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Microvascular Shunts in COVID-19 Pneumonia

To the Editor:

Throughout the coronavirus disease (COVID-19) pandemic,
clinicians and scientists have attempted to understand mechanisms
underlying severe hypoxia in individuals with severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2), which can be
disproportionate to changes in lung mechanics (1). Pathophysiologic
mechanisms leading to hypoxia in SARS-CoV-2 are incompletely
understood but may include the recruitment of intrapulmonary
shunt vessels. Past work has noted the presence of prominent
intrapulmonary bronchopulmonary anastomoses (IBA), which
represent connections between the pulmonary and bronchial
circulations, in severe SARS-CoV-2 (2, 3). Prominent IBA have been
previously observed by lung histology and three-dimensional
reconstruction from patients dying with SARS-CoV-2, proposing that
these vessels contribute to intrapulmonary shunt (2). IBA have
previously been identified in several diseases characterized by severe
hypoxemia with extensive pulmonary vascular disease, including
developmental lung diseases, and in idiopathic pulmonary arterial
hypertension (4, 5).

In patients with SARS-CoV-2, Reynolds and colleagues
performed studies using contrast-enhanced transcranial
Doppler imaging of the bilateral middle cerebral arteries (3).
These investigators demonstrated that 83% of the study
participants had clear evidence of shunting of agitated saline
bubbles into the middle cerebral arteries, which bypassed the
pulmonary capillaries (3). Furthermore, the PaO2

-to-FIO2
ratio

was inversely correlated with the number of microbubbles
observed (Pearson’s r=20.55; P = 0.02), suggesting that the
larger the shunt, the greater the degree of hypoxemia. With
these findings, this group proposed that shunt vessels may
further contribute to the pathophysiology and severity of
hypoxemia in SARS-CoV-2.

This recent publication by Ackermann and colleagues (6)
supports these past observations describing IBA in COVID-19
lungs at autopsy. However, their findings would be further
strengthened with more details regarding how vascular types
and connections were determined by their extensive imaging
methods. The histologic terms that were used, such as
describing vessels as “angiomatoid” or “plexiform”, are more
typically used to describe histologic features of plexiform
lesions in severe pulmonary arterial hypertension,
observations that were not made in this case series. Both
current and past work (7) by this team suggests that
neovascularization takes place in severe COVID-19
pneumonia via intussusceptive angiogenesis at capillary levels.
This proposal markedly depends on the demonstration of
increased numbers of holes within capillary networks from
corrosion casts. Production of such tiny and fragile casts is
very difficult with highly variable outcomes, and interpretation
may be subject to sampling bias. Thorough quantification and
cast comparison to other pulmonary disease controls would be
helpful. Our view is that the observed microvessels appear
dilated and congested and are detectable owing to increased
recruitment through enhanced blood flow, which reflects
intrapulmonary shunting (2). In fact, alveolar and bronchial
capillary abundance due to pathologic congestion is frequently
seen in histologic sections of autopsy material in the presence
of right heart failure.

Over the years, vascular connections between the
pulmonary and bronchial circulations have been given a variety
of names, including bronchopulmonary, pulmobronchial,
supernumerary vessels, or “Sperrarterien”, but their roles
during development or in disease have been uncertain.
Advances in our understanding of the role of these vessels
through comprehensive studies including histology, three-
dimensional reconstruction, hemodynamics, and now,
advanced imaging provide tools to stimulate future work to
better understand their potential contributions to disease. We
have proposed the term IBA to describe microvascular
pulmonary and bronchial connections that allow for pulmonary
arterial blood to bypass alveolar capillaries. Further
characterization of mechanisms underlying the developmental
basis for and physiologic regulation of IBA may provide
insights leading to the development of novel diagnostic and
therapeutic strategies to better address the many challenges of
severe respiratory failure in patients with SARS-CoV-2, as well
as potential roles in “long COVID” during follow-up in
survivors.�
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Bronchial Mucosal Microcirculation in SARS-CoV-2
Infection: Role in Innate Humoral Defense?
To the Editor:

The circulation furnishing human bronchi with oxygenized blood
sems overlooked as regards possible roles in infection diseases. I thus

welcome the advanced images reported by Ackerman and
colleagues illustrating peribronchial and perivascular microvessels
and showing evidence for excessive bronchiopulmonary shunting
by the bronchial circulation in coronavirus disease (COVID-19)
pneumonia (1). Arguably, a profuse mucosal microcirculation,
supplied by the bronchial circulation, also needs attention in
COVID-19.

Cooperation between Mucosal Microcirculation and
Overlying Epithelial Barrier
Similar to superficial microcirculations of nasal and tracheal mucosae,
but distinct from the pulmonary circulation, responsiveness of
human bronchial mucosal microcirculation brings about local plasma
exudation at mucosal challenge with toxins, including microbes (2, 3).
The involved microvascular–epithelial cooperation may be
summarized as follows: Macromolecules extravasate through active
formations/closures of endothelial gaps; extravasated bulk plasma
moves up between epithelial cells; a minimal hydrostatic pressure
increase impacts laterally on epithelial junctions; and without
sieving, plasma proteins/peptides traverse the pseudostratified
epithelium (2–4).

Thanks to a conspicuous epithelial barrier asymmetry of
human airways, plasma proteins/peptides traverse without
compromising the normal epithelial defense barrier (2–4). In
conducting airways, plasma exudation thus comes forth as a
physiological, first-line, innate immune response at mucosal sites of
challenge (2–4).

Early Humoral Antimicrobial Defense in Airways with
Intact Epithelium
The nonsieved nature of plasma exudation means that coagulation,
complement, natural antibody, cathelicidine, etc., molecules
have opportunities for joint operations on human intact airway
mucosa (2, 4). This power demands control. Thus, plasma exudation
restricts to sites of toxin deposition, and its duration is governed by
active formation of endothelial gaps that close spontaneously unless
challenge is increased (2, 3).

Human nasal inoculation with rhinoviruses and coronavirus
229E causes plasma exudation (determined as fibrinogen in airway
surface liquids) that associates with symptoms and lasts until
resolution of infection (2, 5).

As respiratory infections proceed down the airways, exudation
of plasma proteins from the bronchial microcirculation would be a
final outpost mucosal defense. In accord, high amounts of
fibrinogen were demonstrated in sputum samples from individuals
with asthma infected with influenza AB (6). Indeed, one may ask
whether corticosteroid-insensitive plasma exudation has
contributed to reduced risk for severe disease observed in cohorts of
people with asthma in the current and 2009 (H1N1-influenza)
pandemics (2).

Humoral Defense at Epithelial Loss/Regeneration
The exudative nature of asthma is indicated by elevated baseline
concentrations of a2-macroglobulin and IgM in bronchial
surface liquids (2, 3). Agreeing with epithelial barrier
asymmetry, absorption of inhaled molecules has not been
increased in asthma (3, 4), nor may it be increased at viral
infection (2).
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