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ABSTRACT The Gram-negative proteobacterium Pseudomonas oleovorans DSM 1045
is considered a promising source for enzymes of biotechnological interest, e.g., hy-
drolases and transaminases. Here, we present a draft sequence of its 4.86-Mb ge-
nome, enabling the identification of novel biocatalysts.

Hydrocarbon-degrading bacteria, including members of the genus Pseudomonas,
represent a promising source for novel biocatalysts of biotechnological relevance

(1, 2). Belonging to this group, the Pseudomonas oleovorans type strain DSM 1045 was
isolated as a contaminant of industrial cutting fluids and shown to utilize cyclic aliphatic
hydrocarbons, like naphtenic acids (2). Its biotechnological potential was indicated by
the observation that cell extracts could catalyze �-transamination reactions (3).

Chromosomal DNA of Pseudomonas oleovorans DSM 1045 was isolated from 2 ml
of overnight-grown culture (growth medium LB, 30°C; Carl-Roth-Karlsruhe) using the
DNeasy blood and tissue kit (Qiagen, Hilden, Germany), according to the manufacturer’s
instructions. The extracted DNA was used to generate Illumina shotgun paired-end
sequencing libraries, which were sequenced with a MiSeq instrument and the MiSeq
reagent kit version 3 (600 cycles), as recommended by the manufacturer (Illumina,
San Diego, CA, USA). Quality filtering using Trimmomatic version 0.32 (4) resulted in
2,602,096 paired-end reads. The assembly was performed with the SPAdes genome
assembler software version 3.8.0 (5) and resulted in 108 contigs (�500 bp), with an
average coverage of 112-fold. The assembly was validated and the read coverage
determined with QualiMap version 2.1 (6). The draft genome of P. oleovorans DSM 1045
consisted of a single chromosome (4.86 Mb) with an overall G�C content of 62.07%.
Automatic gene prediction and identification of rRNA and tRNA genes were performed
using the software tool Prokka (7). The draft genome contained 7 rRNA genes, 62 tRNA
genes, 3,398 protein-coding genes with predicted functions, and 1,243 genes coding
for hypothetical proteins.

A homology search for biocatalysts of potential biotechnological relevance with all
in silico-translated coding sequences (CDSs) using BLASTP (8) led to the detection of 15
putative enzymes predicted to be lipases, esterases, or phospholipases. Furthermore,
three putative �-transaminases were identified, and one imine reductase was identified
according to sequence motifs described in Fademrecht et al. (9). Genes encoding a Sec
and Tat secretion pathway, as well as genes encoding a type II secretion machinery,
were identified, indicating the potential to produce extracellular enzymes. Furthermore,
biosynthetic capabilities are predicted for antimicrobial bacteriocins and polyhydroxy-
alkanoate biopolymers, as identified with antiSMASH 4.0.0rc1 (10). An aliphatic alkane
degradation pathway could not be detected, coinciding with the observation that this
strain does not grow on long-chain alkanes (11). Genes encoding homologs to aliphatic
alcohol dehydrogenase AlkJ (of Pseudomonas putida GPo1) and rhamnosyltransferase
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RhlA (of Pseudomonas aeruginosa) further suggest capabilities for the synthesis of
aliphatic alcohols and of 3-(hydroxyalkanoyloxy)alkanoic acid type biosurfactants.

Accession number(s). This whole-genome shotgun project has been deposited at

DDBJ/ENA/GenBank under the accession no. NIUB00000000. The version described in
this paper is version NIUB01000000.
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