast, sucrose, threhalose, and mannitol synthesis-related
genes [UDPGase (UDP-glucose pyrophosphorylase), SPS (sucrose-phosphate synthase), TPS
(trehalose phosphate synthase), TPP (trehalose phosphatases),M6PR (mannose-6-phosphate
reductase), andM1PP (mannose-1 phosphate phosphatase)] were up-regulated, while catabo-
lism-related genes for these osmolytes were down-regulated, except for trehalase (TRE) gene,
which was slightly up-regulated. Under RC, starch synthesis-related genes were up-regulated
and starch decomposition-related genes were down-regulated. The opposite trend was
observed for genes related to mannitol, trehalose, and sucrose biosynthesis and metabolism;
that is, during RC, the genes related to their biosynthesis were down-regulated, while those
related to their metabolism were up-regulated. As to proline metabolism under DS, the tran-
script levels of pyrroline-5-carboxylate synthetase (P5CS) gene, pyrroline-5-carboxylate
reductase (P5CR) gene, and γ-glutamyl phosphate reductase (GRR) gene increased (S8B Fig).
However, there were no significant changes in the expression level of ornithine amino transfer-
ase (OAT) gene during and after DS.

Discussion
Original signal (drought and rewatering stimuli) by plant sensing cells perception, signaling
and transport induced a series of drought-related gene expression and protein synthesis, and
then plant optimally changed physiological and biochemical metabolism of recipient tissue to
cope with DS and fast recover normal growth after rehydration [5,7]. In comparison to Gupta
et al. (2012, 2013) and Das et al. (2012) studies [12–14], more DEGs were found and annotated
in our study, which allowed us to further elucidate drought-resistance mechanisms of tea plant.

There were several ways to ensure the accuracy of the RNA-Seq data. Our previous morpho-
logical and physiological analyses could more accurately indicate the degree of stress and
the reliability of the samples [8]. In the present study, the raw reads were processed by remov-
ing reads containing adapter, ploy-N and low quality reads. Q20 (>98%), GC-content and
sequence duplication level of the clean data were calculated. After excluding the data generated
from poor libraries and filtering low-quality reads, the 378.08 million (about 9-fold coverage)
high-quality reads were used for de novo assembly. The assembled unigenes were extensively
annotated, and these were further filtered for identifying differentially expressed genes. Addi-
tionally, the qRT-PCR results showed that all of randomly selected DEGs exhibited similar
expression kinetics to those obtained from the RNA-Seq analysis.

Drought and rehydration signal transduction of in tea plant
Phytohormones have crucial roles under drought and rewatering [32]. The DS response in plants
involves four main phytohormones; ABA, SA, JA, and ET [7]. Two other phytohormones, IAA
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and CKs, regulate many aspects of plant growth and development and play essential roles in RC
after DS. The results of our study provided details of the potential metabolism and signaling of
these phytohormones during and after DS.

We found that most of the genes related to ABA biosynthesis and signaling were up-regu-
lated under DS, and the transcript level of CYP707A also increased (S5A Fig). This is consistent
with our earlier studies [8], which reported that ABA concentrations rapidly and significantly
increased in tea plant leaves under DS. ABA is stored in its glucose ester form (ABA-GE). The
BG1gene was up-regulated under DS, indicating that ABA-GE was converted into ABA. In our
study, four SnRK2 genes were up-regulated under DS, indicating DS enhanced ABA responses.
In addition, several lines of evidence have suggested that RbohD can be phosphorylated by
SnRK2; thereby, it activates Ca2+ signaling and regulates stomatal movement in response to DS
[33,34].

The ICS and PAL pathways are two distinct enzymatic pathways for SA biosynthesis in
higher plants [35]. A significant increase in SA levels in tea plant leaves under DS has also
been reported in our previous studies [8]. In the present study, it seemed probable that the
ICS and PAL pathway were mainly used to synthesize SA in tea plant under DS and during
RC respectively (S5B Fig). NPR1 acts downstream of SA as a crucial regulator of the SA sig-
naling pathway [36]. Overexpression of NPR1 has been shown to enhance resistance to multi-
ple diseases in diverse plant species, for example, cotton (Gossypium hirsutum) [37] and apple
(Malus × domestica) [38]. Under DS, NPR1, TGA (TGA) gene (a TF gene downstream of
NPR1) and genes encoding pathogenesis-related (PR) proteins (TGA-target genes) were
down-regulated, probably leading to reduced disease resistance in tea plant (S5B Fig). In con-
trast, gene SNC1 was up-regulated under DS. SNC1 has been identified as a constitutively
expressed PR gene [39]. These results suggested that the NPR1-independent resistance path-
way was activated by SNC1 in tea plant under DS.

Our results suggested that many intermediate products in the peroxisome were generated
from phosphatidylcholine metabolism, which provided the main blocks for JA biosynthesis in
tea plant under DS. Also, the up-regulation of a drought-induced JA-amino synthetase (JAR1)
gene suggested that JA was converted to its most bioactive compound, (-)-jasmonoyl-L-isoleu-
cine (JA-Ile) under DS. Upon JA-Ile perception, the F-box protein coronatine-insensitive pro-
tein 1 (COI1) combined with jasmonate ZIM domain-containing protein (JAZ) repressors for
ubiquitination and degradation by the ubiquitin-conjugating enzyme E2. This might lead to
activation of TFs such as bHLH, MYB, and WRKY (S5C Fig). The v-myc myelocytomatosis
viral oncogene homolog 2 (MYC2) is an important regulator of various JA responses and medi-
ates crosstalk with other pathways [40]. However, in our study, only threeMYC genes includ-
ing oneMYC2 were up-regulated in tea plant under DS. MoreMYB andWRKY genes were
activated, indicating that JA responses were under complex regulation by various TFs in tea
plant [41].

In plants, ET is another signaling molecule that plays roles in drought tolerance [42]. Upon
DS, the 1-aminocyclopropane-1-carboxylic acid (ACC) gene was up-regulated, and the ACO
was also slightly up-regulated, indicating that DS induced the accumulation of ET. Genes
encoding core components of ET signaling were also up-regulated during DS, activating
diverse ET responses. During RC, genes related to ET synthesis and signaling were down-
regulated. It had reported that ET production contributed to drought response in rice (Oryza
sativa) [43]. These results suggested that ET may also be an important drought-responsive hor-
mone in tea plant.

Intracellular IAA is synthesized from indole via tryptophan (Trp) or other intermediates
[44]. In higher plants, there are three pathways for the biosynthesis of IAA from Trp: IAN,
IAOx and IPA pathways [44,45]. Our results suggested that the IAOx and IPA pathways were
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activated for IAA biosynthesis under DS, while the IAN pathway was activated during RC (S5E
Fig). Tea plant under DS might employ different pathways for IAA synthesis to avoid the
reduction of IAA, thus maintaining active physiological processes to cope with DS. Mahouachi
et al. (2007) reported that no significant changes in IAA levels were observed in papaya (Carica
papaya.) seedling leaves during water stress and rewatering [46]. However, genes related to
IAA signal transduction were down-regulated under DS, while up-regulated under RC, indicat-
ing that IAA signaling in tea plant was influenced by DS.

The natural CKs commonly found in higher plants are mainly trans-zeatin, cis-zeatin (low
or no activity), and isopentenyladenine [47]. Unexpectedly, the genes encoding enzymes
involved in CKs biosynthesis were up-regulated to some extent under DS, but down-regulated
during RC (S5F Fig). The metabolism of purines, especially adenine, yields cytokinin precur-
sors including dimethylallyl pyrophosphate (DMAPP), adenosine triphosphate (ATP), adeno-
sine diphosphate (ADP), and adenosine monophosphate (AMP) [48,49]. The results of the
KEGG pathway enrichment analysis showed that purine metabolism was significantly enriched
under DS, but reduced during RC. It has been reported that elevated cytokinin levels can par-
tially alleviate the negative effects of stress on photosynthetic activity and suppress stress-accel-
erated senescence of older and mature leaves [47]. These results, combined with our findings,
have at least partly unraveled the mechanism of cytokinin metabolism in tea plant during DS
and RC.

Protein kinases and protein phosphatases often act in tandem to phosphorylate and dephos-
phorylate their targets, thereby maintaining drought-signaling homeostasis in plants [50–52].
Several lines of evidence have suggested that PP2CA dephosphorylates the plant-specific ABA-
activated SnRK2, inhibiting ABA signal transduction [51,52]. Furthermore, AtRbohD had
been proved to be synergistically activated by Ca2+ and phosphorylation, and ROS signal trans-
duction was modulated by phosphorylation [53]. Our study showed that different families of
26 protein kinase families had positive regulatory roles in responding to DS and RC, while
the corresponding protein phosphatases played adverse regulatory roles, leading to maintain
homeostasis of drought stress and water signal transduction in tea plant. After rehydration, the
eight classes of up-regulated protein kinases might play essential roles in tea plant growth and
development during RC.

Transcription factors and other regulatory factors responding to
dehydration and rehydration
Recent studies have demonstrated that several TFs have central roles in drought transcriptional
regulation [54,55]. However, not all TFs were involved in the regulation of the responses to DS.
Our data showed that the number of up-regulated TFs was less than down-regulated TFs dur-
ing and after DS, and 12 TF families (AP2/EREBP, bHLH, bZIP, HD-ZIP, HSF, MYB, NAC,
WRKY, zinc-finger protein TFs, SCL, ARR, and SPL) might play crucial roles in tea plant
responding to DS. Our results were consistent with previous studies [54,56], which indicated
that AP2/EREBP, bHLH, bZIP, HD-ZIP, HSF, MYB, NAC, WRKY, and zinc-finger protein
TFs had vital roles in the plant response to DS. In poplar (Populus euphratica), SCL7 was
induced by drought, and the drought tolerance of transgenic Arabidopsis overexpressing SCL7
was enhanced [57]. SCL14 was shown to play important roles in regulating plant growth and
development as well as in the response to abiotic stresses such as DS [58]. It was reported that
inducible expression of ARR22 promoted tolerance to drought in Arabidopsis [59]. However,
SPLs have been shown to be mainly involved in plant growth and development and in light sig-
naling [60]. Induction of SPLs may help to reduce the negative effects of DS on the growth and
morphology of tea plant. After rewatering, most members of the AP2/EREBP, B3, bHLH, GRF,
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HD-ZIP, MYB, SCL, SPL, and TCP gene families were up-regulated, indicating that these TFs
have crucial roles in the RC of tea plant after DS. These TFs have been shown to have multiple
functions in growth and development, such as leaf development, flower symmetry, and shoot
branching [61,62].

Our results showed that other regulatory factors such as phospholipase D, ubiquitin, and
nitric oxide were also involved in drought resistance in tea plant (S9 Fig). These regulatory fac-
tors have been shown to activate the expressions of genes encoding protective proteins such as
late embryogenesis-abundant proteins, aquaporins, dehydrin, thioredoxins, heat shock pro-
teins, and ion channels [5]. Together, these gene products might contribute to the adaptation
or resistance of tea plant to DS.

Osmotic adjustment in response to drought stress and recovery
Sugars, sugar alcohols, and proline are the primary osmoprotective compounds that contribute
to osmotic adjustment and resistance/adaptation to DS in plants [63,64]. In plants, carbon
assimilation products are produced in the leaves via photosynthesis. Rubisco, a key enzyme in
the Calvin cycle, assimilates atmospheric CO2 into the biosphere [65]. However, the underlying
metabolic mechanism of these osmolytes remains elusive in tea plant during and after DS. In
the present study, the Rubisco gene was down-regulated under DS and then up-regulated after
rewatering, indicating that carbon fixation was inhibited under DS. Under DS and RC, signifi-
cant changes in expression of the key enzyme genes invovled in non-soluble sugar (starch)
and soluble sugars (mannitol, trehalose and sucrose) were observed. These results were in
accordance with our previous studies [8], which indicated that the soluble sugars in tea plant
increased significantly as DS progressed and then rapidly decreased following rehydration.
These results suggested that under DS, photo-assimilated carbon was preferentially used to
synthesize osmolytes, and starch was mainly degradated into glucose. These results also sug-
gested that during RC, the soluble sugars content decreased, but the flow of carbon into starch
increased.

Hexokinase (HXK) is a regulatory enzyme in the glycolytic pathway [66]. The increased
transcript level ofHXK under DS suggested that tea plant maintained the ATP supply by sus-
taining glycolytic metabolism under DS. After rehydration, aHXK expression was slightly
down-regulated, compared with its transcript level under DS (S8A Fig).

Proline is synthesized from glutamate or ornithine [64]. Our data suggested that proline
was mainly biosynthesized from glutamate in tea plant under drought and rewatering.

ABA regulation of stomatal movement in tea plant during drought stress
and recovery
Stomatal pores control gas exchange and transpirational water loss, and have essential roles in
resistance to abiotic stresses such as DS [67,68]. Stomatal closure is mediated by the release of
potassium and various anions from guard cells [68]. Under DS, ABA-activated SnRK2 phos-
phorylated RbohD, resulting in the production of ROS in tea plant (S10 Fig). Superoxide dis-
mutase (SOD), the first line of defense against ROS, dismutates superoxide to H2O2. The
activity of SOD increased under DS, and the resulting increase in H2O2 content activated Ca

2+

channels, leading to increased Ca2+ influx. Then, Ca2+-activated calcium-dependent protein
kinase (CDPK), CBL-interacting serine/threonine-protein kinase (CIPK), and mitogen-acti-
vated protein kinase (MAPK) regulated stomatal closure via a series of cascade responses, such
as repressing the expressions of some genes [KAT1 (K+ transporter of Arabidopsis thaliana 1),
PMCA5/8 (calcium-transporting ATPase 5/8, plasma membrane-type), and PM H-ATPase
(plasma membrane H+-ATPase)] and up-regulating expressions of other genes [GORK (gated
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outwardly-rectifying K+ channel), ALMT12 (aluminum-activated malate transporter 12, an R-
type anion channel in guard cells), and V H-ATPase (vacuolar H+-ATPase)] (S10 Fig). SnRK2
was shown to directly regulate the expressions of KAT1, GORK, ALMT12, and PMH-ATPase
[7,69]. Under DS, Ca2+ stored in the endoplasmic reticulum and vacuole was probably trans-
ferred to the cytosol to enhance Ca2+ signaling by increasing the activities of ECA1/2 (Ca2+-
ATPase 1/2, endoplasmic reticulum-type) and the V H-ATPase, and decreasing the activity
of CAX1 (Ca2+/H+ antiporter 1). During RC, the decrease in ABA content might lead to
decreased Ca2+ levels in the cytosol, which resulted in increased influx of potassium and vari-
ous anions into guard cells. This might stimulate stomatal opening, thereby contributing to tea
plant returning to normal growth (S10 Fig).

Conclusions
Drought is a major constraint for the growth, yield, and quality of tea plant. Given that little
genomic data are available for this species, and based on our previous morphological and physi-
ological analyses [9], five reliable tea samples (CK, DS, and RC) were used for RNA-Seq to reveal
novel responses to DS and RC. A series of candidate genes involved in the DS response were
identified. Signaling and metabolic pathways and regulation of TFs involved in dehydration and
rehydration were explored at the global transcriptional level. Our data suggested that calcium
signaling and stomatal movement are important in the DS and RC responses in tea plant. Our
results provide valuable information on the molecular responses of tea plant to DS and RC.

Supporting Information
S1 Fig. Overview of unigenes assembly by Trinity. (A) Length distribution of contigs obtained
from de novo assembly of high-quality clean reads. (B) Length distribution of unigenes pro-
duced by joining contigs.
(TIF)

S2 Fig. Transcriptome coding sequences (CDSs) predicted by BLASTx and ESTScan. (A)
Length distribution of CDSs using BLASTx. (B) Length distribution of proteins using BLASTx.
(C) Length distribution of CDSs using ESTscan. (D) Length distribution of proteins using
ESTscan.
(TIF)

S3 Fig. Enrichment of KEGG pathways in tea plant under dehydration and rehydration.
Categories of enriched pathways shown on x-axis; bottom y-axis shows number of genes in
each pathway; top y-axis represents −log10

(corrected P-valure) value of pathway enrichment (where
larger value of −log10

(corrected P-value) indicates more significant pathway enrichment). When
the corrected p-value was< 0.05, −log10

0.05 >1.301, the KEGG pathway was significantly
enriched.
(TIF)

S4 Fig. Validation of RNA-Seq results using qRT-PCR. Twenty unique genes with markedly
altered expression patterns in response to dehydration and rehydration were selected from
among signal component, transcription factor, biochemical pathway, and functional genes.
qRT-PCR data were normalized against ‘housekeeping’ gene GAPDH.
(TIF)

S5 Fig. The putative pathways of phytohormone metabolism and signaling during and
after drought stress. (A) Abscisic acid (ABA) metabolism and signaling in tea plant. ABF,
ABRE-binding factor; ABA-GE, ABA glucose ester; ABA2, xanthoxin dehydrogenase; AOG,
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abscisate β-glucosyltransferase; BG1, β-D-glucopyranosyl abscisate β-glucosidase; CPY707A,
(+)-abscisic acid 8'-hydroxylase; NCED, 9-cis-epoxycarotenoid dioxygenase; PA, phaseic acid;
PP2C, protein phosphatase 2C; PYL, abscisic acid receptor PYL family; RBOHD, Respiratory
burst oxidase homolog D; SnRK2, sucrose non-fermenting 1-related protein kinase 2; ZEP,
zeaxanthin epoxidase. (B) Salicylic acid (SA) metabolism and signaling. ICS, isochorismate
synthase; NPR1, nonexpressor of pathogenesis-related genes 1; PAL, phenylalanine ammonia-
lyase; PR, pathogenesis-related protein; SNC1, suppressor of npr1-1, constitutive 1; TGA, bZIP
transcription factor TGA. (C) Jasmonic acid (JA) metabolism and signaling. ACOX, acyl-
CoA oxidase; AOC, allene oxide cyclase; AOS, allene oxide synthase; bHLH, basic helix-loop-
helix protein; COI1, coronatine-insensitive protein 1; E2, ubiquitin-conjugating enzyme;
12,13-EOT, 13S-12,13-epoxyoctadeca-9,11,15-trienoic acid; fadA, acetyl-CoA acyltransferase;
HPL, hydroperoxide lyase; 13-HPOT, 13-hydroperoxy-9,11,15-octadecatrienoic acid; JA-Ile,
(-)-Jasmonoyl-L-isoleucine; JAR1, jasmonic acid-amino synthetase; JAZ, jasmonate ZIM
domain-containing protein; α-LeA, α-Linolenic acid; LOX, lipoxygenase; OPCL1, OPC-8:0
CoA ligase 1; OPDA, (15Z)-12-oxophyto-10,15-dienoate; OPC-8:0, 8-[(1R,2R)-3-Oxo-2-{(Z)-
pent-2-enyl}cyclopentyl] octanoate; OPR,12-oxophytodienoic acid reductase; PC, phosphati-
dylcholine; PLA1, phospholipase A1; TA, traumatic acid. (D) Ethylene metabolism and signal-
ing. ACC, 1-Aminocyclopropane-1-carboxylic acid; ACO, aminocyclopropanecarboxylate
oxidase; ACS, 1-aminocyclopropane-1-carboxylate synthase; CTR1, serine/threonine-protein
kinase CTR1; EBF1/2, EIN3-binding F-box protein; EIN2/3, ethylene-insensitive protein 2/3;
ER, endoplasmic reticulum; ETR, ethylene receptor; MTA, 5-methylthioadenosine; SAM, S-
adenosylmethionine. (E) Indole-3-acetic acid (IAA) metabolism and signaling. AAO1_2,
indole-3-acetaldehyde oxidase; ALDH, aldehyde dehydrogenase (NAD+); ARF, auxin response
factor; AUX1, auxin influx carrier; AUX/IAA, auxin-responsive protein IAA; GH3, the auxin-
responsive Gretchen Hagen3 gene family; IAA1d, indole-3-acetaldehyde; IAN, 3-indoleaceto-
nitrile; IAOx, 3-indoleacetaldoxime; IPA, indole-3-pyruvic acid; NIT, nitrilase; SAUR, small
auxin upregulated RNA; TAM, tryptamine; TIR1, transport inhibitor response 1; Ub, ubiquity-
lation. (F) Cytokinin (CK) metabolism and signaling. AHKs, Arabidopsis histidine kinases;
AHPs, Arabidopsis histidine phosphotransfer proteins; ARR-A, type-A Arabidopsis response
regulator; ARR-B, type-B Arabidopsis response regulator; CKX, CK dehydrogenase; CYP735A,
cytochrome P450 monooxygenase 735A; DMAPP, dimethylallyl diphosphate; iP, isopentenyla-
denine; iPDP, isopentenyl-ADP; iPMP, isopentenyl-AMP; iPR, isopentenyladenine riboside;
iPTP, isopentenyl-ATP; IPT, isopentenyltransferase; tZRDP, trans-zeatin riboside diphos-
phate; tZRMP, trans-zeatin riboside monophosphate; tZRTP, trans-zeatin riboside triphos-
phate; tZR, trans-zeatin riboside; tZT, trans-zeatin.
(TIF)

S6 Fig. Different responses of protein kinases and protein phosphatases during and after
drought stress.Within each bar, number of up- and down-regulated genes is shown in red and
blue, respectively. Details are not shown for protein kinase and protein phosphatase families
with fewer than six members.
(TIF)

S7 Fig. Transcription factors (TFs) responsive to drought stress and rewatering.Within
each bar, number of up- and down-regulated genes is shown in red and blue, respectively.
Details are not shown for TF families with fewer than six members.
(TIF)

S8 Fig. Predicted metabolism of non-structural carbohydrate and proline in tea plant
under dehydration and rehydration. (A) Non-structural carbohydrate metabolism. AAMY,

RNA-Seq Analysis in Tea under Drought Stress and Recovery

PLOS ONE | DOI:10.1371/journal.pone.0147306 January 20, 2016 17 / 21

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0147306.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0147306.s007
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0147306.s008


α-amylase; ADPG, ADP-glucose; AGPase, ADP-glucose pyrophosphorylase; BAMY, β-amy-
lase; Fru, fructose; F6P, fructose-6-phosphate; Glc, glucose; G1P, glucose-1-phosphate; G6P,
glucose-6-phosphate; HXK, hexokinase; M1PP, mannose-1 phosphate phosphatase; M6PR,
mannose-6-phosphate reductase; Rubisco, ribulose-1,5-bisphosphate carboxylase; SP, starch
phosphorylase; SPP, sucrose-6-phosphate phosphohydrolase; SPS, sucrose-phosphate
synthase; SS, starch synthase; SuS, sucrose synthase; 3-PGA, 3-phosphoglycerate; TPP, treha-
lose phosphatases; TPS, trehalose phosphate synthase; Tre, trehalase; Tre6P, trehalose-
6-phosphate; UDPGase, UDP-glucose pyrophosphorylase; UDPG, UDP-glucose. (B) Proline
metabolism. G5SA, L-Glutamate-5-semialdehyde; Glup, L-Glutamyl-5-phosphate; GRR, γ-glu-
tamyl phosphate reductase; OAT, ornithine amino transferase; P5CS, pyrroline-5-carboxylate
synthetase; P5C, 1-Pyrroline-5-carboxylate; P5CR, pyrroline-5-carboxylate reductase; ProDH,
proline dehydrogenase.
(TIF)

S9 Fig. Other potential regulatory factors responding to dehydration and rehydration.
(TIF)

S10 Fig. Potential regulation of abscisic acid-induced stomatal movement during drought
stress and recovery. ALMT12, aluminum-activated malate transporter 12; CaM, calmodulin;
CAX1, Ca2+/H+ antiporter 1; CBL1, calcineurin B-like protein 1; ECA1/2, Ca2+-ATPase 1/2,
endoplasmic reticulum-type; ER, endoplasmic reticulum; GORK, gated outwardly-rectifying
K+ channel; KAT1, K+ transporter of Arabidopsis thaliana 1; PMCA5/8, calcium-transporting
ATPase 5/8, plasma membrane-type; PM H-ATPase, plasma membrane H+-ATPase; SOD,
superoxide dismutase; TPC1A/B, two pore calcium channel protein 1 A/B; V H-ATPase, vacu-
olar H+-ATPase.
(TIF)

S1 Table. Primers used for qRT-PCR analyses. Primers listed were used to amplify 20 genes
that were randomly selected for qRT-PCR anazlyses to validate DEG reliability and ‘house-
keeping’ gene GAPDH used to quantify gene expression.
(DOC)

Acknowledgments
We thank Xuhui Zhu from Hangzhou GeneRui Biotechnology Co., Ltd, Zhejiang, China for
his help in RNA-Seq data analysis.

Author Contributions
Conceived and designed the experiments: LC MZY ZTD. Performed the experiments: SCL.
Analyzed the data: SCL JQJ. Contributed reagents/materials/analysis tools: CLM JQM CFL.
Wrote the paper: SCL LC.

References
1. Jiyer N, Tang YH, Mahalingam R (2013) Physiological, biochemical and molecular responses to a com-

bination of drought and ozone inMedicago truncatula. Plant Cell Environ 36:706–720. doi: 10.1111/
pce.12008 PMID: 22946485

2. Kang Y, Han YH, Jerez IT, Wang MY, Tang YH, Monteros M, et al. (2013) System responses to long-
term drought and re-watering of two contrasting alfalfa varieties. Plant Cell Environ 36:706–720.

3. Huang GT, Ma SL, Bai LP, Zhang L, Ma H, Jia P, et al. (2012) Signal transduction during cold, salt, and
drought stresses in plants. Mol Biol Rep 2:969–987.

RNA-Seq Analysis in Tea under Drought Stress and Recovery

PLOS ONE | DOI:10.1371/journal.pone.0147306 January 20, 2016 18 / 21

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0147306.s009
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0147306.s010
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0147306.s011
http://dx.doi.org/10.1111/pce.12008
http://dx.doi.org/10.1111/pce.12008
http://www.ncbi.nlm.nih.gov/pubmed/22946485


4. Jimenez S, Dridi J, Gutierrez D, Moret D, Irigoyen JJ, Moreno MA, et al. (2013) Physiological, biochemi-
cal and molecular responses in four Prunus rootstocks submitted to drought stress. Tree Physiol
33:1061–1075. doi: 10.1093/treephys/tpt074 PMID: 24162335

5. Umezawa T, Nakashima K, Miyakawa T, Kuromori T, Tanokura M, Shinozaki K, et al. (2010) Molecular
basis of the core regulatory network in ABA responses: sensing, signaling and transport. Plant Cell
Physiol 11:1821–1839.

6. Yang YZ, Tan BC (2014) A distal ABA responsive element in AtNCED3 promoter is required for positive
feedback regulation of ABA biosynthesis in Arabidopsis. PLoS One 1:e87283.

7. Shinozaki K, Yamaguchi SK (2007) Gene networks involved in drought stress response and tolerance.
J Exp Bot 2:221–227.

8. Liu SC, Yao MZ, Ma CL, Jin JQ, Ma JQ, Li CF, et al. (2015) Physiological changes and differential gene
expression of tea plant under dehydration and rehydration conditions. Sci Hortic 184:129–141.

9. Cheruiyot EK, Mumera LM, NgetichWK, Hassanali A, Wachira FN (2009) High fertilizer rates increase
susceptibility of tea to water stress. J Plant Nutr 33:115–129.

10. Das A, Mukhopadhyay M, Sarkar B, Saha D, Mondal TK (2015) Influence of drought stress on cellular
ultrastructure and antioxidant system in tea cultivars with different drought sensitivities. J Environ Biol
364:875–882.

11. Maritim TK, Kamunya SM, Mireji P, Wendia CM, Muoki RC, Cheruiyot EK, et al. (2015) Physiological
and biochemical response of tea [Camellia sinensis (L.) O. Kuntze] to water-deficit stress. J Hortic Sci
Biotech 4:395–400.

12. Gupta S, Bharalee R, Bhorali P, Bandyopadhyay T, Gohain B, Agarwal N, et al. (2012) Identification of
drought tolerant progenies in tea by gene expression analysis. Funct Integr Genomic 3:543–563.

13. Gupta S, Bharalee R, Bhorali P, Das SK, Bhagawati P, Bandyopadhyay T, et al. (2013) Molecular anal-
ysis of drought tolerance in tea by cDNA-AFLP based transcript profiling. Mol Biotechnol 3:237–248.

14. Das A, Das S, Mondal TK (2012) Identification of differentially expressed gene profiles in young roots of
tea [Camellia sinensis (L.) O. Kuntze] subjected to drought stress using suppression subtractive hybrid-
ization. Plant Mol Biol Rep 30: 1088–1101.

15. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev
Genet 1:57–63.

16. Cohen D, Triboulot MBB, Tisserant E, Balzergue S, Magniette MLM, Lelandais G, et al. (2010) Compar-
ative transcriptomics of drought responses in Populus: a meta-analysis of genome-wide expression
profiling in mature leaves and root apices across two genotypes. BMCGenomics 11:630. doi: 10.1186/
1471-2164-11-630 PMID: 21073700

17. Wu J, Wang LF, Li L, Wang SM (2014) De novo assembly of the common bean transcriptome using
short reads for the discovery of drought-responsive genes. PLoS One 10:e109262.

18. Gao F, Wang JY, Wei SJ, Li ZL, Wang N, Li HY, et al. (2015) Transcriptomic analysis of drought stress
responses in Ammopiptanthus mongolicus leaves using the RNA-Seq technique. PLoS One 4:
e0124382.

19. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. (2011) Full-length transcrip-
tome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 7:644–652.

20. Pertea G, Huang X, Liang F, Antonescu V, Sultana R, Karamycheva S, et al. (2003) TIGRGene Indices
clustering tools (TGICL): a software system for fast clustering of large EST datasets. Bioinformatics
5:651–652.

21. Iseli C, Jongeneel CV, Bucher P (1999) ESTScan: a program for detecting, evaluating, and reconstruct-
ing potential coding regions in EST sequences. Proc Int Conf Intell Syst Mol Biol 7:138–148.

22. Conesa A, Gotz S, Garcia GJM, Terol J, Talon M, Robles M (2005) Blast2GO: a universal tool for anno-
tation, visualization and analysis in functional genomics research. Bioinformatics 18:3674–3676.

23. Ye J, Fang L, Zheng H, Zhang Y, Chen J, Zhang Z, et al. (2006) WEGO: a web tool for plotting GO
annotations. Nucleic Acids Res 34(Web Server issue):W293–W297. PMID: 16845012

24. Jin JP, Zhang H, Kong L, Gao G, Luo JC (2014) PlantTFDB 3.0: a portal for the functional and evolu-
tionary study of plant transcription factors. Nucleic Acids Res D1:D1182–D1187.

25. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian
transcriptomes by RNA-Seq. Nat Methods 7:621–628.

26. Schmieder R, Edwards R (2011) Quality control and preprocessing of metagenomic datasets. Bioinfor-
matics 27:863–864. doi: 10.1093/bioinformatics/btr026 PMID: 21278185

27. Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide
expression patterns. P Natl Acad Sci USA 95:14863–14868.

RNA-Seq Analysis in Tea under Drought Stress and Recovery

PLOS ONE | DOI:10.1371/journal.pone.0147306 January 20, 2016 19 / 21

http://dx.doi.org/10.1093/treephys/tpt074
http://www.ncbi.nlm.nih.gov/pubmed/24162335
http://dx.doi.org/10.1186/1471-2164-11-630
http://dx.doi.org/10.1186/1471-2164-11-630
http://www.ncbi.nlm.nih.gov/pubmed/21073700
http://www.ncbi.nlm.nih.gov/pubmed/16845012
http://dx.doi.org/10.1093/bioinformatics/btr026
http://www.ncbi.nlm.nih.gov/pubmed/21278185


28. Maere S, Heymans K, Kuiper M (2005) BiNGO: a Cytoscape plugin to assess overrepresentation of
gene ontology categories in biological networks. Bioinformatics 21:3448–3449. PMID: 15972284

29. Martin JA, Wang Z (2011) Next-generation transcriptome assembly. Nat Rev Genet 10:671–682.

30. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative
PCR and the 2− ΔΔCTmethod. Methods 25:402–408. PMID: 11846609

31. Farré G, Blancquaert D, Capell T, Straeten DVD, Christou P, Zhu C (2014) Engineering complex meta-
bolic pathways in plants. Annu Rev Plant Biol 65:187–223. doi: 10.1146/annurev-arplant-050213-
035825 PMID: 24579989

32. Djilianov DL, Dobrev PI, Moyankova DP, Vankova R, Georgieva DT, Gajdošová S, et al. (2013) Dynam-
ics of endogenous phytohormones during desiccation and recovery of the resurrection plant species
Haberlea rhodopensis. J Plant Growth Regul 3:564–574.

33. Miyazono K, Miyakawa T, Sawano Y (2009) Structural basis of abscisic acid signalling. Nature 462:
609–614. doi: 10.1038/nature08583 PMID: 19855379

34. Miller G, Schlauch K, Tam R, Cortes D, Torres MA, Shulaev V, et al. (2009) The plant NADPH oxidase
RBOHDmediates rapid systemic signaling in response to diverse stimuli. Sci Signal 5:1–10.

35. An C, Mou Z (2011) Salicylic acid and its function in plant immunity. J Integr Plant Biol 53: 412–428.
doi: 10.1111/j.1744-7909.2011.01043.x PMID: 21535470

36. Kumar D (2014) Salicylic acid signaling in disease resistance. Plant Sci 228:127–134. doi: 10.1016/j.
plantsci.2014.04.014 PMID: 25438793

37. Kumar V, Joshi SG, Bell AA, Rathore KS (2013) Enhanced resistance against Thielaviopsis basicola in
transgenic cotton plants expressing Arabidopsis NPR1 gene. Transgenic Res 2:359–368.

38. Malnoy M, Jin QEE, Wysocka EEB, He SY, Aldwinckle HS (2007) Overexpression of the apple
MpNPR1 gene confers increased disease resistance inMalus×domestica. Mol Plant 12:1568–1580.

39. Xia S, Cheng YT, Huang S, Win J, Soards A, Jinn TL, et al. (2013) Regulation of transcription of nucleo-
tide-binding leucine-rich repeat-encoding genes SNC1 and RPP4 via H3K4 trimethylation. Plant Phy-
siol 3:1694–1705.

40. Kazan K, Manners JM (2013) MYC2: the master in action. Mol Plant 6:686–703. doi: 10.1093/mp/
sss128 PMID: 23142764

41. Song SS, Qi TC, Wasternack C, Xie DX (2014) Jasmonate signaling and crosstalk with gibberellin and
ethylene. Curr Opin Plant Biol 21:112–119. doi: 10.1016/j.pbi.2014.07.005 PMID: 25064075

42. Manavella PA, Arce AL, Dezar CA, Bitton F, Renou JP, Crespi M, et al. (2006) Cross-talk between eth-
ylene and drought signalling pathways is mediated by the sunflower Hahb-4 transcription factor. Plant J
1:125–137.

43. Wan LY, Zhang JF, Zhang HW, Zhang ZJ, Quan RD, Zhou SR, et al. (2011) Transcriptional activation
of OsDERF1 in OsERF3 and OsAP2-39 negatively modulates ethylene synthesis and drought toler-
ance in rice. PLoS One 9: e25216.

44. Weijers D, Friml J (2009) Snapshot: auxin signaling and transport. Cell 9:1172.

45. Mano Y, Nemoto K (2012) The pathway of auxin biosynthesis in plants. J Exp Bot 8:2853–2872.

46. Mahouachi J, Arbona V, Cadenas AG (2007) Hormonal changes in papaya seedlings subjected to pro-
gressive water stress and re-watering. Plant Growth Regul 1: 43–51.

47. Ha S, Vankova R, Shinozaki KY, Shinozaki K, Tran LSP (2012) Cytokinins: metabolism and function in
plant adaptation to environmental stresses. Trends Plant Sci 3:172–179.

48. Hwang I, Sheen J, Muller B (2012) Cytokinin signaling networks. Annu Rev Plant Biol 1:353–380.

49. Stasolla C, Katahira R, Thorpe TA, Ashihara H (2003) Purine and pyrimidine nucleotide metabolism in
higher plants. J Plant Physiol 160:1271–1295. PMID: 14658380

50. Pareek A, Sopory SK, Bohnert HJ (2010) Abiotic Stress Adaptation in Plants: Protein Kinases and
Phosphatases for Stress Signal Transduction in Plants. Springer, Berlin 2010:123–163.

51. Komatsu K, Suzuki N, Kuwamura M, Nishikawa Y, Nakatani M, Ohtawa H, et al. (2013) Group A
PP2Cs evolved in land plants as key regulators of intrinsic desiccation tolerance. Nature 4:3219–3227.

52. Li Y, Feng D, Zhang D, Su J, Zhang Y, Li Z, et al. (2012) Rice MAPK phosphatase IBR5 negatively reg-
ulates drought stress tolerance in transgenicNicotiana tabacum. Plant Sci 188:10–18. doi: 10.1016/j.
plantsci.2012.02.005 PMID: 22525239

53. Ogasawara Y, Kaya H, Hiraoka G, Yumoto F, Kimura S, Kadota Y, et al. (2008) Synergistic activation of
the Arabidopsis NADPH oxidase AtrbohD by Ca2+ and phosphorylation. J Biol Chem 283: 8885–8892.
doi: 10.1074/jbc.M708106200 PMID: 18218618

RNA-Seq Analysis in Tea under Drought Stress and Recovery

PLOS ONE | DOI:10.1371/journal.pone.0147306 January 20, 2016 20 / 21

http://www.ncbi.nlm.nih.gov/pubmed/15972284
http://www.ncbi.nlm.nih.gov/pubmed/11846609
http://dx.doi.org/10.1146/annurev-arplant-050213-035825
http://dx.doi.org/10.1146/annurev-arplant-050213-035825
http://www.ncbi.nlm.nih.gov/pubmed/24579989
http://dx.doi.org/10.1038/nature08583
http://www.ncbi.nlm.nih.gov/pubmed/19855379
http://dx.doi.org/10.1111/j.1744-7909.2011.01043.x
http://www.ncbi.nlm.nih.gov/pubmed/21535470
http://dx.doi.org/10.1016/j.plantsci.2014.04.014
http://dx.doi.org/10.1016/j.plantsci.2014.04.014
http://www.ncbi.nlm.nih.gov/pubmed/25438793
http://dx.doi.org/10.1093/mp/sss128
http://dx.doi.org/10.1093/mp/sss128
http://www.ncbi.nlm.nih.gov/pubmed/23142764
http://dx.doi.org/10.1016/j.pbi.2014.07.005
http://www.ncbi.nlm.nih.gov/pubmed/25064075
http://www.ncbi.nlm.nih.gov/pubmed/14658380
http://dx.doi.org/10.1016/j.plantsci.2012.02.005
http://dx.doi.org/10.1016/j.plantsci.2012.02.005
http://www.ncbi.nlm.nih.gov/pubmed/22525239
http://dx.doi.org/10.1074/jbc.M708106200
http://www.ncbi.nlm.nih.gov/pubmed/18218618


54. Chen LM, Zhou XA, Li WB, ChangW, Zhou R, Wang C, et al. (2013) Genome-wide transcriptional anal-
ysis of two soybean genotypes under dehydration and rehydration conditions. BMCGenomics 14:687.
doi: 10.1186/1471-2164-14-687 PMID: 24093224

55. Li HE, YaoWJ, Fu YR, Li SK, Guo QQ (2015) De novo assembly and discovery of genes that are
involved in drought tolerance in Tibetan Sophora moorcroftiana. PLoS One 1: e111054.

56. Johnson SM, Lim FL, Finkler A, FrommH, Slabas AR, Knight MR (2014) Transcriptomic analysis of
Sorghum bicolor responding to combined heat and drought stress. BMCGenomics 15:456. doi: 10.
1186/1471-2164-15-456 PMID: 24916767

57. Ma HS, Liang D, Shuai P, Xia XL, Yin WL (2010) The salt- and drought-inducible poplar GRAS protein
SCL7 confers salt and drought tolerance in Arabidopsis thaliana. J Exp Bot 61:4011–4019. doi: 10.
1093/jxb/erq217 PMID: 20616154

58. Fode B, Siemsen T, Thurow C, Weigel R, Gatz C (2008) The ArabidopsisGRAS protein SCL14 inter-
acts with class II TGA transcription factors and is essential for the activation of stress-inducible promot-
ers. Plant Cell 20:3122–3135. doi: 10.1105/tpc.108.058974 PMID: 18984675

59. Kang NY, Cho C, Kim J (2013) Inducible expression of Arabidopsis response regulator 22 (ARR22), a
type-C ARR, in transgenic Arabidopsis enhances drought and freezing tolerance. PLoS One 11:
e79248.

60. Li M, Li CS, Zhao CZ, Li AQ, Wang XJ (2013) Research advances in plant SPL transcription factors.
Chin Bull Bot 1:107–116.

61. Liu JY, Rice JH, Chen NN, Baum TJ, Hewezi T (2014) Synchronization of developmental processes
and defense signaling by growth regulating transcription factors. PLoS One 5: e98477.

62. Zhang YF, Clemens A, Maximova SN, Guiltinan MJ (2014) The Theobroma cacao B3 domain transcrip-
tion factor TcLEC2 plays a duel role in control of embryo development and maturation. BMC Plant Biol
1:106.

63. Klein T, Hoch G, Yakir D, Körner C (2014) Drought stress, growth and nonstructural carbohydrate
dynamics of pine trees in a semi-arid forest. Tree Physiol 9:981–992.

64. Szabados L, Savoure A (2010) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97. doi:
10.1016/j.tplants.2009.11.009 PMID: 20036181

65. Lin MT, Occhialini A, Andralojc PJ, Parry MA, Hanson MR (2014) A faster Rubisco with potential to
increase photosynthesis in crops. Nature 7519:547–550.

66. Granot D, Kelly G, Stein O, Schwartz RD (2014) Substantial roles of hexokinase and fructokinase in the
effects of sugars on plant physiology and development. J Exp Bot 3:809–819.

67. Golec AD, Szarejko I (2013) Open or close the gate-stomata action under the control of phytohormones
in drought stress conditions. Front Plant Sci 4:138. doi: 10.3389/fpls.2013.00138 PMID: 23717320

68. Meyer S, MummP, Imes D, Endler A, Weder B, Geiger D, et al. (2010) AtALMT12 represents an R-type
anion channel required for stomatal movement in Arabidopsis guard cells. Plant J 63:1054–1062. doi:
10.1111/j.1365-313X.2010.04302.x PMID: 20626656

69. Kim TH, Böhmer M, Hu HH, Nishimura N, Schroeder JI (2010) Guard cell signal transduction network:
advances in understanding abscisic acid, CO2, and Ca2+ signaling. Annu Rev Plant Biol 2:561–591.

RNA-Seq Analysis in Tea under Drought Stress and Recovery

PLOS ONE | DOI:10.1371/journal.pone.0147306 January 20, 2016 21 / 21

http://dx.doi.org/10.1186/1471-2164-14-687
http://www.ncbi.nlm.nih.gov/pubmed/24093224
http://dx.doi.org/10.1186/1471-2164-15-456
http://dx.doi.org/10.1186/1471-2164-15-456
http://www.ncbi.nlm.nih.gov/pubmed/24916767
http://dx.doi.org/10.1093/jxb/erq217
http://dx.doi.org/10.1093/jxb/erq217
http://www.ncbi.nlm.nih.gov/pubmed/20616154
http://dx.doi.org/10.1105/tpc.108.058974
http://www.ncbi.nlm.nih.gov/pubmed/18984675
http://dx.doi.org/10.1016/j.tplants.2009.11.009
http://www.ncbi.nlm.nih.gov/pubmed/20036181
http://dx.doi.org/10.3389/fpls.2013.00138
http://www.ncbi.nlm.nih.gov/pubmed/23717320
http://dx.doi.org/10.1111/j.1365-313X.2010.04302.x
http://www.ncbi.nlm.nih.gov/pubmed/20626656

