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Abstract

Dopaminergic neurons (DANs) drive learning across the animal kingdom, but the upstream 

circuits that regulate their activity and thereby learning remain poorly understood. We provide the 

first synaptic-resolution connectome of the circuitry upstream of all DANs in a learning center, the 

mush-room body (MB) of Drosophila larva. We discover afferent sensory pathways and a large 

population of neurons that provide feedback from MB output neurons and link distinct memory 

systems (aversive and appetitive). We combine this with functional studies of DANs and their 

presynaptic partners and with comprehensive circuit modelling. We find that DANs compare 

convergent feedback from aversive and appetitive systems which enables the computation of 

integrated predictions that may improve future learning. Computational modelling reveals that the 

discovered feedback motifs increase model flexibility and performance on learning tasks. Our 

study provides the most detailed view to date of biological circuit motifs that support associative 

learning.

Introduction

To behave adaptively in an ever-changing environment, animals must be able to learn new 

associations between sensory cues (conditioned stimuli, CS) and rewards or punishments 

(aversive and appetitive unconditioned stimuli, US), and continuously update previous 

memories, depending on their relevance and reliability1–3.

Modulatory neurons (e.g. dopaminergic, DANs) convey information about rewards and 

punishments and provide the teaching signals for updating the valence associated with CS in 

learning circuits across the animal kingdom (e.g. the vertebrate basal ganglia1;4, or the insect 

mushroom body, MB3;5). The co-occurrence of CS and modulatory neuron activity tuned 

only to the received US can support simple associative memory formation6. To account for 

more complex behavioral phenomena, theories have been developed in which learning can 

be regulated by previously formed associations7;8. According to reinforcement learning 

theories, learning is driven by errors between predicted and actual US (prediction errors)7;8, 

which are thought to be represented by the activity of DANs1;4. Indeed, in many model 

organisms, the responses of modulatory neurons have been shown to be adaptive: in 

monkeys1, rodents4;9, and insects3;5;10;11. Despite recent progress3;4;9, the basic principles 

by which DAN activity is adaptively regulated and teaching signals are computed are not 

well understood.
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A prerequisite for the adaptive regulation of modulatory neuron activity is convergence of 

afferent pathways that convey information about received US1;4 with feedback pathways that 

convey information about previous experience. A comprehensive synaptic-resolution 

connectivity map of the feedback circuits that regulate modulatory neurons would provide a 

basis for understanding how learning is adaptively regulated by prior learning, but it has 

previously been out of reach.

Insects, especially their larval stages, have small and compact brains that have recently 

become amenable to large-scale electron microscopy (EM) circuit mapping12;13. Both 

adult3;6;14 and larval15 insect stages possess a brain center essential for associative learning, 

the MB. The MB contains neurons called Kenyon Cells (KCs) that sparsely encode CS; MB 

modulatory neurons (collectively called MBINs) that provide the teaching signals; and MB 

output neurons (MBONs) whose activity represents learnt valences of stimuli3;6;14;15. In the 

Drosophila larva, most modulatory neurons are dopaminergic (DANs), some are 

octopaminergic (OANs), and some have unidentified neurotransmitters (simply called 

MBIN)15. Modulatory neurons and MBONs project axon terminals and dendrites, 

respectively, onto the KC axons in a tiled manner, defining MB compartments, in both adult3 

and larval15 Drosophila. In adult Drosophila, it has been shown that co-activation of KCs 

and DANs reduces the strength of the KC-MBON synapse in that compartment3;16. 

Different compartments have been implicated in the formation of distinct types of memories, 

for example aversive and appetitive, or short- and long-term3;14;15;17;18. However, despite a 

good understanding of the structure and function of the core components of the MB in both 

adult3;6;14 and larval Drosophila15, the circuits presynaptic to modulatory neurons that 

regulate their activity have remained relatively uncharacterized.

We therefore reconstructed all neurons presynaptic to all modulatory neurons in an EM 

volume that spans the entire nervous system of a first instar Drosophila larva, in which we 

had previously reconstructed all the core components of the MB12. We also determined 

which individual modulatory neurons are activated by punishments and reconstructed their 

afferent US pathways from nociceptive and mechanosensory neurons. We characterized the 

neurotransmitter profiles of some of the neurons in the network and functionally confirmed 

some of the identified structural connections. Finally, we developed a model of the circuit 

constrained by the connectome, the neurotransmitter data, and the functional data and used it 

to explore the computational advantages offered by the newly discovered architectural 

motifs for performing distinct learning tasks.

Results

Larval MB modulatory neurons for aversive and appetitive memory formation

We begun with a functional characterisation of larval modulatory neurons and asked which 

ones signal punishment or reward. Activation of all DL-cluster DANs that target the vertical 

lobe, the lateral appendix, and the peduncle (with a broadly-expressing TH-GAL4 driver 

line) has been shown to induce aversive memory for paired odor19. Activation of individual 

larval PAM-cluster DANs that target the MB medial lobe has been shown to induce 

appetitive memory for paired odor20. However, the role of other individual modulatory 

neuron types was not known. We generated Split-GAL4 lines that drive expression 
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selectively in one or two modulatory neurons per hemisphere (Fig. 1a, Extended Data 1, 

Supplementary Table).

We then paired an odor (CS) with optogenetic activation of these modulatory neurons in a 

three-trial, one-odor, short-term memory associative memory paradigm (Fig. 1b).

We found that activation of DAN-f1 (innervating the intermediate vertical lobe), DAN-g1 

(lower vertical lobe), or DAN-d1 (lateral appendix) established aversive memory for paired 

odor (Fig. 1c and Extended Data 2). In contrast, as previously reported15;20, activation of 

DANs that innervate the medial lobe led to the formation of an appetitive memory for paired 

odor (Fig. 1c and Extended Data 2). Thus, similar to findings in the adult fly3;17, larval 

DANs that innervate distinct lobes signal opposite valences.

Pairing of an odor with the activation of DAN-c1 (lower peduncle) or of the non-

dopaminergic modulatory neurons induced neither appetitive nor aversive memory (Fig. 1c 

and Extended Data 2). Thus, our analysis revealed at least three functionally distinct classes 

of compartments in the larval MB: medial lobe compartments whose DANs can induce 

appetitive memory for paired odor; lateral appendix and lower and intermediate vertical lobe 

compartments whose DANs can induce aversive memory for paired odor; and others whose 

modulatory neurons were not sufficient to induce short-term memory (Fig. 1c).

Punishment encoding across larval MB modulatory neurons

Next, we asked whether there is any functional diversity within the population of DANs 

whose activation signals punishment.

Larvae sense multiple types of innately aversive somatosensory stimuli that evoke distinct 

types of innate avoidance and escape responses21–25 (Fig. 1d). Already the mildest of these 

punishments, vibration, that is transduced by mechanosensory neurons evokes a turning 

avoidance response and induces aversive memory for paired odor26. Fittingly, we found that 

optogenetic activation of nociceptive sensory neurons and of Basin interneurons (and their 

downstream A00c interneurons) that evokes more vigorous fast crawling and rolling escape, 

respectively, also induces aversive memory for paired odor (Fig. 1d-e and Extended Data 2).

We therefore asked how individual modulatory neurons respond to different punishment 

types by monitoring their calcium transients in response to optogenetic activation of specific 

somatosensory neurons. In each of the three DANs whose activation induced aversive 

memory for paired odor, we found reliable responses to at least two fictive punishment 

types. Each punishment type evoked reliable and statistically significant responses in at least 

two DANs, but each DAN’s tuning differs (Fig. 1f). Thus, these three DANs could 

combinatorially encode punishment type or salience.

For comparison, we also tested responses of a few modulatory neurons whose activation 

paired with odor did not induce short-term aversive memory and found they were not 

significantly activated by the fictive punishments (Fig. 1f).
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EM reconstruction of all input neurons to MB modulatory neurons

To provide a basis for understanding how the activity and function of modulatory neurons is 

regulated, we sought to comprehensively identify all the neurons presynaptic to them. We 

have previously reconstructed all of the KCs, MBONs, and modulatory neurons in an EM 

volume of a 1st instar larval nervous system12. Here we systematically reconstructed all 

neurons presynaptic to all modulatory neurons (i.e. pre-modulatory neurons) in the same EM 

volume (Fig. 2a-e). We identified 213 left-right homologous pairs and 5 unpaired pre-

modulatory neurons. Out of these, 102 homologous pairs were reliably and strongly 

connected (see Material and Methods, Fig. 2a,b,e, Supplementary Adjacency Matrices 1-3, 

Supplementary Atlas). While the “other weakly connected partners” could also influence 

modulatory neuron activity, especially in combination with each other, we focus our study 

mainly on the 102 reliably and strongly connected partners.

We asked how the functional diversity of modulatory neurons relates to their input diversity. 

As expected, functionally distinct DANs receive inputs from distinct subsets of pre-

modulatory neurons, and functionally similar DANs share a higher fraction of presynaptic 

partners with each other than with other DANs (Fig. 2e and Extended Data 3). Nevertheless, 

each modulatory neuron type, that is distinguishable based on the compartment it innervates, 

or based on neurotransmitter expression, receives input from a unique combination of 

neurons and thus potentially encodes a unique set of features.

Feedback neurons reveal a highly recurrent architecture for computing teaching signals

We aimed to characterize the pre-modulatory neurons based on the inputs they receive. We 

asked whether they convey information about previously formed memories (via feedback 

originating from MBONs), or about received US (via afferent input from sensory neurons), 

or both. Surprisingly, we found that the majority (61/102) of pre-modulatory neurons receive 

feedback input from MBONs (Fig. 2a-c, Extended Data 4a-c). 40 neuron pairs receive 

reliable direct input from MBONs, providing one-step feedback from MBONs to 

modulatory neurons (we call these one-step feedback neurons, FBNs, Fig. 2a-c, Extended 

Data 4a). Another 21 pre-modulatory neuron pairs receive reliable direct input from FBNs 

(but not MBONs) and provide two-step feedback from MBONs (two-step feedback neurons, 

FB2Ns, Fig. 2a-c, Extended Data 4b). The majority of FBNs also receive input from other 

FBNs, providing two-step, as well as one-step feedback (Fig. 2b-c, Extended Data 4a). The 

remaining pre-modulatory neurons do not receive reliable direct MBON or FBN input, so 

we classified them tentatively as “feedforward neurons” (FFNs, Fig. 2a-c).

To determine the likelihood that MBONs could influence modulatory neuron activity via the 

feedback pathways, we analyzed the fraction of total input that FBNs and FB2Ns receive 

from MBONs, and that modulatory neurons receive from feedback pathways. In previous 

studies we have demonstrated functional connections when neurons received 2% or more of 

their input from another neuron24;25. We found that FBNs receive on average 12% of their 

synaptic input from MBONs and 26% from MBONs and FBNs combined (Extended Data 

4a,c). Similarly, FB2Ns receive on average 17% of their synaptic input from FBNs and 28% 

from FBNs and FB2Ns combined (Extended Data 4b-c). Based on these input fractions we 

expect that MBONs can significantly influence FBN and FB2N activity. Strikingly, we 
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found that many modulatory neurons receive more than 50% of their total dendritic input 

from all feedback pathways combined (Fig. 2d). This suggests that modulatory neuron 

activity could be strongly influenced by MBON activity.

Multilevel convergence of afferent and feedback pathways

We investigated how the feedback pathways from MBONs converge with afferent pathways 

from US sensing neurons. We focused on the DANs that respond to somatosensory neuron 

activation (Fig. 1f) and asked whether they receive somatosensory and MBON input via 

distinct or overlapping pre-modulatory neurons. We had previously reconstructed all first-

order neurons downstream of nociceptive and mechanosensory sensory neurons, and a 

subset of second- and third-order ones24;25. This enabled us to search for shortest pathways 

from these somatosensory neurons to modulatory neurons. While the pathways identified in 

this way represent only a subset of existing pathways, nevertheless, we were able to identify 

two-, three-, and four-step pathways from the somatosensory neurons to six different pre-

modulatory neurons that target the vertical lobe and lateral appendix modulatory neurons: 

three FFNs and three FB2Ns (Fig. 2f, Supplementary Fig. 1, Supplementary Adjacency 

Matrix 1, Supplementary Atlas). Thus, the afferent US pathways converge with feedback 

pathways from MBONs at multiple levels, both onto the modulatory neurons themselves 

(via FFNs) and onto the pre-modulatory FB2Ns.

Modulatory neurons receive convergent one-step feedback from multiple MBONs 
innervating functionally distinct compartments

Next, we analyzed in more detail the types of one-step feedback motifs formed by FBNs 

(Fig. 2a-c, 3a-c, Extended Data 5-9, Supplementary Fig. 2a-b, Supplementary Adjacency 

Matrix 1, and Supplementary Atlas). We observed a surprising diversity of one-step FBNs 

that linked unique combinations of MBONs with unique combinations of modulatory 

neurons (See Fig. 3a for examples and Extended Data 5 for the complete dataset). Out of the 

40 FBNs, 7 provide exclusively within-compartment feedback, and 13 provide exclusively 

cross-compartment feedback. Interestingly, many FBNs (17, Fig. 3a,d, Extended Data 5, 

Supplementary Fig. 2a) integrate input from MBONs of functionally distinct compartments 

(Fig. 1c, Extended Data 7). Almost all of these FBNs (at least 13/17) receive GABAergic 

(inhibitory) or glutamatergic (potentially also inhibitory27;28 in insects) input from MBONs 

innervating compartments, and cholinergic (excitatory) inputs from MBONs innervating 

other compartments (Fig. 3a,d, Extended Data 5, Supplementary Fig. 2a). The integration of 

inhibitory and excitatory inputs may enable these FBNs to more accurately read out the 

results of learning-induced plasticity by comparing its effects across compartments.

Not only do most FBNs receive input from multiple MBONs, but also most modulatory 

neurons receive input from multiple FBNs (Fig. 2e, 3a, Extended Data 6, Supplementary 

Fig. 2b). We therefore analyzed one-step connections from all MBONs to all modulatory 

neurons via FBNs. We found that most modulatory neurons receive one-step feedback from 

many MBONs and from each of the three functionally distinct regions of the MB: upper 

vertical lobe (unknown function), vertical lobe aversive memory compartments, and medial 

lobe appetitive memory compartments (Fig. 3b-c). This is in stark contrast to the direct 

connections from MBONs to modulatory neurons, which are sparse and connect few 
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compartments (Extended Data 8a-b). Thus, the newly discovered FBNs greatly increase the 

connectivity between MBONs and modulatory neurons, enabling the output from 

functionally distinct regions of the MB to influence the activity of single modulatory 

neurons during memory formation.

A modulatory neuron receives inhibitory and excitatory feedback from compartments of 
opposite valence

To gain a better understanding of the way in which feedback motifs influence modulatory 

neuron activity, we were able to determine the neurotransmitter profiles of some of them 

(see Materials and Methods).

We found that four of the tested FBNs are cholinergic (i.e. excitatory), three are GABAergic 

(i.e. inhibitory), and one is glutamatergic (likely also inhibitory27;28, Fig. 3a and Extended 

Data 9).

For a few cases where we could identify the neurotransmitter profiles of both the MBON12 

and the FBN in a one-step feedback connection, we attempted to predict the signs of these 

connections (Fig. 3b). Out of these, all of the true within-compartment feedback connections 

are potentially inhibitory (4/4), comprising a GABAergic or glutamatergic MBON and an 

excitatory FBN (Fig. 3b,e). In contrast, most of the (8/11) cross-compartment connections 

seem functionally excitatory, either disinhibitory (comprising an inhibitory MBON and an 

inhibitory FBN), or excitatory (comprising an excitatory MBON and an excitatory FBN, 

Fig. 3b and 3e). Furthermore, some modulatory neurons (e.g. DAN-g1 and DAN-i1) receive 

both potentially inhibitory feedback from their own compartment and potentially excitatory 

feedback from compartments of opposite valence (Fig. 3b,e).

We wanted to functionally confirm the two types of predicted feedback connections onto the 

same DAN (Fig. 3e, 4a-g). DAN-i1 potentially receives inhibitory one-step feedback from 

MBON-i1 in its own compartment (Fig. 4a-b), and disinhibitory one-step feedback from 

MBON-m1 from compartments of opposite valence (Fig. 4a,e). Neither of these MBONs 

synapses directly onto DAN-i1. Furthermore, DAN-i1 receives two-step feedback from 

MBON-i1, but not from MBON-m1 (Fig. 5e). We activated these MBONs optogenetically 

while recording intracellularly from DAN-i1.

Activating MBON-i1 evoked long-latency (55ms ± 17) inhibitory responses in DAN-i1 in 

3/9 animals (Fig. 4c-d, Supplementary Fig. 3a), consistent with a polysynaptic connection 

mediated by an FBN (Fig. 3b and 4b). The inter-animal variability could be due to different 

baseline activity levels of the FBN (as illustrated in Supplementary Fig. 3b). In 5/9 animals 

(Fig. 4c and Supplementary Fig. 3a) we observed inhibitory responses to the offset of 

MBON-i1 activation only. These offset responses had a longer latency (95 ms ± 44) than the 

onset responses and could therefore be mediated by a longer two-step feedback pathway 

(See Supplementary Fig. 3c).

In contrast, we found that activating MBON-m1 evoked excitatory responses in DAN-i1 in 

3/3 animals with a similar latency (47 ms ± 9) to the inhibitory responses evoked by MBON-

i1 activation (Fig. 4e-g, Supplementary Fig. 3d).
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In summary, we confirmed with physiological recording an inference we had made from 

structural connectivity and neurotransmitter information (Fig. 3e): functionally inhibitory 

and excitatory MBON connections from compartments of opposite valence converge onto 

the same DAN (Fig. 4a-g).

Two-step feedback further increases inter-compartment connectivity

We also analyzed the connections between all MBONs to all modulatory neurons via two-

step pathways (Fig. 2a-c, 5a-e, Extended Data 4a-c, Supplementary Fig. 4, 5a-d, 6, 

Supplementary Adjacency Matrix 1, Supplementary Atlas). We found two-step feedback 

pathways from most MBONs to most modulatory neurons that further increase 

intercompartment connectivity (Fig. 5e, 5c, 5e and Extended Data 8b). We were able to 

determine neurotransmitter profiles for seven neurons that provide two-step feedback: three 

were cholinergic, two were GABAergic, and two were glutamatergic (Fig. 5b,d, Extended 

Data 9). In summary, we found a diverse set of two-step feedback motifs that could support 

within- and cross-compartment computations.

Feedback neurons can drive memory formation

So far, we have shown that some indirect feedback connections from MBONs to DANs are 

functional (Fig. 4b-g). We also wanted to test whether the feedback neurons can sufficiently 

influence DAN activity to induce learning. We generated Split-GAL4 lines that drive 

expression selectively in one or very few neuron types for: a cholinergic FB2N, a 

glutamatergic FB2N, and a GABAergic FBN (Extended Data 1, 9, 10). These neurons 

project onto DANs whose activation can induce aversive memory for paired odor (Fig. 1c, 

Extended Data 2). We asked whether optogenetic activation of these neurons is sufficient to 

induce memory in our olfactory training paradigm (Fig. 6). We found that activation of the 

excitatory cholinergic FB2N induces aversive memory for paired odor (Fig. 6a, Extended 

Data 2), similar to activation of its postsynaptic DAN-f1 (Fig. 1c). Interestingly, pairing of 

an odor with the activation of the GABAergic FBN or the glutamatergic FB2N induces 

appetitive memory for paired odor (Fig. 6b-c, Extended Data 2a-b), opposite to activation of 

their postsynaptic DANs (Fig. 1c).

Connectivity-constrained model of the circuit reveals feedback neurons improve 
performance on complex learning tasks

To explore the computational consequences of the feedback neurons, we developed a model 

of the circuit constrained by i) the connectome, ii) the known neurotransmitter identities, and 

iii) the valences of compartments (Fig. 1c). The presence or absence of connections between 

MBONs, DANs, and feedback neurons in the model was determined by the connectome, and 

for neurons known to be excitatory or inhibitory, the signs of the connections were fixed to 

be consistent with this designation. We additionally used synapse counts from the 

connectome to set the initial strengths of model connections. Since synapse counts alone are 

unlikely to fully determine functional interactions, we then adjusted these connection 

strengths using gradient descent to optimize the network to perform a set of associative 

learning tasks29 (see Materials and Methods). Unlike in standard recurrent neural network 

models, we modeled ongoing modifications of KC to MBON connections using a synaptic 

Eschbach et al. Page 8

Nat Neurosci. Author manuscript; available in PMC 2020 September 23.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



plasticity rule that depends on the timing of KC and modulatory neuron activity consistent 

with experimental findings16.

We assessed the contributions of different feedback pathways by repeating the optimization 

procedure for networks lacking such feedback and comparing their performance. Tasks 

included first-order conditioning and extinction which have been demonstrated in both 

larval15;30 and adult Drosophila3;31, and second-order and context-dependent conditioning 

which have so far been investigated only in adult32;33. In second-order conditioning, a 

reinforcement predicting conditioned stimulus is used to reinforce a second stimulus, while 

in context-dependent conditioning, the US valence depends on a previous contextual input.

We found that the performance on all tasks was significantly degraded in the absence of all 

feedback, including direct MBON feedback, one-step feedback via FBNs, and two-step 

feedback via FB2Ns and FBNs (Fig. 7a-b). The removal of the indirect feedback alone (with 

intact direct MBON feedback) also significantly degraded the performance on all tasks, with 

especially strong effects on the more complex tasks (Fig. 7a-b). Even the removal of two-

step feedback alone significantly diminished performance on two of the more complex tasks 

(second-order conditioning and context-dependent conditioning), with a drastic effect on 

context-dependent conditioning (Fig. 7a-b). Thus, each additional feedback level improves 

the performance of the network when it is tested on challenging associative learning tasks.

We also constructed networks lacking one- and two-step feedback within or across 

compartments. Removal of within-compartment feedback diminished performance on all 

tasks, while removal of cross-compartment communication substantially reduced 

performance for second-order conditioning (Fig. 7a-b). In total, each of the feedback 

categories revealed by the EM reconstruction may be important for associative learning 

paradigms that require computations such as prediction, prediction error, or context 

dependence.

Feedback neurons enable adaptive responses of modulatory neurons in the model

The high fraction of feedback input originating from MBONs onto modulatory neurons 

suggests that their activity could be adaptively regulated by prior learning. To test this idea, 

we computed an index that quantifies the mean change in modulatory neuron firing rates in 

response to CS+ (i.e. the CS that was paired with the US) presentations before and after 

conditioning. We found that this index is indeed substantially enhanced by the presence of 

feedback neurons (by FBNs and FB2Ns together, or even just FBNs alone, Fig. 7c). The 

optimized networks exhibit a diversity of adaptive modulatory neuron responses (some 

examples are shown in Fig. 7d).

After a CS/US pairing, many modulatory neurons acquired responses to CS+ that resemble 

their responses to the US that had been paired with that CS+ (Fig. 7e, 7d-ii). These 

responses were significantly attenuated in networks that lacked feedback, including those 

that lacked just indirect feedback, and just cross-compartment feedback (Fig. 7e). Such 

responses have been observed in modulatory neurons across the animal kingdom4;5;34, 

including adult Drosophila10;11. They are consistent with a computation of the valence that 
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is predicted by the CS+ (i.e. a predicted value) and could drive the formation of an 

association between a novel CS and a CS+ during higher-order conditioning.

Some modulatory neurons acquired CS+ responses that were opposite in sign to their 

responses to that US and potentially represent prediction errors (Fig. 7d-iii, 7d-iv). Some of 

those appear to be activated by the omission of a predicted US whose valence is opposite 

that of the neuron’s preferred US (Fig. 7d-iii). Such responses potentially represent positive 

prediction errors and have been proposed to support extinction by inducing a parallel 

memory of opposite valence2;3;31. Consistent with this idea, in adult flies, DANs of opposite 

valence and direct cross-compartment MBON-to-DAN connections have been implicated in 

extinction3;31, but the role of indirect feedback pathways has not been investigated. In our 

model we find that removing indirect feedback significantly reduces performance of 

networks optimized to extinguish a previous association (Fig. 7a). Some modulatory neurons 

also showed prolonged inhibition in response to the omission of a predicted US whose 

valence is the same as the neuron’s preferred US (Fig. 7d-iv). Such responses potentially 

represent negative prediction errors1 and have been proposed to support extinction by 

erasing the memory formed by the activation of that modulatory neuron2. Thus, our model 

raises the possibility that extinction could be implemented via multiple mechanisms in this 

circuit2.

Discussion

Modulatory neurons (e.g. dopaminergic, DAN) are key components of higher-order circuits 

for adaptive behavioral control and they provide teaching signals that drive memory 

formation and updating1;3;4;9;15;31;35. Here, we provide the first synaptic-resolution 

connectivity map of a recurrent neural network that regulates the activity of modulatory 

neurons in a higher-order learning center, the Drosophila larval MB (Fig. 2a-f). We also 

functionally tested some of the newly identified structural pathways and developed a model 

of the circuit to explore the roles of the newly discovered architectural motifs in different 

learning tasks (Fig. 7a-e).

Feedback pathways enable adaptive regulation of learning by prior learning

We discovered a large population of 61 feedback neuron pairs that provide one- and/or two-

step feedback from the MB output neurons (MBONs) to modulatory neurons (Fig. 2a-d, 3a-

b and 5a-e). Strikingly, we found that many modulatory neurons receive more than 50% of 

their total dendritic input from feedback pathways (Fig. 2d). These results suggest that prior 

memories as represented by the pattern of MBON activity can strongly influence modulatory 

neuron activity.

Learning and memory systems in vertebrates9 and insects3;14;17;18 are often organized into 

distinct compartments implicated in forming distinct types of memories (e.g. aversive and 

appetitive or short- and long-term). Interestingly, we found that the majority of the 

discovered feedback pathways link distinct memory systems, suggesting that the MB 

functions as an interconnected ensemble during learning (Fig. 3b, 5e). Thus, prior memories 

formed about an odor in one compartment can influence the formation and updating of 

distinct types of memories about that odor in other compartments.
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In adult Drosophila, functional connections between some MBONs and DANs31;35–41 have 

been reported, and some have been shown to play a role in short-term memory 

formation35;38;42, long-term memory consolidation37;40, extinction and re-

consolidation3;31;39, or in synchronizing DAN ensemble activity in a context-dependent 

manner36. In some cases, direct MBON-to-DAN connections have been 

demonstrated31;35;37;39. While direct connections from several MBONs onto DANs exist in 

the larva12 (Extended Data 8a), we find that indirect connections via the feedback neurons 

account for a much larger fraction of a modulatory neuron’s dendritic input than direct 

MBON synapses (Fig. 2d). This suggests that adaptive DAN responses may be largely 

driven by such indirect feedback.

Some of the one-step within-compartment feedback motifs we found are analogous to the 

feedback motifs so far described for the DANs in the vertebrate midbrain4;43–47. While the 

diversity and the inputs of striatal feedback neurons have not yet been fully explored, in the 

future it will be interesting to determine whether many of the striatal feedback neurons also 

link distinct memory systems.

Circuit motifs for computing integrated predicted value signals across aversive and 
appetitive memory systems

The use of internal predictions can dramatically increase the flexibility of a learning 

system1;7;8. Our study reveals candidate circuit motifs that could compute integrated 

predicted value signals across appetitive and aversive memory systems. Thus, a prominent 

motif we identified is convergence of excitatory and inhibitory connections from MBONs 

from compartments of opposite valence onto DANs (Fig. 3b-e, Fig. 4a-g). In naïve animals, 

odor-evoked MBON excitation in all compartments is thought to be similar. However, 

associative learning selectively depresses conditioned odor drive to MBONs in 

compartments where modulatory neuron activation has been paired with the odor3;16. We 

propose that by comparing the conditioned odor-evoked MBON excitation in compartments 

of opposite valence via cross-compartment feedback connections, modulatory neurons 

compute an integrated predicted value signal across appetitive and aversive domains.

Convergence of feedback and US pathways could allow the computation of prediction 
errors

An important aspect of reinforcement learning theories is the idea that modulatory neurons 

compare predicted and actual US (to compute so-called prediction errors) and drive memory 

formation or extinction depending on the sign of the prediction error. While Drosophila 
modulatory neurons have not yet been directly shown to represent prediction errors, adult 

and larval Drosophila are capable of extinction3;30;31, and our study reveals candidate motifs 

that could support the comparison of expected and actual US. We found that modulatory 

neurons receive convergent input from feedback pathways from MBONs and from US 

pathways (Fig. 2d-f). Modulatory neurons could therefore potentially compute prediction 

errors by comparing inhibitory drive from the feedback pathways to the excitatory drive 

from the US pathways, or vice versa. Consistent with this idea, we observed in our model 

some DANs that are inhibited by US alone and activated by CS+ alone, or vice versa (Fig. 

7d-iii and 7d-iv).
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Our study also reveals that US pathways and feedback pathways converge at two levels: not 

only at the modulatory neurons themselves, but also at the two-step feedback neurons 

(FB2Ns (Fig. 2f). Actual and expected outcomes could therefore also be compared by 

FB2Ns. A recent study in the mouse VTA has found that some pre-DAN neurons encoded 

only actual, or only expected reward, while others encoded both variables4;43. Thus, both in 

vertebrates and in insects, comparing predicted and actual outcomes may be a complex 

computation involving multiple levels of integration that eventually converges onto an 

ensemble of modulatory neurons43.

Diversity of feedback inputs across modulatory neurons suggests a range of distinct and 
distributed teaching signals

An assumption in many reinforcement learning models is that all modulatory neurons 

receive a global scalar reward prediction error signal1. Here, we were able to analyze the 

comprehensive set of inputs of every individual uniquely identifiable modulatory neuron in a 

learning center. This revealed that each modulatory neuron receives a unique set of feedback 

inputs (Fig. 2e) that could enable each neuron to compute a unique set of features. 

Consistent with this, we observed a diversity of adaptive response types in the modulatory 

neurons in our model (Fig. 7d). This suggests that instead of computing a single global 

reward prediction error that is distributed to all modulatory neurons, the network uses a 

range of distinct compartmentalized and distributed teaching signals.

Multilevel and cross–compartment feedback increase performance and flexibility

Our connectivity and modeling studies revealed two architectural features of the circuit that 

provides input to the modulatory neurons that increase its performance and flexibility on 

learning tasks (Fig. 7a-b). The first is the multilevel feedback architecture that includes not 

only the previously known direct MBON feedback31;35;37;39, but also multiple levels of 

indirect feedback. The second is the extensive set of cross-compartment connections. 

Modeling suggests that these motifs support improved performance on complex tasks that 

require the computation of variables such as predictions, prediction errors, and context.

In summary, we present the first complete circuit diagram of a recurrent network that 

computes teaching signals in a biological system, providing insights into the architectural 

motifs that increase its computational power and flexibility. Our connectome-constrained 

model provides numerous predictions that can be tested in the future in a tractable model 

organism, for which genetic tools can be generated to monitor and manipulate individual 

neurons24;25;48. The connectome, together with the functional and modelling studies 

therefore provides exciting opportunities for elucidating the biological implementation of 

reinforcement learning algorithms.

Materials and Methods

Fly lines

In the main text and figures, short names are used to describe genotypes for clarity. See 

Supplementary Table for a complete list of full names of all driver lines and effectors. We 

used GAL4, Split-GAL4 lines to direct the expression of the red-shifted channel-rhodopsin 
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20XUAS-CsChrimson-mVenus49 (Bloomington Drosophila Stock Center BDSC 55134, gift 

of V. Jayaraman) or the Calcium indicator 20xUAS-IVS-GCaMP6f 50 in pairs of neurons or 

subsets of neurons. Split-GAL4 lines restrict expression of the effector to a few cells, under 

the double control of two enhancers (inserted in the attP2 and attP40 docking sites), selected 

by us or others in Janelia Research Campus (HHMI, VA, USA) based on their GAL4 

expression pattern48;51;52.

Modulatory neurons (MBINs)

We used SS24765-Split-GAL4 to optogenetically activate OAN-a1 in the calyx. We 

generated SS02160-Split-GAL4 to activate DAN-c1 in the lower peduncle. For the vertical 

lobe, we generated SS01702-Split-GAL4 to activate or image calcium transients in MBIN-

e2 (DAN-c1 was also covered by this line) and SS01958-Split-GAL4 to activate or image 

calcium transients in OAN-e1 in the UVL. We used SS02180-Split-GAL4, MB145B-Split-
GAL4 (used for activation and calcium imaging, gift of G. Rubin and Y. Aso) and MB065B-
Split-GAL453 (which also covered DAN-c1) to target DAN-f1 in the IVL. We used 

SS01716-Split-GAL420 to induce or image DAN-g1 activity in the LVL, and we generated 

SS04268-Split-GAL4 to activate OAN-g1, also in the LVL. MB054B-Split-GAL4 (gift of G. 

Rubin and Y. Aso) was also used to co-activate DAN-g1 and DAN-f1. We used two lines to 

target DAN-d1 in the lateral appendix: MB143B-Split-GAL4 (used for activation and 

calcium imaging) and MB328B-Split-GAL4 (both gifts of G. Rubin and Y. Aso). In the 

medial lobe, we generated a broad line SS01948-GAL4 which allows co-activation of DAN-

h1, DAN-i1, DAN-k1, and sometimes DAN-j1. We also imaged calcium transients in DAN-

i17 using the more specific GAL4 SS00864-Split-GAL4.

Neurons presynaptic to the modulatory neurons (MBINs)

We optogenetically activated multidendritic Class IV neurons (MD IV) with the driver line 

ppk-1.9-GAL48 (gift of D. Tracey); Basin interneurons with GMR72F11-GAL424; the 

ascending neuron A00c with GMR71A10-GAL424;54 crossed to ppk-GAL80 55, repo-
GAL80 56 (to prevent expression in MD IV and glial cells, respectively). We also activated 

A00c with the more specific GAL4 line SS00883-Split-GAL4. We generated SS01778-
Split-GAL4 and SS02181-Split-GAL4, which target FB2N-11 and/or FB2N-18. SS02108-
Split-GAL4 targets FAN-7; SS02401-Split-GAL4 targets FB2N-19.

Control lines

As a control for the GAL4 lines inserted at the attP2 site, we used the empty control stock y 
w;;attP2 48;52 crossed to the effector line. As a control for Split-GAL4 lines with AD at 

attP40 and DBD at attP2, we used the empty stock y w;attP40;attP2 48;52 crossed to the 

effector line.

Lines for recording neuronal activity

Calcium transients in modulatory neurons were imaged using the following constructs to 

verify functional input of mechano-ch neurons: w; iav-LexA24 in attP40; 20xUAS-IVS-
GCaMP6f 15.693 50 in attP2, 13XLexAop2-CsChrimson-tdTomato49 in VK00005. For 

Basins multisensory interneurons: w; GMR72F11-LexA52 in JK22C; 20xUAS-IVS-

Eschbach et al. Page 13

Nat Neurosci. Author manuscript; available in PMC 2020 September 23.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



GCaMP6f 15.693 50 at attP2, 13XLexAop2-CsChrimson-tdTomato49 at VK00005. And for 

MD class IV nociceptive neurons: w; 13XLexAop2-CsChrimson-mVenus49 at attP40 
(BDSC 55138); ppk-1kb-hs43-lexA-GAD10 at attP2, 20xUAS-IVS-GCaMP6f 50 at 

VK00005. All the effectors used in these stocks are a gift from V. Jayaraman. Transvection 

was tested by bathing some samples in 100 mM mecamylamine and observing the 

disappearance of responses to optogenetic stimulation (data not shown). If a response 

remained during mecamylamine application, the experiments were repeated using a spatially 

defined photo-stimulation using spatial light modulator (SLM) technology (see functional 

connectivity section for details of the procedure and the lines concerned).

For patch-clamp recording we crossed the genetic driver lines for MBON-m1 (SS02163-
Split-GAL4) or for MBON-i1 (SS01726-Split-GAL4) to 58E02-LexAp65 at attP40 57; 

13xLexAop2-IVS-GCaMP6f-p10 15.693 50 at VK00005 (BDSC 44276), 20xUAS-
CsChrimson-mCherry 49 at su(Hw)attP1 in order to activate MBONs and visualize the 

medial lobe DANs (ML-DANs) for patch-clamping. Only data for DAN-i1, which was the 

most frequently hit by the recording pipette, as revealed by post hoc identification, are 

shown.

The reporter pJFRC29-10xUAS-IVS-myr::GFP-p10 58 at attP2 was used for 

immunostaining.

Learning experiments

Learning experiments were performed as previously described12;19;20. The larvae, with 

CsChrimson-expressing neurons, were reared in the dark at 25°C in food vials supplemented 

with 1:200 retinal. The experimenter selected two groups of 30 third-instar larvae and was 

blind to their specific genotype. The two groups underwent a training procedure involving 

odor and light exposures, either fully overlapping in time (paired group), or fully non-

overlapping (unpaired group). The paired group was placed for 3 minutes on 4% agarose 

plates and exposed to constant red-light illumination (wavelength: 629 nm, power: 350 μW/

cm2; except for ppk-1.9-GAL4, which targets neurons at the surface of the body and for 

which a light power of 35 μW/cm2 was used) paired with the presentation of 12 μl of odor 

ethyl-acetate (10−4 dilution in distilled water) absorbed on two filter papers located on the 

plate lid. These larvae were then transferred to a new plate with no odor and in the dark for 3 

minutes. This paired training cycle was repeated three times in total. The unpaired group of 

larvae underwent odor presentation in the dark and red light without odor following the 

same protocol. The order of the sequence of presentation for odor and light stimulation (i.e. 

for paired group: half training protocols are in the sequence odor+/air-/odor+/air-/odor+/air- 

and half are air-/odor+/air-/odor+/air-/odor+, same logic for unpaired group) was alternated 

throughout all experiments. After a 3-minute test with odor presentation on one side of the 

plate lid, larvae were counted on the side of the odor, on the opposite side, and in the 1 cm-

wide midline of the plate. Preference and performance indices were calculated as in a 

previous study59. Briefly, a preference index (PI) was first computed, for each group as: PI = 

[N (larvae on the odor side) - N (larvae on the no-odor side)]/N(total), N(total) includes 

larvae in the middle of the plate. Individual Learning Performance Score (LPS) was then 

computed for each pair of reciprocally trained group, as LPS = [PI (paired) – PI 
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(unpaired)]/2. Positive scores indicate a larger proportion of larvae choosing the odor side in 

the paired group than in the unpaired group (i.e., appetitive olfactory memory), while 

negative scores indicate the reverse inequality (i.e., aversive olfactory memory). Because we 

tested larvae immediately after the last training trial, and less than 20 min after the first 

training trial, we assume the test reveals mainly short-term memory15. Experiments were 

performed en block for multiple genotypes with the same control line, as shown in the 

figures. The same genotype was tested over multiple days at random times of the day.

Circuit mapping and electron microscopy

We reconstructed neurons and annotated synapses in a single, complete central nervous 

system from a 6 hr old female [iso] Canton S G1 x w1118 [iso] 5905 larva, acquired with 

serial section transmission EM at a resolution of 3.8 x 3.8 x 50 nm, that was first published 

along with the detailed sample preparation protocol24. Briefly, the CNS was dissected and 

placed in 2% gluteraldehyde 0.1 M sodium cacodylate buffer (pH 7.4). An equal volume of 

2% OsO4 was added and the larva was fixed with a Pelco BioWave microwave oven with 

350-W, 375-W and 400-W pulses for 30 sec each, separated by 60-sec pauses, and followed 

by another round of microwaving but with 1% OsO4 solution in the same buffer. Next, 

samples were stained en bloc with 1% uranyl acetate in water and microwaved at 350 W for 

3x3 30 sec with 60-sec pauses. Samples were dehydrated in an ethanol series, transferred to 

propylene oxide, and infiltrated and embedded with Epon resin. After sectioning the volume 

with a Leica UC6 ultramicrotome, sections were imaged semi-automatically with Leginon60 

driving an FEI Spirit TEM (Hillsboro, OR), and then assembled with TrakEM261 using the 

elastic method62. The volume is available at https://l1em.catmaid.virtualflybrain.org/?pid=1.

To map the wiring diagram we used the web-based software CATMAID63, updated with a 

novel suite of neuron skeletonization and analysis tools 64, and applied the iterative 

reconstruction method64. All annotated synapses in this wiring diagram fulfill the four 

following criteria of mature synapses24;64: (1) There is a clearly visible T-bar or ribbon on at 

least two adjacent z-sections. (2) There are multiple vesicles immediately adjacent to the T-

bar or ribbon. (3) There is a cleft between the presynaptic and the postsynaptic neurites, 

visible as a dark-light-dark parallel line. (4) There are postsynaptic densities, visible as dark 

staining at the cytoplasmic side of the postsynaptic membrane.

We validated the reconstructions as previously described24;64, a method successfully 

employed in multiple studies24;25;28;64–66. Briefly, in Drosophila, as in other insects, the 

gross morphology of many neurons is stereotyped and individual neurons are uniquely 

identifiable based on morphology66–68. Furthermore, the nervous system in insects is largely 

bilaterally symmetric and homologous, with mirror-symmetric neurons reproducibly found 

on the left and the right side of the animal. We therefore validated neuron reconstructions by 

independently reconstructing synaptic partners of homologous neurons on the left and right 

side of the nervous system. With this approach, we have previously estimated the false 

positive rate of synaptic contact detection to be 0.0167 (1 error per 60 synaptic contacts)19. 

Assuming the false positives are uncorrelated, for an n-synapse connection the probability 

that all n are wrong (and thus that the entire connection is a false positive) occurs at a rate of 

0.0167n. Thus, the probability that a connection is a false positive reduces dramatically with 
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the number of synaptic contacts contributing to that connection. Even for n = 2 synaptic 

contacts, the probability that a connection is not true is 0.00028 (once in every 3,586 two-

synapse connections). We therefore consider ‘reliable’ connections those for which the 

connections between the left and right homologous neurons have at least 3 synapses each 

and their sum is at least 10. See24;64 for more details.

We also systematically asked what percentage of connections was conserved between left 

and right homologs, as a function of number of synapses in that connection. We did this for 

the 426 neurons that were presynaptic to MBINs on the left or the right. Thus, we found that 

if two neurons were connected with 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10 synapses on one 

hemisphere, the probability that homologous neurons are connected on the other hemisphere 

was 48%, 60%, 80%, 89%, 95%, 97%, 99%, 100%, 100%, and 100%, respectively. We also 

computed the fraction of input that each MBIN received from each presynaptic neuron and 

found that if a presynaptic neuron accounted for 1.6%, 2%, 3%, 4%, 5% of a postsynaptic 

neuron’s input the likelihood that the homologous neurons were connected on the other 

hemisphere was 95%, 99%, 100%, 100%, and 100%, respectively. Thus, numerically weak 

connections were not conserved, but numerically strong connections were 100% conserved. 

Interestingly, in previous studies we have demonstrated that the numerically strong 

connections in which the postsynaptic neuron receives at least 2% of input the presynaptic 

neuron were also functional24;25.

Thus, the numerically strong connections (that account for at least 2% of a postsynaptic 

neuron’s input) are reproducible between left and right hemispheres of the same individuals 

and across individuals, as evidenced by our functional connectivity experiments across 

individuals.

Immunostaining

Dissected brains were fixed in phosphate buffered saline (PBS, NaCl 137 mM, KCl 2.7 mM, 

Na2HPO4 8.1 mM, KH2PO4 1.5 mM, pH7.3) containing 4% paraformaldehyde (Merck) for 

30-min at room temperature. After two 15-minute washes with PBT (PBS with 1% or 3% 

Triton X-100; Sigma-Aldrich), the brains were blocked with 5% normal goat serum (Vector 

Laboratories) in PBT and incubated for at least 24 hours with primary antibodies at 4°C. 

Before application of the secondary antibodies for at least 24 hours at 4°C or for 2 hours at 

room temperature, brains were washed several times with PBT. After that, brains were again 

washed with PBT, mounted in Vectashield (Vector Laboratories) and stored at 4°C in 

darkness. Images were taken with a Zeiss LSM 710M confocal microscope. The resulting 

image stacks were projected and analyzed with the image processing software Fiji69. 

Primary antibodies were used at the following dilutions: rabbit anti-GFP (cat# Af2020, 

Frontier Institute; 1:1000), chick anti-GFP (ab13970, abcam, 1:1000), rabbit anti-GABA 

(A2052, Sigma; 1:100), mouse anti-ChAT (ChAT4B1, DSHB Hybridoma Product deposited 

by P.M. Salvaterra; 1:50). Rabbit anti-DVGlut70 was diluted 1:1000. These antibodies were 

used in Drosophila larvae previously12;28. Secondary antibodies were used at the following 

dilutions: Alexa Fluor 568-conjugated goat anti-rabbit IgG (A-11036, Invitrogen Molecular 

Probes; 1:300), Alexa Fluor 633-conjugated goat anti-mouse IgG (A-21050, Invitrogen 
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Molecular Probes; 1:300) and Alexa Fluor 488-conjugated goat anti-chicken IgG (A-11039, 

Invitrogen Molecular Probes; 1:300).

Identifying GAL4 lines that drive expression in modulatory neurons and their presynaptic 
partners

To identify GAL4 lines (listed in Supplementary Table) that drive expression in specific 

neurons, we performed single-cell FlpOut experiments (for FlpOut methodology see24;71) of 

many candidate GAL4 lines72. We generated high-resolution confocal image stacks of 

individual neuron morphology (multiple examples per cell type). Most MBONs and MBINs 

were uniquely identifiable based on the dendritic and axonal projection patterns (which MB 

compartment they project to and the shape of input or output arbor outside the MB). These 

were also compared to previously reported single-cell FlpOuts of dopaminergic and 

octopaminergic neurons in the larva54;59;73–75. For the neurons upstream of MBINs (FBNs/

FANs/FB2Ns), we used morphology and cell body position to identify the lineage of the 

neuron. The precise shape and 3D location of dendritic and axonal projections were then 

examined and compared to all potential candidates in the lineage which have been fully 

reconstructed from the electron microscopy volume. In some cases, two neurons had very 

similar morphology at both light and EM level, and in such cases they also had nearly 

identical connectivity (e.g. FB2N-11 and FB2N-18).

Functional connectivity assays

Central nervous systems of third-instar larvae were dissected in a cold buffer containing 103 

mM NaCl, 3 mM KCl, 5 mM TES, 26 mM NaHCO3, 1 mM NaH2PO4, 8 mM trehalose, 10 

mM glucose, 2 mM CaCl2, 4 mM MgCl2 and adhered to poly-L-lysine (SIGMA, P1524) 

coated cover glass in small Sylgard (Dow Corning) plates.

For optogenetic activation, red illumination (617nm High-Power Lightguide Coupled LED 

Source, Mightex) was positioned above the sample to depolarize the axon terminal parts of 

the sensory neurons (MD IV or chordotonal) or the second order interneurons (Basins). 

Light stimulations were performed with 1 or 15 sec duration and in 40 and 600 cycles of 

laser on/off pulses of 20 msec/5 msec. Each preparation underwent three types of light 

stimulation of increasing power: ca. 390 μW/mm2, 920 μW/mm2 and 4.6 mW/mm2. Only 

the data for the highest light power during 1 sec is displayed (Fig.1f). The same stimulus 

was spaced with 30 sec for a total of three presentations in each scan. Each scan consisted in 

imaging dopaminergic neurons on a two-photon scanning microscope (Bruker) using a 60x 3 

1.1 NA objective (Olympus). A mode-locked Ti:Sapphire laser (Chameleon Ultra II, 

Coherent) tuned to 925 nm was used for photo-activation of the GCaMP6f. Fluorescence 

was collected with photomultiplier tubes (Hamamatsu) after band-pass filtering. Images 

were acquired in line scanning mode (5.15 fps) for a single plane of the CNS. The same 

genotype was tested over multiple days at random times of the day. Data collection and 

analysis were not performed blind to the conditions of the experiments.

To overcome transvection observed between the transgenes at the attP40 landing site of the 

MB143B-Split-GAL4 line (targeting DAN-d1) crossed to w; 13XLexAop2-CsChrimson-
mVenus49 in attP40; ppk-1kb-hs43-lexA-GAD10 in attP2, 20xUAS-IVS-GCaMP6f2 in 
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VK00005, we used 3-dimension spatially defined photo-stimulation. MD IV neurons 

expressing CsChrimson were photo-activated by a holographic pattern generated by a two-

photon 1040 nm laser (femtoTrain, Spectra-Physics) coupled to a phase-only SLM 

(Intelligent Imaging Innovations). GCaMP6f signal was imaged by a laser tuned to 925 nm 

(Insight DS+ Dual, Spectra-Physics). The optogenetic stimulations were 50 cycles of laser 

on/off pulses of 2 msec/18 msec, ranging from 1 to 1.5 mW/mm2. Off-target (equidistant 

from the Chrimson-expressing DAN-d1 neuron, but not targeting Chrimson-expressing MD 

IV neurons) and on-target stimulations were alternatively performed and the difference 

between transvection-only generated calcium signals and transvection + MD IV neuron 

activation-generated signal was computed and used as the fluorescence signal. DAN-d1 

neurons were imaged at a frame rate of ca. 5 fps on a two-photon scanning microscope 

(Vivo, Intelligent Imaging Innovations) using a 25x 2 1.1 NA objective (Nikon).

For image analysis, image data were processed by Fiji software69 and analyzed using 

custom code in Matlab (The Mathworks, Inc). Specifically, we manually determine the 

regions of interest (ROIs) from maximum intensity projection of entire time series images, 

and measure the mean intensity. In all cases, changes in fluorescence were calculated 

relative to baseline fluorescence levels (F0) as determined by averaging over a period of at 

least 2 sec. just before the optogenetic stimulation. The δF/F0 values were calculated as 

δF/F0 = (Ft-F0)/F0, where Ft is the fluorescent mean value of a ROI in a given frame. 

Analyses were performed on the mean δF/F0 of the consecutive 3 stimulations.

Whole-cell patch-clamp recordings from DANs on optogenetic activation of MBONs

For recording, the isolated brain attached with VNC were dissected from third instar larvae 

in Baines external solution76, which contained (mM): 135 NaCl, 5 KCl,, 2 CaCl2.2H2O, 4 

MgCl2.6H2O, 5 2-[(2-Hydroxy-1,1-bis(hydroxymethyl)ethyl)a ethanesulfonic acid, 5 N-

[Tris(hydroxymethyl) methyl]–2-aminoethanesulfonic acid, and 36 sucrose. The pH was 

adjusted to 7.15 with NaOH, and osmolarity was 310-320 mOsm. The preparation was 

viewed with a 60x 1 NA water-immersion objective equipped with an Olympus microscopy 

(BX51WI; Olympus). GCaMP6f–labeled DANs were visualized with a 470-nm wavelength 

LED. The glial sheath above the targeted DANs was ruptured using 0.1% protease (Protease 

XIV; Sigma-Aldrich). Recording electrodes were pulled from thick-wall glass pipet (O.D. 

1.5mm, I.D. 0.86mm) using P-97 puller (Sutter Instruments) and fire-polished to resistances 

of 10–15 Mω. The Baines intracellular solution76 contained (mM): 140 potassium 

gluconate, 5 KCl, 2 MgCl2.6H2O, 2 EGTA, 20 HEPES. The pH was adjusted to 7.4 with 

KOH, and the osmolarity was 280 mOsm. Biocytin was dissolved in intracellular solution at 

0.5% for further post hoc morphological identification of recorded DANs. The data were 

acquired and processed using Digidata 1550, Multiclamp 700B, and Clampex 10.4 software 

(Molecular Devices). The recording was sampled at 20 kHz and filtered at 6 kHz under 

current-clamp mode. CsChrimson was activated by 617-nm wavelength LED.

DAN identification: After the electrophysiology recording, the preparation containing the 

VNC and brain was fixed in 4% paraformaldehyde in 0.1 M phosphate buffer saline (PBS) 

overnight at 4ºC, and then transferred to PBS until staining. After rinsing in PBS, the CNS 

preparations were placed in Streptavidin Alexa Fluor 647 (1:200) in PBS with 10% Triton X 
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(overnight, room temperature). After rinsing, the preparations were dehydrated and mounted 

with DPX. The confocal images were captured with Zeiss 800 confocal laser microscope. 

Alexa Fluor 647 was excited with 633 nm-wavelength light, and mCherry-tagged 

CsChrimson neurons were excited with 567 nm-wavelength light.

Statistics

As most fluorescence and behavioral data were non-normally distributed (according to a 

Shapiro-Wilk test), we opted for non-parametric tests for paired comparisons. Similarly, for 

the model, we used a non-parametric test to compare performance. No statistical methods 

were used to pre-determine sample sizes but the sample sizes are similar to those reported in 

previous publications20;25;39.

For behavioral experiments, the performance scores obtained for each line tested in 

optogenetic reinforcement were compared to the ones of its corresponding empty line (i.e. 

w;;attP2 or w;attP40;attP2 for GAL4 or Split GAL4, respectively) using a non-parametric 

Mann-Whitney U test for independent sets of data. For multiple comparisons, the probability 

values were compared to a threshold of 0.05 adjusted with a Holm-Bonferroni correction to 

balance for Type I and Type II statistical errors, unless otherwise stated. Across GAL4 lines, 

comparisons of performance scores were done using the same methodology. Data were 

plotted using the Matlab script errorbarjitter, available at http://www.mathworks.com/

matlabcentral/fileexchange/33658-errorbarjitter.

Fluorescence analyses were done using a non-parametric Wilcoxon test for paired 

comparisons between the maximum δF/F0 plus one standard deviation during 1 sec before 

photostimulation onset and the maximum δF/F0 at two time windows: during the 1 sec of the 

stimulation, and from 1 to 3 seconds after its onset.

For the clustering analysis, we looked for clusters among FBNs/FANs based on the 

similarity of their synaptic partners separately for input and output. To find clusters based on 

synaptic inputs, we defined the similarity between a pair of FBN/FANs as the cosine 

similarity of the vector of inputs they receive from MBONs where the weight of a given 

connection is measured as the fraction of total input synapses on the postsynaptic neuron. 

Specifically, for vi and vj being the input vectors for FBN/FANs i and j, the similarity 

between them is defined Sij =
vi . vj
vi vj

. Hierarchical clustering on the similarity matrix was 

done with Scipy using average linkage. We chose the top five clusters to highlight, which 

included all clearly differentiated groups of FBN/FANs. Clustering on the output patterns 

was done identically using the vectors of connectivity from FBN/FANs onto MBINs.

For the input-clustered groups, we assessed the similarity of the patterns of synaptic outputs 

and vice versa for the synaptic input patterns for output-clustered groups. We measured the 

overall group similarity as the median of all unique pairwise cosine similarities between 

neurons within the group. We used a permutation test to assess the significance of the 

observed similarities by randomizing the relationship between input pattern and output 

pattern for each FAN/FBN. For example, for each input-clustered group of size n, we 

randomly chose n output patterns and computed their median output similarity in the same 
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way. A one-sided p-value was computed from the distribution of 10,000 random 

permutations with a Holm-Sidak correction for multiple comparisons across the groups.

Rate model of the MBON-i1-FBN-7-DAN-i1 one-step feedback motif

To illustrate the potential effects of different FBN-baselines we modeled the isolated 

MBON-i1-FBN-7-DAN-i1 feedback motif shown in Fig. 4b with rate equations where the 

output of neuron type (MBON, FBN, DAN), changed over time according to the equation 

τi
dri
dt = − ri + f(∑jwijrj + Ii

tonic) + Ii
stim where f x = s

1 + e−k x − xℎ
, W was a matrix with 

positive and negative values corresponding to the direct interactions between neurons as 

shown in the circuit schematic of Fig. 4b, Ii
tonic was a nonnegative tonic input into neuron i, 

Ii
stim is a stimulus input provided only to MBON, τi is a time constant, and parameters s, k 

and xh set the shape of the sigmoidal response. Equations were solved using ode45 in 

Matlab (The Mathworks, Inc). See Supplemental Fig. 3.

Connectivity-constrained model of the entire mushroom body with the feedback neurons 
Model dynamics

We constructed a recurrent network model of the larval MB containing MBONs, DANs and 

other feedback neurons. The network receives input from 70 KCs, and external cues, such as 

US. The normalized firing rate ri of neurons i is modeled as a threshold-linear function of its 

input:

dri
dt = − ri(t) + g(∑jWijrj(t) + bi + Ii(t)), (1)

where g represents positive rectification. Time is modeled in units of effective time constant 

(representing combined synaptic and membrane timescales). The connectivity matrix Wij is 

constrained using the EM reconstruction. The vector bi represents the static bias input to 

each neuron which determines its excitability, while Ii(t) represents time-varying external 

input. For MBONs, this includes external input from KCs, Ii t = ∑kWik
KCrk

KC .

KCs are initially silent, but during the presentation of an odor CS, the activity of a random 

fraction f of KCs is set to 1, leading to MBON activation. We assume all-to-all KC-to-

MBON connectivity. At the beginning of each trial, weights WKC are initially set equal to 

their maximum value of 1/(NKCf), but are modified on each timestep according to a DAN-

dependent synaptic plasticity rule. A weight W (t) from KC k to an MBON in compartment i 
evolves according to:

dw
dt = − rkdi + rkdi, (2)

τW
dW
dt = w t − W t , (3)
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where di represents the level of dopamine in the compartment (a weighted sum of DAN 

inputs according to the DAN-to-MBON connectivity matrix), and rk represents the firing 

rate of the KC (note that modifications of weights onto MBONs depend only on KC and 

DAN activity). The terms rk and di represent the firing rate rk and dopamine level di, 

respectively, low-pass filtered with time constant τ, which leads to an anti-Hebbian timing-

dependent synaptic weight update in Equation 2. The second equation results in W(t) 
following these updates with a time constant of τW Equation 3. For simplicity, we assume 

that all modulatory neurons induce plasticity according to this rule.

Given the model dynamics described above, we use gradient descent optimization to find a 

set of network parameters that lead to good performance on the tasks we consider. After this 

optimization, KC-to-MBON weights are still time-varying quantities that evolve according 

to Equation 3, but all other parameters are fixed. Weights among DANs, MBONs, and 

feedback neurons are constrained by the EM reconstruction. Weight matrices are initialized 

using synapse counts from the EM data, scaled so that the ℓ2 norm of the inputs received by 

each neuron ∑jWij
2 = 1.5. Only reliable connections, as defined previously, are included. 

Weights from neurons known to communicate using an inhibitory neurotransmitter, are then 

multiplied by −1. As optimization progresses, weights from neurons of known 

neurotransmitter identities are constrained to maintain a consistent sign by clipping at 0. 

Weights that were initialized to nonzero values rarely decayed to zero during optimization (7 

± 1% of weights, using a cutoff of 10% of each weight’s initial value to determine whether it 

has decayed). At the beginning of a trial, MBON rates are initialized to 0 while DAN and 

feedback neuron rates are initialized to 0.1. This promotes networks in which MBONs are 

primarily odor-driven, but some DANs and feedback neurons exhibit baseline levels of 

activity.

Tasks

Neuron i’s external input Ii(t) represents either KC input in the case of MBONs (as 

described above), or US or contextual signals (depending on the task) in the case of DANs 

and FB neurons. We assume that Ii t = Wj
Eej t , where WE is initialized as a random 

standard Gaussian variable and ej (t) = 0 or 1 depending on whether signal j is active. For 

most tasks, there are two signals (positive or negative US).

A linear readout of the MBONs determines the valence of the currently presented odor via 

v t = ∑i ∈ MBONWi
Mri, where WM is initialized as a random Gaussian variable with 

variance 1/NMBON. Entries of WM corresponding to MBONs whose activation is known to 

produce approach or avoidance are constrained to be consistent with this sign.

Trials consist of 80 time units. In a first-order conditioning trial, a CS+ is presented for 3 

time units starting randomly between t = 5 and t = 15, followed by a positive or negative US 

with a delay of 2 time units. A test CS+ presentation occurs between t = 65 and t = 75, and 

the system must output the appropriate valence of +1 or -1 depending on the US valence 

during this second presentation. For extinction, an additional CS+ presentation occurs 

randomly between t = 35 and t = 45, and the magnitude of the valence is halved for the final 

test CS+ presentation. For second-order conditioning, a new CS2 is presented at this time, 
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followed by the original CS+, and the test occurs for CS2. Finally, for context-dependent 

conditioning, a contextual signal that determines the US valence is presented 3 time units 

prior to the first CS. At t = 30 and t = 60 firing rates are reset to their initial conditions to 

model an arbitrary time delay between CS presentations and preventing networks from using 

persistent activity, rather than synaptic plasticity, to maintain associations.

For networks trained on first-order conditioning, second-order conditioning, and extinction, 

training consists of random second-order conditioning and extinction trials (for which first-

order conditioning is a subcomponent). On each trial, there is a 50% probability that one of 

the signals (e.g. the US) will be omitted, or a CS- odor will replace a CS+ odor, and the 

network report a valence of 0 in these cases, ensuring that only valid CS-US contingencies 

are learned.

Optimization

The weights of the network W, the external and readout weights WE, WM (described 

below), and the biases b are optimized using PyTorch using the RMSprop optimizer 

(www.pytorch.org). Optimization proceeds over 1500 epochs, each of which consists of a 

batch of 30 trials that are used to evaluate the loss function that is minimized through 

gradient descent. The loss is equal to the squared distance between the actual and target 

valence summed over timesteps, plus a regularization term for DAN activity. The 

regularization term equals ∑t, i ∈ DAN ri t − 0.1 +,
2  which penalizes DAN activity that 

exceeds a baseline level of 0.1. This suppresses task-unrelated DAN activity and produces 

more realistic activity patterns in the DANs, but our results do not qualitatively change if 

this regularization is removed. We used a timestep of Δt = 0.5, although we verified that our 

qualitative results hold for smaller timesteps.

Parameter Notation Value

KC coding level f 0.1

Max. KC-to-MBON synaptic weight wmax 1/(NKCf)

Timing-dependent plasticity window τ 5

Timescale of weight modifications τW 5

Initial MBON rate m0 0

Initial DAN rate d0 0.1

Initial FB neuron rate x0 0.1

CS/US presentation length Tstim 3

CS-US delay ΔTUS 2

Trial length T 80

Timestep Δt 0.5

RMSprop learning rate η 0.002

Batch size B 30

Number of epochs Nepochs 1500
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Extended Data
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Extended Data Fig. 1. Expression patterns of Split-GAL4 lines.
Each panel shows a representative confocal maximum intensity projection (out of N=3) of 

the complete CNS of third-instar larvae (indicated by the dotted line in the first panel), with 

the neuropil labeled with anti-N-Cad antibody (blue) and the Split-GAL4line expression 

pattern revealed with UAS-myr-GFP (green). Arrowheads indicate cell bodies of identified 

neurons.
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Extended Data Fig. 2. Detailed characterization of associative memories formed through 
different kinds of ”optogenetic punishments” or ”optogenetic rewards”.
Preference scores are shown for the trained odor, ethyl acetate, when it was paired (paired 
group, closed circles) or not paired (unpaired group, open circles) with optogenetic 

punishments or rewards. These Preference scores are used to compute the Learning 

Performance Scores as shown in Fig. 1c, 1e and 6a-c, additional testing conditions are also 

shown here. With some natural punishments, aversive memory is behaviorally expressed by 

trained Drosophila larvae only if the punishment is present at the moment of the test16. Here 

we assayed olfactory aversive memories in two ways: both with or without optogenetic 

punishment (red and black bars, respectively) during the retention test. Odor preference was 

decreased and increased, respectively, relative to genetic controls, after pairing the odor with 

the presence and absence of the following optogenetic punishments: co-activation of the 

aversive DAN-f1 and DAN-g1, co-activation of DAN-f1 and DAN-c1, or activation of 

Basins. Aversive memory formed by DAN activation (green) or by Basins activation (blue) 

was expressed to the same extent with or without the DANs activated during the retention 

test. However, memory evoked by the activation of nociceptive MD IV neurons (orange) or 

FB2N-19 (yellow) was fully expressed only if these neurons were active again during the 

retention test. Odor preference was increased and decreased, respectively, relative to genetic 
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controls, after pairing the odor with the presence and absence of the following optogenetic 

rewards: the co-activation of DAN-h1, -i1, and -k1 (dark green); the activation of FB2N-18 

and FB2N-11 (yellow), or activation of FAN-7 (blue-gray). Thus, both absence of odor in 

the unpaired group of animals, as well as the presence of odor in the paired group of animals 

can be associated with the activation of some DANs or some of their afferent neurons. These 

results suggest that presenting an odor unpaired with the activation of some of these DANs 

induces memory of opposite valence to the paired presentation. For other DANs or afferent 

neurons, only paired (e.g. A00c, purple) or only unpaired (e.g. the modulatory DAN-f1, the 

nociceptive MD IV sensory neuron, or FB2N-19) contingency significantly affected odor 

preference with respect to the control group. Either of these two observed types of effects 

can contribute to the negative or positive learning performance indexes plotted in Fig. 1c, 1e 

and 6a-c.

Sample sizes: N = 42, 11, 17, 16, 12, 14, 12, 13, 12, 16, 12, 14, 12, 12, 15, 14, 12, 11, 14, 

13, 12, 14, 11, 11, 11, 18, 11, 20, 25, 33, 52,14, 21, 14, 14, 18, 18, 31, 52, 27, 11,11, 10, 13, 

20 (control groups in bold). Mean and standard deviations are shown. Black *: p-

value<Holm-Bonferroni-adjusted threshold for 0.05 from a two-sided Wilcoxon signed rank 

test comparison between paired and unpaired group. Grey *: p-value<Holm-Bonferroni-

adjusted threshold for 0.05 from a two-sided Mann-Whitney U test comparison between the 

preference scores for a given group (paired or unpaired) and the preference scores (for 

paired or unpaired protocol, respectively) obtained by the control line shown on the left of 

each set of data. Exact p-values are available in SourceData_Figure1.xls.
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Extended Data Fig. 3. Matrix of similarity between modulator neurons based on the amount of 
common input.
Similarity is obtained by counting the total number of inputs onto row modulatory neurons 

that are also inputs of column modulatory neurons, and dividing by the total number of 

inputs onto column modulatory neurons. An input here is a connection, consisting typically 

of many synapses, from a specific cell type onto the modulatory neuron. Inputs onto a 

modulatory neuron are considered if the pair of left and right neurons presynaptic to the pair 

of left and right modulatory neurons is each above a thresh-old of 1% (e.g. the presynaptic 

neuron makes 3 synapses onto a neuron with 300 postsynaptic sites) and the sum of both is 

over 3.3% (e.g. the sum of both connections is above 10 synapses for receiving neurons with 

300 postsynaptic sites).

Interestingly, functionally similar DANs, whose activation leads to aversive memory for 

paired odors share a higher fraction of presynaptic partners with each other than with other 
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DANs. By contrast some modulatory neurons that innervate the same compartment but 

express different neurotransmitters (e.g. OAN-g1 and DAN-g1) receive inputs from 

drastically different subsets of pre-modulatory neurons. Such modulatory neurons that 

innervate the same compartment could therefore be differentially recruited during learning. 

Interestingly though, OAN-e1 and MBIN-e2 in the UVL, whose activation paired with odor 

did not in-duce memory in our paradigm and that were not significantly activated by fictive 

punishments share a higher fraction of their input with the VL/LA DANs than with other 

modulatory neurons. This raises the possibility that the UVL modulatory neurons may be 

recruited by similar stimuli to the VL/LA DANs, but only in specific circumstances.
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Extended Data Fig. 4. Input onto feedback neurons.
Figure shows the fractions of total dendritic input each pre-modulatory neuron (FBN, FB2N 

or FFN) receives from KCs, modulatory neurons, MBONs, FBNs, FB2Ns, FFNs, and from 

other non-MB neurons (others). a FBNs receive on average 12% of their inputs directly from 

MBONs and most of them also receive inputs from other FBNs, with an average of 26% 

from MBONs and other FBNs combined (see also Supplementary Figure 4a). b 
FB2Nsreceive inputs both from FBNs (on average 17%) and from other FB2Ns (on average 

28% from FBNs and FB2Ns combined).Many feedback neurons also receive a significant 

fraction of input from other unknown neurons from other brain areas (other than MB), 
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suggesting that the feedback about the learnt valences of stimuli is integrated with or 

modulated by other information. c Tables show percent of inputs onto FBNs (top) and 

FB2Ns (bottom) from MBONs, FBNs, FB2Ns, FFNs, modulatory neurons and Kenyon 

cells.
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Extended Data Fig. 5. (related to Fig. 3a) Modulatory neurons receive convergent one-step 
feedback from multiple MBONs from functionally distinct compartments.
Connectivity of each of the 40 feedback neuron (FBN) pairs that provide one-step feedback 

from MBONs to DANs. Each diagram represents the connectivity of a single left-right pair 

of homologous FBNs. Each box indicates a separate compartment. Purple, compartment(s) 

of the presynaptic MBON(s). Green, compartment(s) of the postsynaptic modulatory 

neuron(s). FBNs are ordered according to the modulatory neuron they innervate, starting 

with peduncle modulatory neurons and ending with the medial lobe ones. Classical 

neurotransmitter profiles of the MBONs and FBNs are indicated by the arrow (cholinergic, 

excitatory connection), vertical line (GABAergic, inhibitory connection) or square 

(glutamatergic, probably also inhibitory connection) for the neurons for which they are 

known from immunostaining (For images, see Extended Data Fig. 9 for FBNs and ref.12 for 
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MBONs), or by a circle when they are unknown. 7 FBNs provide exclusively within-

compartment feedback. 13 FBNs provide exclusively cross-compartment feedback (named 

FANs, for feed-across). 8 FBNs synapse onto multiple modulatory neurons from multiple 

compartments. The largest class of FBNs (17) receives input from multiple MBONs, with 

the majority (at least 13) receiving input of potentially opposite sign from MBONs from 

functionally distinct compartments. More than a quarter of FBNs (at least 12) receive direct 

GABAergic(inhibitory) or glutamatergic (also potentially inhibitory) input from MBONs 

from one compartment and direct cholinergic(excitatory) input from MBONs from a 

functionally distinct compartments enabling them to compare the odor drive to these 

MBONs. Many DANs (DAN-f1, d1, i1, j1, and k1) receive potentially inhibitory (excitatory 

FBN downstream of an inhibitory MBON) one-step feedback from MBONs from one 

compartment and potentially disinhibitory (inhibitory FBN downstream of an inhibitory 

MBON) or excitatory (excitatory FBN downstream of an excitatory MBON) one-step 

feedback from MBONs from a functionally distinct compartment. A common pattern for the 

lobe DANs implicated in memory formation may be a likely inhibitory connection from an 

MBON from their own compartment and a likely disinhibitory connection from an MBON 

from a compartment of opposite valence (observed for both DAN-g1 and i1), that could 

enable these DANs to compare the odor drive to MBONs from compartments of opposite 

valence.
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Extended Data Fig. 6. Clustering FBNs based on input from MBONs.
a Heat map of FBN similarity based on the pattern of FBN synaptic inputs from MBONs. 

The similarity between a pair of FBNs was computed as the cosine similarity between the 

vectors of their normalized synaptic inputs from all MBONs. Indices were ordered by 

agglomerative clustering with average linkage (dendrogram shown at top). We highlight six 

groups of FBNs defined by similarities in their input patterns (bold lines in dendrogram, 

numbered). b Heat maps showing patterns of input from MBONs onto FBNs for the input 

groups highlighted in a. In all cases, connectivity is measured in normalized synaptic input 

on the postsynaptic neuron. Most input groups receive dominant input from a single specific 

MBON (Groups 1,2, 5) or small group of MBONs (Groups 3 and 4), while Group 6 is not 

well-clustered and contains a variety of dissimilar input patterns. c Heat maps showing the 

patterns of synaptic output from FBNs to modulatory neurons for the input groups 

highlighted in a. d The observed similarity in the output patterns between FBNs within each 

group, compared to shuffled data. For each group clustered by input pattern, we computed 

the observed median of cosine similarity of the output vectors across all pairs of neurons 

(red line). In Groups 1,2, and 3, the neurons clustered by inputs had more similar output 

patterns than would be expected by chance. To determine significance, we compared the 

observed similarity to the distribution of the median cosine similarity for randomly permuted 
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samples from the observed population of input vectors (black histograms, n=10000 

randomized trials) with a one-sided permutation test. A Holm-Sidak correction was applied 

to p-values to correct for multiple comparisons. n.s.: p>0.05.
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Extended Data Fig. 7. Clustering FBNs based on output onto modulatory neurons.
a Heat map of FBN similarity based on the pattern of FBN synaptic output across all 

modulatory neurons. The similarity between a pair of FBNs was computed as the cosine 

similarity between the vectors of normalized synaptic output onto all modulatory neurons. 

Indices were ordered by agglomerative clustering with average linkage (dendrogram shown 
at top). We highlight six groups of FBNs defined by similarities in their output patterns (bold 
lines in dendrogram, numbered). b Heat maps showing patterns of synaptic output from 

FBNs to modulatory neurons for output groups highlighted in a. Each group corresponds to 

several FBNs strongly targeting one or a small number of modulatory neurons, suggesting 

that some modulatory neurons are more strongly modulated than others. c Heat maps 

showing patterns of input onto FBNs from MBONs for the output groups highlighted in a. d 
The observed similarity in the input patterns between FBNs within each group, compared to 

shuffled data. For each group (as defined by output patterns), we computed the observed 

median of cosine similarity of the input vectors across all pairs of neurons (red line). In 

Groups 1–5, the neurons clustered by outputs had more input output patterns than would be 

expected by chance. To determine significance, we compared the observed similarity to the 

distribution of the median cosine similarity for randomly permuted samples from the 

observed population of input vectors (black histograms, n=10000 randomized trials) with a 
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one-sided permutation test. A Holm-Sidak correction was applied to p-values to correct for 

multiple comparisons. n.s.: p>0.05.
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Extended Data Fig. 8. Direct MBONs to modulatory neuron connectivity is very sparse, in 
contrast to the very dense connectivity via one-and two-step feedback pathways.
a Connectivity matrix showing normalized synaptic input (expressed as % input) each 

modulatory neuron (columns) receives from each MBON (rows). Only reliable connections 

for which the postsynaptic neuron receives at least 1% of input from the presynaptic neuron 

are shown. When the neurotransmitter of the MBON is known, the circle is color-coded to 

represent type of connection: excitatory (ChAT) or probably disinhibitory (GluT). Color 

shades represent the valence of the memory formed in a given compartment (red: aversive 

memory, blue: appetitive memory). True within-compartment feedback connections from an 

MBON that receives direct synaptic input from that modulatory neuron are boxed in bold. 

Very few modulatory neurons receive direct input from MBONs, in contrast to the dense 

connectivity between MBONs and modulatory neurons via the indirect one- and two-step 

feedback pathways (b). b Connectivity matrix showing indirect connections between 

MBONs and modulatory neurons via one-step and/or two-step feedback pathways. The 

matrix was obtained by summing the matrices from Fig. 3b and Fig. 5e. The color indicates 

Eschbach et al. Page 37

Nat Neurosci. Author manuscript; available in PMC 2020 September 23.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



the type of indirect connection existing between a given MBON and a given DAN. Bubble 

size represents a connectivity index computed as in Fig. 3b and Fig. 5e. A connectivity index 

of 1 or 10 means that for all connections comprising that indirect feedback pathway the 

presynaptic neuron accounts for 1% and 10% of input onto that postsynaptic neuron, 

respectively. One- and two-step feedback drastically increases the connectivity between 

MBONs and modulatory neurons, compared to direct connections (a).
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Extended Data Fig. 9. Identification of neurotransmitters expressed in some FBNs/FB2Ns.
Neurotransmitter expression detected in neuron somata using antibody labelling. We 

identified GAL4 lines that drive gene expression in some of the FBN or FB2N neurons and 

used them to express GFP in these neurons. We stained central nervous systems with 

antibodies against GFP and either ChAT (choline acetyltransferase), GABA (gamma 

aminobutyric acid) or GLUT (vesicular glutamate transporter).Each row shows from left to 

right: the name of the individual neuron, anti-GFP (green), anti-ChAT (magenta), and both 

antibody stainings combined; anti-GFP (green), anti-GABA (magenta), and both antibody 

stainings combined; anti-GFP (green) and anti-GLUT (magenta), and both antibody 

Eschbach et al. Page 39

Nat Neurosci. Author manuscript; available in PMC 2020 September 23.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



stainings combined. Whether a cell is cholinergic, GABAergic or glutamatergic is listed at 

the beginning of each row under the neuron name. Images show confocal maximum 

intensity projections of specific neuronal cell bodies. At least two replicates were obtained 

per genotype. Scale bars: 5μm.
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Extended Data Fig. 10. (related to Fig. 6) Identification of driver lines for EM-reconstructed 
Feedback neurons.
We were able to generate Split-GAL4 lines that drive expression in a single pair of neurons, 

or in very few cell types, for three different pairs of FBNs or FB2Ns that target VL DANs 

(a-c). We used these lines to optogenetically activate these neurons instead of a US during an 

associative learning paradigm (Fig. 6). i) Skeletons of specific feedback neurons 

reconstructed in the EM. Red dots, presynaptic sites. Blue dots, postsynaptic sites. Grey, 

mushroom body vertical lobe (MB vl) for reference. d, dendritic arbor. ii) Maximum 

intensity projections of confocal stacks of larval brains showing the same neurons visualized 

with reporters targeted using specific Split-GAL4 lines. For some lines multicolor flp-outs 

were used to visualize each neuron in a different color to facilitate identification and 

comparison with EM (N=1). Grey, neuropil visualized with N-cad. Dashed line, brain 

outline. iii) Maximum intensity projections of confocal stacks of the entire nervous system 

showing the complete expression pattern of each line revealed by driving UAS-myr-GFP. 
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Grey, neuropil visualized with N-cad. Dashed line, nervous system outline. Representative 

image from N=3. a, The SS02401-Split-GAL4 line drives expression in FB2N-19 (i) in the 

brain (ii), and very weakly and stochastically (not reproducibly in all samples) in a few 

ascending neurons and ensheathing glia in the nerve chord (iii). b, The SS02108-Split-
GAL4 line drives expression in FAN-7 and MB2ON-86 (i) in the brain visualized with 

multicolor flp-outs in (ii). Complete expression pattern of SS02108-Split-GAL4 visualized 

with UAS-myr-GFP shows additional expression in a few somatosensory interneurons in the 

nerve cord, called ladders, that mediate avoidance behavior and are hence unlikely to have a 

positive valence and evoke the appetitive memory observed in Fig.6b. We identified the 

SS04330-Split-GAL4 line as driving expression specifically in the MB2ON-86 neuron and 

used it as an additional control in Fig.6b. c, The SS01778-Split-GAL4 line drives expression 

in both FB2N-18 and FB2N-11, which have very similar morphology and very similar 

connectivity (Supplementary Figures 3 and 4b-d). The SS02181-Split-GAL4 line (ii shows 

multi-color flp-outs) drives expression in FB2N-18 and in MB2IN-207, one of the weakly 

connected pre-modulatory neurons from lineage DAMv12. Notice the ventrally projecting 

dendrite (d), a distinctive feature of MB2IN-207 neuron (i). UAS-myr-GFP expression 

patterns of the two lines show that they do not drive expression in any other neurons in the 

nerve cord (iii).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Individual vertical lobe DANs can induce aversive memory and represent different 
kinds of punishments in Drosophila larva.
a Schematic diagram of the larval MB compartments with an example KC, all MBONs and 

modulatory neurons.

b Schematic diagram of the one-odor associative memory optogenetic training protocol. 

Individual performance score is the difference between odor preferences of larvae 

after ’paired’ or ’unpaired’ protocol.
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c Scores obtained with SplitGAL4-driven optogenetic activation of modulatory neurons in 

the training protocol shown in (b): Activating DANs of vertical (red) and medial (blue) lobe 

compartments induces aversive and appetitive memory, respectively. 

N=21,11,12,16,18,14,12,14,12,16,12,14,12,12 (see Supplementary SourceData_Figure1 for 

more details). Mean and standard deviations shown. *, **, ***, P<0.05, 0.01, 0.001, two-

sided Mann-Whitney U test with Holm-Bonferroni correction in all legends unless otherwise 

stated.

d Different somatosensory neurons induce distinct innate escape responses23–25.

e Optogenetic activation of nociceptive neurons, Basins, or the Basin-target A00c induces 

aversive memory when paired with odor. (See Extended Data 2). N=25,33,52,21,14. Scores 

(computed as in b) are compared to the control group.

f ”Aversive DANs” respond to optogenetic activation of somatosensory neurons with 

specific tuning. Plots show calcium transients in selected modulatory neurons evoked by 

mechanosensory, nociceptive and Basin neurons activation. thin lines: averaged responses 

for one brain (3 repeats); thick lines: median across all animals. Black plots: median peak 

δF/F0 of individual curves in different time windows: 1 sec before, 1 sec during, and 2 sec 

following the stimulation. Error bars show the 25th and 75th percentile of peak δF/F0.
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Figure 2. Comprehensive EM reconstruction of pre-modulatory neurons reveals a multilayered 
recurrent architecture for regulating learning.
a Projections of EM reconstructions of 102 neuron pairs found to be strongly connected to 

modulatory neurons. The majority (61) relays inputs from MBONs: 40 FBNs pairs (light 
blue) ; and 21 FB2Ns (yellow). The remaining 41 are classified as FFNs (light green).

b Connectivity matrix showing normalized synaptic input (in %) each homologous pair of 

postsynaptic (columns) neurons receives from each pair of presynaptic (rows) neurons.

c Schematic wiring diagram of the Extended MB circuit.
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d Fraction of total dendritic input each modulatory neuron receives from different neuron 

types. Most DANs receive more than half of their input from MBON feedback pathways, 

whereas most OANs receive most input from weakly connected partners. Some DANs 

extend dendritic arbors to the KCs which accounts for KCs dendritic input; KCs axonic 

inputs are described elsewhere (Eichler et al. 2017). Red and blue, aversive and appetitive 

memory compartments, respectively, in all legends.

Bottom: Percent of inputs onto modulatory neurons from (I.) MBON, FBN, and FB2N, (II.) 

FFNs, and their ratio. This ratio is greater than 1 in most cases.

e Connectivity matrix showing normalized synaptic input (expressed as % input) each 

modulatory neuron (columns) receives from each pre-modulatory neuron (rows).

Pre-modulatory neurons synapse onto a single or a few functionally related modulatory 

neuron(s) (See also Extended Data 3).

f US pathways converge with feedback pathways at modulatory neurons and at FB2Ns. 

Diagram shows the shortest identified US pathways from somatosensory neurons to vertical 

lobe modulatory neurons. Thickness of the arrow represents fraction of input.
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Figure 3. Modulatory neurons receive convergent one-step feedback from multiple MBONs from 
functionally distinct compartments
a Diagram representing the connectivity of 7 example pairs of homologous FBNs. Boxes 

indicate separate MB compartments, with presynaptic MBON(s) on the left side, and 

postsynaptic modulatory neuron(s) on the right. When known (Extended Data 9 and Eichler 

et al. 2017), the neurotransmitter profiles of the MBONs and FBNs are indicated by the type 

of arrow. See Extended Data 5 for diagrams of each of the 40 FBNs.

b Connectivity matrix shows the one-step feedback connections between MBONs and 

modulatory neurons via FBNs, obtained by multiplying the MBON→FBN, and 

FBN→modulatory neuron normalized connectivity matrices. Connectivity indexes are the 

square roots of the matrix products. Colored circles indicate putative signs of connections if 

neurotransmitters of both MBONs and FBN(s) are known. Red and blue color shades, 

aversive and appetitive compartments, respectively. Pure within-compartment connections 

(excluding multi-compartment MBONs) are boxed in bold. The four pure within-

compartment connections with known neurotransmitters are potentially inhibitory, in 

contrast to cross-compartment connections.

c Connectivity indexes from (b) pooled per compartment.
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d-e Summary diagram of commonly observed convergence motifs. d, Many FBNs (at least 

13) receive convergent inputs of opposite sign (i.e. excitatory and inhibitory) from 

functionally distinct compartments. e, DANs (e.g. DAN-g1 and DAN-i1) receive convergent 

inputs of opposite sign from functionally distinct compartments, via distinct one-step FBN 

pathways.
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Figure 4. Functional inhibitory and excitatory feedbacks from compartments of opposite valence 
converge onto a DAN.
a Schematic diagram showing potentially inhibitory within-compartment and disinhibitory 

cross-compartment feedbacks converging onto a DAN. These two predicted connections are 

tested separately (b-d and e-g).

b The cholinergic FBN-7 downstream of the glutamatergic MBON-i1 could mediate 

inhibitory one-step within-compartment feedback onto DAN-i1.

c Whole-cell patch-clamp recording of DAN-i1 reveals inhibitory within-compartment 

feedback connection from MBON-i1 (purple bar). Action potentials from 180 traces from 9 

animals are shown as raster plots. Dashes on the left separate distinct animals. We observed 
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long-latency inhibitory responses in DAN-i1 at the onset (top 3/9 animals, 55.3 ± 17.3 ms, 

mean ± std) or offset (next 5/9 animals, 95.3 ± 43.5 ms) of MBON-i1 activation (purple bar)
d Example trace from (c) (more in Supplementary Fig. 3a).

e The GABAergic FBN-23 downstream of the GABAergic MBON-m1 could mediate 

disinhibitory cross-compartment one-step feedback onto DAN-i1.

f Whole-cell patch-clamp recording of DAN-i1 reveals a functionally excitatory cross-

comparment connection from MBON-m1.

Action potentials from 30 traces from 3 animals are shown as raster plots. We observed a 

long-latency excitatory response in DAN-i1 at the onset of MBON-m1 activation (purple 
bar, 3/3 animals, 51.3 ± 7.7 ms). g Example trace from (f) (more in Supplementary Fig. 3d).
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Figure 5. Two-step feedback from most MBONs to most modulatory neurons further increases 
inter-compartment connectivity.
a Schematic diagram of a two-step feedback motif involving an FBN (blue) and an 

inhibitory FB2N (yellow). The FBN provides one-step feedback to some compartments and 

two-step feedback to others via the FB2N. Arrowheads denote the type of synaptic 

connection in a-d.

b Two example two-step within-compartment feedback motifs involving FB2Ns with 

identified neurotransmitters.

c Schematic diagram of a two-step feedback motif involving two FBNs (blue) rather than an 

FBN and an FB2N. d Five example two-step within-compartment feedback motifs involving 

FBNs with identified neurotransmitters illustrate the diversity of two-step feedback 

connections.

e Most modulatory neurons receive two-step feedback from most MBONs. Connectivity 

matrix shows connections between MBONs and modulatory neurons via two-step feedback 

pathways, obtained by multiplying the MBON→FBN, FBN→FB2N/FBN and FB2N/

FBN→modulatory neuron connectivity matrices. The connectivity indexes are the cubic 

root of the resulting matrix products.
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Figure 6. Feedback neurons can drive associative memory formation.
(a-c). We generated Split-GAL4 lines to target CsChrimson expression almost exclusively to 

single FBNs or FB2Ns that innervate vertical lobe DANs (See Extended Data 10). We 

optogenetically activated these neurons instead of a US in our associative memory paradigm 

(as in Fig. 1b-c). Horizontal lines, means and standard deviations. Statistics are as in Fig. 1c.

a, Activation of the excitatory FB2N-19 in the training paradigm induces aversive memory, 

same as the activation of its postsynaptic DAN-f1 (Fig. 1c). N=13,20

b, Activation of FAN-7 induces appetitive memory, opposite to its postsynaptic DAN-d1 

(Fig. 1c). The SS02108-Split-GAL4 line drives expression in two brain neurons: the 

GABAergic FAN-7 and MB2ON-86, and a few somatosensory interneurons in the nerve 

cord (unlikely to evoke an appetitive memory). We therefore used the SS04330-Split-GAL4 
line that drives expression specifically in MB2ON-86 as an additional control and found this 

neuron did not induce memory formation. N=52,27,11.

c, Activation of FB2N-18 with or without FB2N-11 induces appetitive memory, opposite to 

activation of their presynaptic DANs (Fig. 1c). The SS01778-Split-GAL4 line drives 

expression in the glutamatergic FB2N-18 and FB2N-11, which have very similar 

morphology and connectivity (Supplementary Fig. 3, 4b-d, and Extended Data 10). Both 

connect most strongly to DAN-f1 and weakly to MBIN-e2 (and DAN-g1 for FB2N-18). The 

SS02181-Split-GAL4 line drives expression in FB2N-18 and in MB2IN-207, a weakly 

connected pre-modulatory neuron (unlikely to be able to significantly influence modulatory 

neuron activity). N=18,18,31.
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Figure 7. Model reveals effects of feedback motifs on learning task performance.
a Normalized error (mean-squared difference between decoded and target valence, 

normalized to error for control networks) after optimizing models to perform first-order 

conditioning, extinction, and second-order conditioning. Error shown for six cases: Control: 

full network; No FB: networks in which feedback onto modulatory neurons, including direct 

MBON connections, is removed; No FB neurons: indirect FBN/FB2N feedback is removed 

but direct MBON connections are intact; No 2-step: only FB2Ns and all FBN-to-FBN 

connections are removed; No cross: indirect cross-compartment connections are removed; 

No within: indirect within-compartment connections are removed. Performance of model 

networks was assessed by optimizing n=20 networks independently. Performance measures 

were compared across network types and significance assessed with a two-sided Mann-

Whitney U test (a-d). p-values represent a comparison to control networks after 

conditioning. Box: lower and upper quartiles, line: median, whiskers: range of the data up to 

1.5 interquartile range, points: outliers of the whiskers range (a-c). b Similar to a, but for 

networks optimized to perform a context-dependent conditioning task.
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c Adaptive response index for networks in a, defined as the magnitude of firing rate change 

to CS+ presentation before and after conditioning, averaged over modulatory neurons. 

Results are normalized by the index for control networks.

d Example responses of DANs from networks in a to US alone (US), CS+ paired with US 

following training (CS+ w/ US), CS+ alone after training (CS+), and CS prior to training 

(CS).

Row i: A DAN selective only to US.

Row ii: A DAN selective to US that acquires a CS+ response after conditioning.

Row iii, iv: DANs with ”prediction-error” like responses. CS+ responses are opposite in sign 

to US responses.

Row iii: A DAN inhibited by US and activated when US is omitted.

Row iv: A DAN excited by US and inhibited when US is omitted.

e CS+/US response overlap before and after conditioning. Overlap equals the dot product of 

the vectors of firing rate changes across the modulatory neuron population during CS+ and 

US presentations.
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