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Abstract

Single cell technologies have made it possible to profile millions of cells, but for these resources to 

be useful they must be easy to query and access. To facilitate interactive and intuitive access to 

single cell data we have developed scfind, a single cell analysis tool that facilitates fast search of 

biologically or clinically relevant marker genes in cell atlases. Using transcriptome data from six 

mouse cell atlases we show how scfind can be used to evaluate marker genes, to perform in silico 
gating, and to identify both cell-type specific and housekeeping genes. Moreover, we have 

developed a subquery optimization routine to ensure that long and complex queries return 

meaningful results. To make scfind more user friendly, we use indices of PubMed abstracts and 

techniques from natural language processing to allow for arbitrary queries. Finally, we show how 

scfind can be used for multi-omics analyses by combining single-cell ATAC-seq data with 

transcriptome data.

Introduction

Single cell technologies have made it possible to profile large numbers of cells 1–6, and there 

are currently several ongoing efforts to build comprehensive atlases of humans 7 and other 

organisms 1,2,6,8. One ambition of these projects is to create references that can be used as a 

foundation for both basic research and clinical applications 7. To achieve this goal and to 

ensure that cell atlases can fulfill their potential, it is critical that they are easy to access for 

many users, ranging from computational biologists interested in large scale analyses to wet 

lab biologists and clinicians who are interested in a specific gene and regulatory pathways 

from a ChIP-seq experiment, or disease associated with genetic variants.
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Many of the challenges in working with single cell data stem from its large size. Typically, a 

single cell RNA-seq (scRNA-seq) dataset is represented as a gene-by-cell expression matrix 

with ~20,000 genes and may include millions of cells. For epigenetic data, e.g. scATAC-seq 
5, the situation is often worse as the matrix can have many more rows, each representing a 

peak. Even though the matrix is sparse, working with such a dataset places high demands on 

computer hardware. Many operations are not only time consuming, but require advanced 

bioinformatics skills. To allow for both interactive and high-throughput queries of a large 

cell atlas, novel algorithms and data structures are required.

To ensure that large single cell datasets can be accessed by a wide range of users, the 

underlying software must (i) allow for complex queries, (ii) take full advantage of the single-

cell resolution of the data, (iii) support different types of assays besides RNA-seq, (iv) be 

fast and easy to use, (v) be possible to run interactively through a web browser to access 

large repositories of data, (vi) be possible to run locally by a user interested in analyzing 

their own data (vii) be easy to interface with other resources such as the genome wide 

association study (GWAS) catalog 9, the gene ontology (GO) knowledgebase 10, the disease 

ontology Medical Subject Headings (MeSH) 11, and collections of clinically important 

genetic variants 12,13. However, none of the computational tools available today for 

collections of scRNA-seq datasets, e.g. Panglao 14, the UCSC Cell Browser 15, and the EBI 

Single Cell Expression Atlas 16, provide the required functionality and versatility.

Here, we present scfind, an R package that leverages natural language processing techniques 

to make single cell data accessible to a wide range of users by enabling sophisticated queries 

for large datasets through an interface which is both very fast and familiar to users from 

different background. The central operation carried out by scfind is to identify the set of 

cells that express a set of genes or peaks (i.e. the query) specified by the user. By 

themselves, such searches can be very powerful as they can identify the cell type that is most 

enriched for cells corresponding to the query within hundredths of a second. Note that the 

searches carried out by scfind differ from existing methods such as CellAtlasSearch 17 and 

CellFishing 18. These methods take as input the expression levels of a cell and determine the 

most similar cell or cell-type in a reference dataset, and consequently they cannot be directly 

compared to scfind. Furthermore, we demonstrate how the fast searches open up new 

possibilities for global analyses of cell atlases, e.g. for identifying housekeeping genes and 

tissue-specific genes. By taking advantage of information from PubMed abstracts and 

natural language processing techniques, scfind allows a user to input various type of query 

and automatically translates it into a gene list which is used for the search. Finally, we show 

how scfind can be applied to both scRNA-seq and scATAC-seq atlases together to identify 

putative cell type specific enhancers.

Results

Efficient compression allows for fast queries with single cell resolution

The input for building an scfind index is one or more non-negative matrices where rows 

represent genes, peaks, or another feature which are used as query terms and each column 

represents a cell. There are no assumptions regarding normalization, but it is beneficial if the 

matrix is sparse. To build a compact index to store the matrix, scfind uses the row names as 
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keys, and compresses each row in two steps. The first step, which is lossless, stores the 

indices of the cells with non-zero values as binary strings using Elias-Fano coding 19. In the 

second, lossy step, the approximate values are stored with a user-defined precision (Figure 

1a, Supplementary Figure 1). The combination of lossless and lossy strategies means that the 

most important information, whether or not a key is present in a cell, is perfectly retained, 

whereas, only an approximation of the value is stored to save space. Since the number of bits 

used per entry in the second step is decided by the user, it is possible to tune the trade-off 

between compression and information loss. If the cells have been assigned labels, e.g. using 

unsupervised clustering or projection methods, these are stored and used to group the cells 

returned from a query. Importantly, the index is modular, making it possible to add new 

datasets without having to reprocess the ones that have already been indexed.

We applied scfind to five large mouse scRNA-seq datasets: the Mouse Organogenesis Cell 

Atlas (MOCA) 6, the Mouse Cell Atlas (MCA) 2, two collections, FACS and 10X, from the 

Tabula Muris (TM) 20 which are sampled from the whole body and the Zeisel 4 dataset 

(BCA), which contains cells from the brain. We also indexed the sciATAC-seq mouse atlas 5 

using the genomic coordinates of the 167,013 unique peaks as keys instead of gene names. 

When searching, the user does not need to specify the exact coordinates of the peaks; scfind 

will automatically find all peaks inside an interval to use as a query. Compared to the full 

expression matrix, scfind achieves compression ratios of 10-300, and is more compact than 

other file formats (Figure 1b, Supplementary Figure 2). Both the relative compression and 

the absolute size of the index depends on the sparsity of the dataset, with the highest 

compression for MOCA where >95% of the expression matrix consists of zeros (Figure 1c). 

Since an index for 100,000 cells takes up no more than ~150 MB of disk space, scfind 

makes it possible to analyze very large datasets on a standard laptop. Since the four largest 

scRNA-seq datasets contain only ~103 reads/cell, the range of expression values is limited, 

allowing them to be well approximated with only two bits/cell for the lossy compression 

(Figure 1d). The compression scheme used by scfind is not just memory efficient, but also 

fast; it typically takes less than a minute for each tissue to create an index (Figure S3).

To identify the cells that match a query, scfind decompresses the strings associated with each 

key to retrieve the cells with non-zero expression. If cell labels have been provided, scfind 

will automatically group the cells and a hypergeometric test is used to determine if the 

number of cells found in each cell type is larger than expected by chance. Search times are 

well below one second, even for the MOCA dataset with ~2 million cells, and they scale 

linearly both with the number of genes in the query and the number of cells in the reference 

(Figure 1e,f).

As an example, we consider the genes Il2ra, Ptprc, Il7r and Ctla4, which correspond to T 

cell surface markers commonly used in FACS experiments. For the TM FACS dataset the 

results show that T cells in the bone marrow are the most highly enriched group, and further 

inspection reveals that 24 of the 38 cells that express all four genes are T cells from different 

tissues, suggesting that this is the most relevant hit (Figure 2a).

The default is to require that cells contain all keys in a query, but the user can specify for 

each key if it is to be used with OR or NOT logic. The logical operators make it possible to 
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form complex queries and one application is to carry out in silico gating of cells, i.e. 

subsetting cell states of one cell type by their gene expression status by taking advantage of 

the fact that scfind returns individual cells matching a query. Based on the expression of 

Il2ra, Ptprc, Il7r and Ctla4, we defined five non-overlapping sub-clusters as suggested by 

Golubovskaya and Wu 21, and they were detected in the thymus for both TM datasets. 

(Supplementary Figure 4).

Fast and flexible identification of marker genes

The ability to identify all cells expressing a gene in hundredths of a second makes it possible 

to exhaustively scan the entire transcriptome. That is, scfind can be used for optimization 

problems by evaluating all genes based on how well they perform for a specific task. One 

such application is to search for marker genes. To evaluate gene gi as a marker for cell type 

cj, we defined four quantities: true positives are cells that belong to cj and express gi, false 

positives are cells from other cell types expressing gi, false negatives are cells from cj that do 

not express gi, and true negatives are cells from other cell types that do not express gi. From 

these quantities precision, recall and F1 score can be computed to rank the genes. One can 

also combine multiple marker genes through AND or OR logic. Using AND to improve 

precision will typically result in reduced recall (and vice versa for OR), so combining 

markers will alter the trade-off between precision and recall, but it rarely improves the F1 

score.

To illustrate the marker genes search, we have carried out a large scale comparison of cell 

type markers identified by Seurat and the manually curated CellMarker database 22 for the 

TM FACS dataset. We have also carried out the comparison of cell type markers from the 

database for the other four datasets to demonstrate that the results of scfind is not biased 

toward the genes used in cell type clustering (Supplementary Figure 5-7). Interestingly, these 

marker genes have moderate recall values but low precision values (Figure 2b, c, 

Supplementary Figure 5-7). By contrast, scfind can identify marker genes that result in 

either high precision, recall, or F1 score (Figure 2b, c, Supplementary Table 1, 2). For each 

cell type ranking all genes took only an average of 0.28 s for TM FACS, 0.18 s for TM 10X, 

and 0.74 s for MCA (Supplementary Figure 8), suggesting that an entire atlas can be ranked 

in minutes. To compare how well marker genes perform across mouse cell types, we 

identified the best combinations of up to five marker genes in all three adult whole body 

atlases. When we modified the search to only compare against cell types from the same 

tissue, the scores increased (Figure 2d, Supplementary Table 1, 2).

The set of marker genes is defined as the smallest number of genes that allows a cell type to 

be reliably identified. Instead, one can use the largest possible set of genes that are expressed 

above a threshold, and we define the maximal set of marker genes as those genes with 

recall>0.9. Since recall is defined as TP/(TP + FN) the maximal marker set is independent of 

the other cell types in the atlas, unlike a definition based on precision or F1. The cardinality 

of the maximal marker gene set gives an indication of heterogeneity as a homogeneous 

cluster will have a larger number of genes. For example, the mean number of maximal 

markers for the TM FACS cell types is 238, but T cells, which we know have different 
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subsets (Supplementary Figure 4) have only on average, 114 maximal markers 

(Supplementary Table 4).

We consider the five cardiomyocyte markers that we identified previously. Comparison with 

a list of 1,296 surface markers 23 reveals that none of them can be found on the surface, but 

scfind’s similarity search function returns five other markers for which antibodies are 

available (Supplementary Figure 5). Additionally, scfind features lists of reported 

transcription factors 24 and chemokines 25, allowing for searches using only those genes.

Identification of housekeeping genes and cell type specific genes

In addition to identifying sets of genes that are specific to a cell type, we can also evaluate 

how many different cell types express a specific gene. We define a gene as present if it is 

found in at least max(10, 0.1Ni) cells, where Ni is the total number of cells of type i. 
Consistent with previous studies based on bulk RNA-seq 26 we find a bimodal pattern such 

that many genes are either widely expressed or found in only a few cell types (Figure 2e). 

The number of cell types where a gene is expressed is strongly correlated between the 

different atlases (Spearman’s rho = .63 on average), suggesting that the findings are robust 

despite the differences in sequencing depth and cell type annotations.

Of particular interest are those genes expressed across most or all cell types, a.k.a. 

housekeeping genes. A widely used definition of housekeeping genes was obtained from 

several bulk RNA-seq experiments, and it constitutes 3,505 genes 27. We compared the 

3,144 genes from this list which were present in the MCA and the two TM datasets with the 

same number of widely expressed genes from each of the three atlases. This revealed a high 

degree of similarity, as 912 genes were found on all four lists (Figure 2f, Supplementary 

Table 3). An additional 740 genes were found in all three atlases but not in the literature 

curated list, suggesting that there are a substantial number of ubiquitously expressed genes 

that are not traditionally considered as housekeeping genes. Moreover, 1,345 of the genes 

from the literature were not identified as widely expressed in any of the three atlases, 

implying that the results can differ substantially depending on whether bulk or single cell 

data is used. Since the ranking of the genes takes only ~1 second/cell type (Supplementary 

Figure 9), it will be straightforward to continuously refine lists of housekeeping genes as 

more data becomes available. We also found 4,966 genes present in only one or two cell 

types in all three atlases (Supplementary Table 3). Closer inspection of the cell types 

containing the largest number of specific genes shows that they are mainly found in 

hepatocytes, brain and testis (Supplementary Table 5).

Frequent pattern growth algorithm ensures that long queries return meaningful results

One challenge in using queries involving even a moderate number (>5) of terms for sparsely 

sequenced datasets is that it is very likely that an empty set of cells will be returned. To 

ensure that meaningful results are returned without requiring the user to manually modify 

the query through trial and error, scfind features a query optimization routine. This 

procedure identifies subsets of the original query terms, hereafter referred to as subqueries, 

that are guaranteed to return non-empty sets of cells. Since the number of possible 

subqueries may be very large, evaluating all possible combinations is intractable. Instead, 
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scfind uses a strategy inspired by the frequent pattern (FP) growth algorithm 28 to identify 

subqueries that return many cells. Compared to the brute-force algorithm, FP-growth can 

speed up the procedure for approximately 2 orders of magnitude when the original query 

contains 20 genes (Supplementary Figure 10). To help the user decide which subquery to 

use, they are ranked by a score inspired by the term frequency-inverse document frequency 

metric 29. To illustrate the subquery optimization we consider eight genes which can 

distinguish cardiac muscle cells in the heart 30. A search of the TM FACS dataset returns no 

cells, but the subquery optimization ranks the query involving Actc1, Myh6 and Nppa as the 

best one and heart cardiac muscle cells is the only significantly enriched cell type (Figure 

3a).

To carry out a high throughput involving more realistic and biologically meaningful positive 

control queries, we considered the GO database 10 where each term is associated with a 

manually curated list of genes. Although some terms are unlikely to be cell type specific 

(e.g. “DNA binding”), for some terms it is reasonable to expect that they should be enriched 

for one or more cell types. For example, after using the subquery optimization we find that 

the best matches for “lung saccule development” (GO:0060430) has the highest enrichment 

in several different cell types found in the lung for the MCA, MOCA, TM 10X and TM 

FACS datasets. We queried all terms containing between 5 and 25 genes against the three 

mouse atlases, and report the p-values of all cell types for the best subquery (Figure 3b, 

Supplementary Figure 11, 12). Biclustering of the resulting matrix reveals that the rows, 

corresponding to the cell types, are not grouped by tissue. Instead, functionally similar cell 

types, e.g. immune cells, are grouped together, regardless of their tissue of origin. By 

contrast, the columns which represent the GO terms, form a hierarchy which corresponds 

well to the GO annotation evidenced by the fact that the parent categories are not mixed. 

This result is reassuring since the GO terms are hierarchical and can be represented as a tree 

structure. Another important observation is that the subquery optimization takes <10 seconds 

even for queries involving up to 25 genes (Figure 3c). Taken together, we have demonstrated 

that subquery optimization can yield biologically meaningful results in a timely manner.

Queries involving biomedical keywords

One of the central purposes of a cell atlas is to facilitate the identification of cells or cell 

types associated with a specific query. We have demonstrated that scfind provides this 

functionality given a query formed by a list of genes. Although such queries are convenient 

for researchers with expertise in genetics and genomics, it restricts the number of people that 

can use the cell atlas. To allow for a much wider range of queries, scfind leverages the 

knowledge that has been accumulated over decades in the form of abstracts from the 

biomedical research literature stored in NIH’s PubMed database 31. The PubTator 32 

resource has parsed all PubMed abstracts and extracted gene names, genetic variants, disease 

names and chemicals for each PubMed ID. We assume that if a keyword, i.e. variant, disease 

or chemical, is mentioned in the same abstract as a gene, then the gene is relevant for queries 

involving that keyword. Based on this logic we have created dictionaries where each 

keyword is associated with a list of three or more genes sorted by how often they co-occur. 

In total, the dictionaries map >300,000 keywords to gene lists (Table 1).
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The variant dictionary makes it possible to combine text mining and expression analysis to 

identify the cell type where a variant is most likely to have an impact 33,34. Results for five 

variants queried against the TM FACS data (Supplementary Table 6) are well supported by 

literature. Many diseases are referred to by many different names, a redundancy which can 

be resolved by mapping each of the 171,162 disease names to one of the 6,639 categories 

defined by Medical Subject Headings (MeSH) and Online Mendelian Inheritance in Man 

(OMIM). With the same approach, we provide five example queries to illustrate this feature 

(Supplementary Table 7). For example, a search for “Legionella infection” returns cell types 

from the lung as the top hits. Considering the etiology of Legionnaire’s disease, a bacterial 

infection causing pneumonia, this is clearly a relevant result. Combining MeSH IDs and 

Chemical Entities of Biological Interest 35, scfind allows searches for drugs, hormones, 

toxins, etc and the results for five searches are reported here (Supplementary Table 8). To 

allow for word and phrase searches, other than disease names and chemicals, that are 

common in the biomedical literature, scfind includes a dictionary, based on PubMed Phrases 
36. (Supplementary Table 9).

PubTator and PubMed phrases expand the number of possible queries, but there are still 

substantial limitations as the user is required to enter the precise keywords found in the 

dictionaries. To allow for greater flexibility, scfind employs a strategy from natural language 

processing, word2vec 37, to map queries that are not found in the dictionary to the existing 

keywords (Figure 4a). The idea behind word2vec is to embed words in a vector space which 

makes it possible to match words and phrases based on similarity of their associated vectors. 

The neural network carrying out the embedding needs to be trained on a large corpus of text, 

and scfind uses one based on PubMed abstracts 38.

Addition of the basic gene queries to the logic operators, the subquery optimization, the 

dictionaries based on PubMed abstracts, and the word2vec functionality, results in a versatile 

search engine that can identify cell types corresponding to complex queries at speeds that 

allow for an interactive workflow. When given a complex query, scfind first identifies gene 

names and keywords that exist in one of the dictionaries. Any remaining terms are then 

mapped using word2vec to the nearest keyword, and the gene names obtained are then used 

as a query (Figure 4a).

The dictionaries mapping keywords to gene names can be inverted to provide a set of 

keywords associated with each gene. The inverted dictionaries are useful for interpreting a 

list of genes, and an intuitive way to visualize the results is through a word cloud where the 

size of each word is related to how frequently it is associated with the gene set. One 

application is to make sure that the gene list obtained following subquery optimization still 

represents the user’s original intent. As an example, we consider a set of markers 

discriminating between atrial and ventricular heart tissue 30. Subquery optimization for the 

TM FACS datasets suggests Hyal2 and Myl2 as the best query, and it shows cardiomyocytes 

and heart epithelial cells as the most enriched cell types. In the resulting word cloud (Figure 

4b), we note the prominence of the term “ventricular” which suggests that the sub query still 

reflects one of the key properties of the original gene list. Moreover, the word cloud contains 

several variants, e.g. rs104894368 and rs104894369 that have been associated with 
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hypertrophic cardiomyopathy 39,40, thus providing novel suggestions and interpretations to 

the user.

Application to single cell ATAC-seq data identifies cell type specific enhancers

Super enhancers, sometimes referred to as stretch enhancers 41,42, are defined as regions >3 

kb that harbor multiple enhancer sites. Super enhancers are important for gene regulation 

and although they have been extensively studied, previous studies have largely been based 

on bulk data. We hypothesized that scATAC-seq data could make it possible to identify what 

cell type a super enhancer is associated with. From dbSuper 43 we obtained 4,328 super 

enhancer loci from eight tissues, and for each locus we identified the most significantly 

enriched cell types by searching for overlapping peaks using an OR query, thereby assigning 

2,726 loci to a unique cell type (Figure 5a, Supplementary Table 10). This includes several 

known loci, e.g. Hnf4a, Nr5a2, Ppara and Rxra in hepatocytes 44 and Nr4a1 in monocytes 45, 

that were correctly identified.

One of the biggest challenges in studying gene regulation in metazoans is to identify the 

targets of distal enhancers. As enhancer targets cannot be predicted from sequence alone, 

information both about chromatin and gene expression is required 46. Since proximity can be 

a useful guide, we hypothesize that open chromatin peaks that are only found in one cell 

type are likely to target nearby genes that are specifically expressed in the same cell type and 

searched the TM FACS atlas for genes that are highly expressed in only one cell type for 

each tissue. For each of those genes, we searched the sciATAC-seq atlas for peaks that were 

unique to the same cell type and within 100 kb of one the start sites (Figure 5b). This 

procedure identified 15,583 open chromatin-gene pairs from seven tissues (Supplementary 

Table 11). We found support in the literature for several of the identified candidates (Figure 

5b) 43. As a validation, we searched for enriched transcription factor binding motifs in the 

putative enhancers for three cell types where more than 500 loci were identified. (Figure 5c).

Scfind can also be applied to multi-omics datasets. We created an index for 5,081 cells from 

mouse neonatal cerebral cortex where both open chromatin and transcriptome were profiled 

using SNARE-seq 47. To demonstrate the advantage of joint searches with scRNA-seq and 

scATAC-seq, we compared to using only one modality, and we found that utilizing both 

modalities improves the precision (Supplementary Figure 16). We modified the marker gene 

search method to carry out an AND query for each gene along with each of the peaks found 

within 1 Mb of its TSS. This allowed us to identify putative enhancer-gene pairs that are 

specific to each cell type. As an example, we identified 983 putative genes-enhancer pairs 

for Cajal-Retzius neurons and 974 pairs for endothelial cells. Our analysis identifies several 

loci that have been shown to be relevant 48. Our search for enriched motifs at the cell type 

specific open chromatin sites returned several hits (Figure 5d, Supplementary Figure 17).

Discussion

As the size of single-cell datasets grows exponentially, there is an urgent need for 

computational tools to allow for fast and efficient analysis. We have presented scfind, a 

method for searching large collections of single cell data to identify sets of cells that 

correspond to diverse criteria. Although the resource requirements for scfind still scale 
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exponentially, the rate is substantially lower than for alternative approaches making it 

feasible to work with datasets containing millions of cells using standard hardware. Scfind is 

able to carry out complex queries in less than a second, suggesting that scfind can support 

real-time exploration of cell atlases. If scfind is going to be used in a manner analogous to 

how Internet search engines are used, it will require that datasets are indexed and made 

available through a website such as Panglao 14, the UCSC Cell Browser 15, or the EBI 

Single Cell Expression Atlas 16, where new datasets are regularly incorporated. However, 

our R package can be run locally using either pre-indexed datasets or an index constructed 

by the user as detailed at https://github.com/hemberg-lab/scfind.

Our subquery optimization routine combined with the PubMed based dictionaries makes it 

possible to resolve arbitrary queries, ensuring that scfind can be used by people without 

expertise in genetics and genomics. The searches are difficult to evaluate quantitatively, but 

our tests suggest that they frequently provide reasonable results. Nevertheless, there are 

several ways by which results could be improved. The way in which the information is 

extracted is not very sophisticated, and associations are based solely on co-occurrence 

without considering the context. For example, an article may incorrectly put forward 

evidence that a specific gene is not important for a disease. Although we cannot rule out that 

some searches will be confounded, we conjecture that the impact of this may be limited 

since positive result bias is well documented in biomedical science 49. More advanced 

methods for processing natural language will make it possible to further exploit this 

knowledge when interpreting and analyzing high-throughput datasets. Another shortcoming 

is that most of the testing has been carried out using mouse datasets, even though much of 

the information that is used to relate queries to gene lists is based on human studies, and this 

may explain some inconsistencies.

The primary use case for scfind is to query large collections of previously annotated single-

cell datasets to identify the group of cells that provide the best match. As a second use case, 

scfind can facilitate the annotation of newly collected datasets. Once the cells have been 

grouped through unsupervised clustering, determining the biological significance of each of 

the clusters is typically a difficult and time-consuming process 50. It typically requires expert 

knowledge and the researcher must search the literature to match marker genes with known 

pathways, processes or cell types. Scfind has the potential to speed up this process in several 

ways. For example, the methods for marker gene identification will make it possible to 

quickly identify relevant gene sets and the search functions allow the user to find the cluster 

that best corresponds to a gene set that has been derived from other experiments from the 

literature.

Online Methods

Compression and decompression

Compression is carried out separately for each row (typically representing a gene or a peak), 

i, and cell-type, c, and it is split into two steps. First, we use the Elias-Fano coding 19 to 

store the array containing the indexes of cells with non-zero elements. The Elias-Fano code 

uses two bit strings, Hic and Lic to store an array of ascending integers. The sparsity of the 

array automatically determines how each value is stored in Hic and Lic to provide 
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asymptotically optimal compression. The total number of cells, nc, and the number of cells 

with non-zero expression, nic, are also stored to allow for decoding. Second, for all cells the 

non-zero expression values, gij, are fit to a log-normal distribution and the mean, mic, and 

the variance, vic, are stored. Given a user-specified number of bits, b, each value gij is 

assigned to one of the 2b quantiles. The bit vectors are then concatenated and stored as Bic. 

The bit strings Bic, Hic and Lic along with nic, mic, and vic are stored as entries in a hash 

table with the row label as key. Since each cell-type is stored separately, it is easy to filter 

results by excluding cell-types, tissues or experiments.

When decoding, the indexes of the non-zero cells are first obtained from Hic and Lic. Since 

the decoded lists are sorted, intersection can be carried out in linear time. By decoding the 

lists with the smallest number of cells first, the search is further sped up. An approximation 

of the original expression value, hij, can be obtained by identifying the midpoint of each 

quantile for the log-normal distribution with mean mic and variance vic.

Compression ratios and file sizes

The compression ratios in Figure 1b and Figure S1 were calculated by the cumulative size of 

index / cumulative size of raw data and object size / raw data size, respectively, using the 

command obj_size of the R package lobstr, comparing the size of the original 

expression matrix and the compressed scfind index. The index sizes reported in Fig 1c 

correspond to the file-sizes when saved to disk.

Search times

For Fig 1e,f we used the hyperQueryCellTypes function to search for cells expressing the 

randomly selected genes. For the comparison, we used the counts function applied to each 

of the SingleCellExperiment objects used to represent the tissues from the TM FACS 

dataset in order to obtain the count matrix. To create SingleCellExperiment, Seurat and 

Loom objects, SingleCellExperiment function of the SingleCellExperiment package, 

CreateSeuratObject function of the Seurat package and build_loom function of the 

SCopeLoomR package are used respectively. The parameter chunk.size was set as 1000 

and 5000 for Loom-1000 and Loom-5000, respectively. The search times in Fig 1e were 

calculated as the average of 100 queries involving random sets of genes. For both panels we 

used rejection sampling to ensure that only queries returning a non-empty set of cells were 

considered. All analyses are performed on the Jupyterhub platform built with 100GB RAM 

and 4 Intel Xeon 2.50 GHz CPUs.

Quantization accuracy

The Spearman correlation was computed using the built-in R function by comparing the 

quantized gene expression values, q, with the original values, g. The quantized gene 

expression values can be retrieved using the command getCellTypeExpression.

Logical search operators

By adding ‘*’ in front of a gene name it will be used as OR, and by adding ‘-’ in front, it 

will be used as NOT. It is also possible to combine the two operators for a NOT OR query.
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Identification of T cell subsets

We defined the different non-overlapping subsets of T cells using combinations of Il2ra, 

Ptprc, Il7r and Ctla4 21. The queries used were “-Il2ra, Ptprc, Il7r” (naive T cells), “Il2ra, -

Il7r” (Effector T cells), “-*Il2ra, -*Ptprc, Il7r” (Effector memory T cells), “Il2ra, -Ptprc, 

Il7r” (Central memory T cells), and “Il2ra, Ptprc, Il7r, -Ctla4” (Resting T reg cells).

Cell-type enrichment

To determine if cell-type i is enriched if mi cells are observed out of a total of m cells 

returned for the query, a hypergeometric test is used. Here, the total number of balls is given 

by N, the number of white balls in the urn is given by ni, the number of white balls drawn is 

given by mi, and the total number of draws is given by m. The reported p-value is further 

adjusted using the Benjamini-Hochberg procedure 51 to correct for multiple testing.

Visualization

To aid in the visualization of the results, scfind calculates a UMAP 52 projection of the cells 

during index construction. Cells that match a query are automatically identified in the 

UMAP projection. This feature can help the user identify patterns, e.g. sub-clusters, formed 

by the cells matching the query.

Identification of marker genes

We ran the scfind and Seurat commands cellTypeMarkers and FindMarkers 

respectively for each cell type from heart, kidney, liver, lung, mammary, marrow, muscle, 

pancreas, spleen and thymus of the TM FACS datasets. For each cell type present in the 

CellMarkers database we extracted the same number of markers as was listed in the 

database. The marker genes of cell types with matched names from the Seurat and 

CellMarkers database were evaluated using the evaluateMarkers command.

Evaluation of precision and recall for marker gene search

When searching for marker genes, all genes are evaluated and ranked based on either 

precision, recall or F1 (default). When evaluating multiple markers in AND/OR fashion, 

scfind employs a greedy strategy by considering the cells expressing all/at least one of the 

top m markers to calculate the precision and recall as described above.

Identification of maximal marker gene sets

By default scfind includes genes with a recall greater than 0.9, but the threshold may need to 

be adjusted depending on sequencing depth.

Similar genes

For the query terms, we first identify all corresponding cell indices, C. For each term i not in 

the query, we extract the list of indices, Di. The terms are then ranked based on the Jaccard 

similarity, |C ∩ Di|/|C ∪ Di|. For the cardiomyocyte example, we used the command 

findSimilarGenes.
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Frequent pattern growth search and TF-IDF scores

To identify subsets of the original query that are guaranteed to return cell hits we use a 

modified version of the frequent pattern growth (FPGrowth) algorithm. The FPGrowth 

algorithm is popular in data mining where it is used to identify groups of items that co-occur 

in transactions. In the context of scfind one may think of cells as transactions and genes or 

peaks as items.

We first modify the original query so that all terms are related by OR logic to retrieve all 

relevant cells. For each cell cj, an inverted cell index is constructed, containing a list of the 

subset of query terms found. The next step is to determine a minimum support threshold, s, 

i.e. the minimum number of cells required to consider a query. To speed up this process, we 

use a heuristic to ensure that the number of subqueries considered remains bounded. For 

each term in the query, gi, scfind estimates the overlap with other terms in the query, and for 

n terms, s is defined as the median of the n(n-1)/2 values.

The FPGrowth algorithm takes a set of cells and builds a data structure called an FP-tree. In 

the FP-tree each node represents a term from the query, making it a more compact 

representation than a matrix as each node contains a counter to keep track of the number of 

cells where the term was present. To construct the tree, we use the inverted index to iterate 

across all cells. As the terms are inserted in order of decreasing frequency, the most widely 

used terms will be found near the root, and widely supported subqueries can be extracted by 

traversing the tree. To generate subqueries the tree is traversed depth first, but the search is 

interrupted when the value of a node is below s. Note that the heuristic is chosen to ensure 

that the number of subqueries is limited, even for very long queries (>50 genes). If a low 

number subqueries are returned initially, the threshold will be lowered to ensure that a 

sufficient number of subqueries is considered.

To help the user decide which subquery to choose, scfind ranks them using a score inspired 

by term frequency-inverse document frequency (TF-IDF). The score is calculated for each 

element of the expression matrix as tij = log(eij / Σi eij) - log(Ni / N), where eij is the 

quantized expression values, Ni is the total number of cells with non-zero values for term i 
and N is the total number of cells in the reference. For a query involving n terms the score 

for each cell is given by Σi n tij/n1/2.

To illustrate the subquery optimization we consider the genes Acta1, Actc1, Atp2a2, Myh6, 

Nppa, Ryr2, Tnnc1 and Tpm, which can distinguish cardiac muscle cells in the heart 30 

(Figure 3a). To verify that the subquery optimization routine provides meaningful results we 

carried out a positive control experiment. For each cell type cj in each of the five scRNA-seq 

atlases we randomly selected five genes from the top 20 marker genes as defined by the F1 

score. We calculated the top TF-IDF score and whether or not cj came up as the top ranked 

cell type for the best subquery. As a comparison, we also selected five genes from the top 

100 marker genes. The results show that the former query results in significantly higher TF-

IDF scores and is more likely to return the expected cell type as the top hit (Supplementary 

Figure 13, 14, 15).
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Robustness analysis of TF-IDF search

We also investigated negative controls to test the robustness of scfind to changes in the 

expression matrix. We carried out an experiment whereby each element in the TM FACS 

data is multiplied by a random number which is uniformly distributed in the interval [.5, 2]. 

We then ran 1,000 queries containing gene lists from the GO database, and in 95% of cases 

the same cell type was ranked at the top for the best subquery as for the unperturbed data. 

Scfind is more sensitive to changes in the sparsity pattern and when a random selection of 

10% of the elements in the expression matrix were either set to zero or given a non-zero 

value, the same cell type was chosen in 76% of cases. We also randomly permuted the cell 

labels for each tissue, and in this case only 51% of the queries returned the same cell type as 

the original query. Furthermore, when we permute all cell labels regardless of tissue, only 

0.3% of queries return the same result.

An important challenge in combining datasets into a cell atlas is to account for systematic 

technical differences between experiments, i.e. batch effects. Batch driven variation can be 

corrected post-hoc through computational means, but how these corrections can best be 

carried out remains an open problem. Several methods have been published in recent years 
53, but some of these are incompatible with scfind as they do not operate on the expression 

matrix, but rather on another representation of the data, e.g. a selection of principal 

components or the distance matrix 54. The methods that do modify the expression matrix, 

e.g. Combat 55 and Seurat v3 56, typically do not preserve zeros and may even introduce 

negative values. Consequently, the batch corrected expression matrix may violate one of the 

central assumptions that scfind makes about the data. An important constraint when 

applying batch correction methods prior to building an index is to ensure that zeros are 

preserved. To test the impact of batch correction methods directly, we implemented modified 

versions of Combat, Limma and Seurat v3 where only non-zero elements are adjusted and 

we used them to combine the two Tabula Muris datasets. The results show that batch 

correction with Combat, Limma and Seurat v3 has little effect on the F1 score of the top 

marker genes as 75% change by <0.1. (Supplementary Figure 18 and Supplementary Table 

12). Taken together, we conclude that scaling and batch correction have limited impact on 

the results for scfind.

Processing of PubTator and PubMed Phrases

A custom Julia script was used to build indexes mapping variants and phrases to mouse and 

human gene names. The indexes were also inverted to allow gene names to be mapped to 

phrases for the word cloud visualization. Processed dictionaries are available as additional 

files for the Homo sapiens and Mus musculus genes.

Word2vec analysis

We used the Julia package Word2Vec for the calculation of cosine similarity between the 

tokens of the arbitrary query and the tokens of the similar phrases subsetted from the 

manually generated phrases to gene names dictionaries. To identify the best match phrase, 

the cosine distances between each pair of query-to-phrase tokens is calculated using the 

PubMed word2vec models. The distance of each phrase is averaged by the number of 

tokens. The mean distances are used to rank the best matched phrase.
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Wordcloud visualization

We use the R package wordcloud. As an example, we consider a query for Irx4, Myl2, 

Xdh, Dlk1, Hyal2, Tmem190, Cpne4, Cyp1a1 and Irx5 which are markers discriminating 

between atrial and ventricular heart tissue 30. Subquery optimization for the TM FACS 

datasets suggests Hyal2 and Myl2 as the best query, and it shows cardiomyocytes and heart 

epithelial cells as the most enriched cell types in the resulting word cloud (Figure 4b).

Cell type specificity of super enhancers

For each locus from dbSUPER we used its mm9 coordinates to search for enriched cell 

types using an OR combination of the peaks at each loci. A locus is reported if it has a p-

value<10-10, is found in at least 10 cells and >10% of the cells from that cell type.

Cell type specific genes and peaks

A gene is considered cell type specific if it is found in at least 25 cells and enriched at a p-

value <10−5 with respect to the other cell types in the tissue. For each cell type specific gene 

we considered all peaks within 100 kb of the 5’ most TSS. A peak is considered cell type 

specific if it is present in at least 10 cells and at least 10% of the cells from one cell type. 

Moreover, we require that the peak does not meet the above criteria for any other cell type in 

the same tissue.

We manually selected motifs from the JASPAR 2018 Core collection 57. We then used the R 

packages TFBStools 58 and the motifmatchr package to identify motif instances in the 

cell type specific peaks.

Analysis of SNARE-seq data

Indexes for the RNA-seq and ATAC-seq datasets were constructed separately and then 

merged according to corresponding cells. For each matrix which columns represent the cell 

of each cell type and rows represent both gene names and peaks loci, is organised as a 

SingleCellExperiment object. An scfind object is built by merging indexes of all cell 

types using the function buildCellTypeIndex and mergeDataset.

A gene is considered cell type specific if it is found in at least 25 cells with a p-value <10-6 

compared to other cell types in the tissue. For each cell type specific gene we considered all 

peaks within 1 Mb of the 5’ most TSS. A peak is considered cell type specific if it is present 

in at least 10 cells and at least 10% of the cells from the cell type of interest. Moreover, we 

require that the peak does not meet the above criteria for any other cell type in the same 

tissue. Motif enrichment was calculated in the same way as before.

Datasets used

Mouse atlases

The data for the MCA was downloaded from https://figshare.com/s/

865e694ad06d5857db4b, the Tabula Muris data from https://figshare.com/projects/

Tabula_Muris_Transcriptomic_characterization_of_20_organs_and_tissues_from_Mus_mus

culus_at_single_cell_resolution/27733, the BCA data from http://linnarssonlab.org/data/, the 
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MOCA data from https://oncoscape.v3.sttrcancer.org/atlas.gs.washington.edu.mouse.rna/

downloads and the sciATAC-seq data from http://atlas.gs.washington.edu/mouse-atac/data/, 

SNARE-seq data from https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE126074. 

For all datasets, custom R scripts were used to combine the expression and annotation files 

to generate SingleCellExperiment objects. The SingleCellExperiment objects were 

used to build the scfind indexes.

GO annotation

The GO annotation was downloaded from Ensembl Biomart website.

PubTator, Pubmed Phrases and word2vec

The PubTator resources covering PubMed abstracts until 2018 was downloaded from ftp://

ftp.ncbi.nlm.nih.gov/pub/lu/PubTator/ and the PubMed phrases dataset including abstracts 

until 2017 was downloaded from ftp://ftp.ncbi.nlm.nih.gov/pub/lu/PubMedPhrase/

PubMed_Phrases.tar.gz. The word2vec model trained on PubMed abstracts was downloaded 

from http://bio.nlplab.org/.

Super enhancers

We downloaded the .bed files corresponding to mm9 for Bone Marrow, Cerebellum, Heart, 

Kidney, Liver, Lung, Spleen and Thymus from the dbSUPER website. We also downloaded 

the .bed file containing hg19 coordinates for GM12878 cells.

Reporting Summary. Further information on research design is available in the Nature 

Research Reporting Summary linked to this article.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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index mca.rds for the the MCA data from https://figshare.com/s/865e694ad06d5857db4b 

can be downloaded from https://scfind.cog.sanger.ac.uk/indexes/mca.rds. The index 

tm_10x.rds for the the TM, 10X and TM, FACS data from https://figshare.com/projects/

Tabula_Muris_Transcriptomic_characterization_of_20_organs_and_tissues_from_Mus_mus

culus_at_single_cell_resolution/27733 can be downloaded from https://

scfind.cog.sanger.ac.uk/indexes/tm_10X.rds and https://scfind.cog.sanger.ac.uk/indexes/

tm_facs.rds respectively. The index atacseq.rds for the the sciATACseq data from http://

atlas.gs.washington.edu/mouse-atac/data/ can be downloaded from https://

scfind.cog.sanger.ac.uk/indexes/atacseq.rds. The source data underlying Figs 1, 2, 3 and 5 

are provided as a Source Data file.
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Figure 1. Compression and search times.
(a) Schematic illustration of scfind’s compression strategy. Each square represents an 

expression matrix from an individual experiment. Each matrix is compressed and the 

resulting vectors are then concatenated. (b) Summary statistics for the six atlases considered 

in this manuscript along with compression ratios where each point represents one tissue. (c) 

Cumulative size of the resulting index when merging the different tissues (left) and fraction 

of zeros compared to compression ratios (right). Errors are presented as 95% confidence 

interval around the fitted lines. For legend, see (b). (d) Accuracy of the reconstructed 
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expression values when using two bits for the quantization. The violin plots show Spearman 

correlations for each gene and cell type (BCA n=317, MCA n=774, TM, 10X n=75, TM, 

FACS n=110, sciATACseq n=203 and MOCA n=34 cell types). Violin plots show the 

density (width), median (center line), interquartile range (hinges) and 1.5 times the 

interquartile range (adjacent lines); outlier data beyond this range are plotted as individual 

points. (e) Mean search times for AND queries involving up to six genes (n=100 

independent experiments). Data are presented as mean values +/− SEM” as appropriate. (f) 

Comparison of query times with three other file formats.
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Figure 2. Basic search, identification of cell type specific and housekeeping genes
(a) Sample query showing some of the results for a search of the TM FACS dataset for Il2ra, 

Ptprc, Il7r and Ctla4. One-tailed hypergeometric test with Holm adjustment for multiple 

comparison was used. (b) Precision vs Recall for the marker genes for 37 cell types from the 

TM FACS dataset as determined by scfind or the CellMarker database. The overlaid density 

curves help the reader identify where the majority of points are found, and they indicate that 

scfind in general has higher scores than CellMarker. (c) Distribution of F1 scores (harmonic 

mean of the precision and recall scores) of marker genes identified in 37 cell types from the 
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TM FACS dataset as determined by scfind or CellMarker (d) Precision and recall values for 

combinations of 1-4 marker genes using AND or OR logic were calculated for all cell types 

in the TM FACS data (n=110 cell types). The boxplots show the spread of scores when 

compared either to all cell types or just the ones from the same tissue. Box plots show the 

median (center line), interquartile range (hinges) and 1.5 times the interquartile range 

(whiskers); outlier data beyond this range are plotted as individual points. One-tailed 

hypergeometric test with Holm adjustment for multiple comparison was used. (e) Histogram 

showing the distribution of cell type specificities for genes and peaks from the six atlases. (f) 

Upset plot showing the overlap of 3,144 housekeeping genes from the literature and three 

mouse cell atlases.
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Figure 3. Subquery optimization
(a) Example for optimization of the query Acta1, Actc1, Atp2a2, Myh6, Nppa, Ryr2, Tnnc1 
and Tpm for the TM FACS dataset. One-tailed hypergeometric test with Holm adjustment 

for multiple comparison was used. (b) Heatmap showing the p-values for the best subquery 

for each GO term containing between 5 and 25 genes for the TM FACS data. Rows represent 

cell types and columns represent GO terms. For the result of each gene set, one-tailed 

hypergeometric test with Holm adjustment for multiple comparison was used. (c) Mean run 
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times for subquery optimization for lists from the GO annotation containing between 5 and 

25 genes. data are presented as mean values +/− SEM.
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Figure 4. Free text searches and visualization of results
(a) Flow chart showing how a query is processed by scfind. (b) Examples of word cloud 

associations following query optimization. Arrows in the middle panel show variant names 

(see main text).
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Figure 5. Determining cell type specificity of distal enhancers using RNA-seq and ATAC-seq data
(a) UCSC genome browser screenshot showing the Nr4a1 locus which has a super enhancer 

in pro-B cells and monocytes. Grey marks represent open chromatin and the numbers show 

the fraction of cells containing each peak. (b) UCSC genome browser screenshot of the 

Cd36 locus which harbors a cardiomyocyte specific enhancer 43 showing open chromatin in 

several cell types (c) Motif enrichment in putative distal enhancers that are specific to 

cardiac muscle cells, hepatocyte and B cells. Well-known regulators, e.g. Mef2 for heart 

muscles, Hnf4 for hepatocytes and Spi1 for B cells have high enrichments. Two-tailed 
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Fisher’s exact test with Benjamini and Hochberg adjustment for multiple comparison was 

used. (***p <0.001; **p <0.01; *p <0.05). (d) Cell type specific open chromatin-gene pairs 

for Cajal-Retzius neurons and endothelial cells from neonatal cerebral cortex in mouse. 

Instances where the open chromatin is >500 kb from the TSS are highlighted.
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Table 1
Queries involving keywords mapped to gene lists

Summary statistics of the number of keywords ang genes for different categories.

Dictionary to genes Number of entries Number of genes

Variant ID Human: 12911, Mouse: 11617 Human: 77648, Mouse: 68240

GWAS traits terms Human: 958, Mouse: 958 Human: 14922, Mouse: 14922

MeSH/OMIM ID Human: 171162, Mouse: 171162 Human: 83297, Mouse: 81418

MeSH/chem ID Human: 69816, Mouse: 69816 Human: 152965, Mouse: 145284

PubMed Phrase Human: 70858, Mouse: 67229 Human: 789896, Mouse: 750844

Nat Methods. Author manuscript; available in PMC 2021 September 01.


	Abstract
	Introduction
	Results
	Efficient compression allows for fast queries with single cell resolution
	Fast and flexible identification of marker genes
	Identification of housekeeping genes and cell type specific genes
	Frequent pattern growth algorithm ensures that long queries return meaningful results
	Queries involving biomedical keywords
	Application to single cell ATAC-seq data identifies cell type specific enhancers

	Discussion
	Online Methods
	Compression and decompression
	Compression ratios and file sizes
	Search times
	Quantization accuracy
	Logical search operators
	Identification of T cell subsets
	Cell-type enrichment
	Visualization
	Identification of marker genes
	Evaluation of precision and recall for marker gene search
	Identification of maximal marker gene sets
	Similar genes
	Frequent pattern growth search and TF-IDF scores
	Robustness analysis of TF-IDF search
	Processing of PubTator and PubMed Phrases
	Word2vec analysis
	Wordcloud visualization
	Cell type specificity of super enhancers
	Cell type specific genes and peaks
	Analysis of SNARE-seq data

	Datasets used
	Mouse atlases
	GO annotation
	PubTator, Pubmed Phrases and word2vec
	Super enhancers

	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Table 1

