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Abstract
Heart rate variability (HRV) is an objective measure of emotional regulation. This study aimed to estimate the accuracy with which an
artificial neural network (ANN) algorithm could classify emotions using HRV data that were obtained using wristband heart rate
monitors.
Four emotions were evoked during gameplay: pleasure, happiness, fear, and anger. Seven normalized HRV features (i.e., 3 time-

domain features, 3 frequency-domain features, and heart rate), which yielded 29,727 segments during gameplay, were collected and
analyzed first by statistics and then classified by the trained ANN model.
General linear model adjusted for individual differences in HRV showed that all HRV features significantly differed across emotions,

despite disparities in their magnitudes and associations. When compared to neutral status (i.e., no emotion evoked), the mean of R-R
interval was significantly higher for pleasure and fear but lower for happiness and anger. In addition, pleasure evidenced the HRV
features that suggested a superior parasympathetic to sympathetic activation. Happiness was associated with a prominent
sympathetic activation. These statistical findings suggest that HRV features significantly differ across emotions evoked by gameplay.
When further utilizing ANN-based emotion classification, the accuracy rates for prediction were above 75.0% across the 4 emotions
with accuracy rates for classification of paired emotions ranging from 82.0% to 93.4%.
For classifying emotion in an individual person, the trained ANN model utilizing HRV features yielded a high accuracy rate in our

study. ANN is a time-efficient and accurate means to classify emotions using HRV data obtained from wristband heart rate monitors.
Thus, this integrated platform can help monitor and quantify human emotions and physiological biometrics.

Abbreviations: ANN= artificial neural network, AR= autoregressive, CI= confidence interval, FFT= Fast Fourier Transform, GLM
= general linear model, HF = high frequency, HRV = heart rate variability, LF = low frequency, MA = moving-average, Norm.HF =
normalized high frequency, Norm.LF = normalized low frequency, PPG = photoplethysmogram, PSD = power spectrum density,
RMSSD= Root Mean Square of Successive Differences, RRI = RR interval, SDNN = Standard Deviation of Normal to Normal, SKNN
= scikit-neuralnetwork.
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1. Introduction

Emotions consist of appetitive and defensive motivational
systems, and affect cognition, attention, action, and physiological
reaction, depending on the environments that individuals
encounter and the goals that they pursue.[1] Emotions are
considered to be regulated by several regions of the brain,
particularly the prefrontal and cingulate cortex,[2] which are also
the regions that control the somatic and autonomic physiological
systems.[3–5] Emotional changes may also present as prodromal
symptoms of various psychiatric disorders [6] and neurodegener-
ative diseases.[7] Neurotransmitters such as acetylcholine,[8]

serotonin, noradrenaline, and dopamine, are involved in the
behavioral control[9] of emotions. Modulation of these neuro-
transmitters has been used as a therapeutic strategy for various
disorders.[10,11] Despite the evidence that autonomic function is
an objective measure of emotional regulation,[12] there is an
unmet need for an accessible device that can simultaneously
detect and quickly analyze these biological processes.
Emotional status is often assessed using self-report question-

naires and professional personnel’s interpretations, whereas
autonomic responses to emotions are assessed using objective and
unbiased data that are obtained through various physiological
examinations.[6,13,14] Among these examinations, mounting
evidence shows that emotional well-being can be predicted by
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heart rate variability (HRV), which is an indicator of autonomic
nervous system activity.[15] HRVmeasurement has been found to
be an accessible research tool to understand the role of emotions
in psychopathological processes.[16] HRV may affect oscillatory
activity and enhance functional connectivity strength in emotion
regulation brain networks in a synchronized fashion.[12] People
with high HRV have better emotional regulation than those with
low HRV.[12] In contrast, low HRV is indicative of an index of
difficulty in regulating emotions.
At present, there is an emerging research field that studies video

game designs and their interactions with players; they use
numerous qualitative and quantitative techniques to collect data
about player behaviors to evaluate player experience.[17] These
data are mainly gathered by means of players’ self-reports and
observers’ interpretations of their cognitive and emotional
processes. Among the various biofeedback parameters, HRV is
one of the most useful biometrics that researchers can use to
determine players’ emotional statuses.[17] In addition, video
games were shown to be useful for motivating players to engage
in HRV biofeedback training.[18]

Given the close relationship between emotion and the
autonomic system, we conducted a study to examine the
feasibility of a novel accessible technique that utilizes a wristband
heart rate monitor to instantly and easily examine HRV in
response to the emotions that are evoked by stimulations. In this
study, 4 video games were used as stimulations to evoke
participants’ emotions and simultaneously measure their HRV,
which was categorized in accordance with an artificial neural
network (ANN)-based classification.
2. Methods

This study utilized a wristband heart rate monitor to instantly and
continuously collect large amounts of HRV data during the entire
course of the emotional stimulation. Subsequently, the collected
data were statistically analyzed in order to examine differences in
HRV features across emotions. Finally, in order to classify
emotions, we utilized an ANN algorithm to estimate the accuracy
of emotion classification using the input data of all HRV features.
2.1. Participants

Twelve male participants between the ages of 20 and 22 (20.8 ±
0.8) years were enrolled in this study. The sample size was based
on a prior study[18] and was evaluated further by power analyses;
when the significance level was set at 0.05, a sample size of 12 has
80.0% power to detect an effect size of 1.2 between paired
emotions. The total extraction time for signal analysis was at least
30 minutes for each emotion, and the window duration time was
set as 5seconds. A total of 29,727 segments of HRV data were
extracted for analysis. This study was carried out in accordance
with the protocol approved by the MacKay Memorial Hospital
Institution Ethics Review Board (number 16MMHIS101e) with
written informed consent from all subjects.
2.2. System architecture

Our system consisted of 3 components: a wristband heart rate
monitor that served as the emotion perception interface, a
smartphone that served as the emotion perception and data
collection platform, and a backend computer that served as the
emotion perception data analysis platform (Fig. 1).
2

2.2.1. Wristband heart rate monitor. In this study, a wristband
heart rate monitor that is based on the photoplethysmogram
(PPG) was used for continuous heart rate measurement. The
measured data were collected and transmitted to the smartphone
via Bluetooth 4.0. PPG instantly measures heart rate by
estimating blood volume changes in blood vessels. Heart rate
and HRV are measured based on rhythmical changes in reflected
light via the transformation algorithm that is presented in Fig. 2.

2.2.2. Smartphone and backend computer. We utilized an
Android smartphone to simultaneously record the player’s facial
expressions, audial responses, and physical appearance during
gameplay and collect the player’s heart rate data that were
transmitted through the wristband heart rate monitor. The
recorded video was used to identify the player’s emotional status.
The backend computer was utilized to analyze heart rate data.
Both time-domain and frequency-domain analyses were con-
ducted with the RR interval (RRI) of HRV data to extract
features for corresponding emotions. Subsequently, the extracted
features were fed into an ANN for classification training of
automatic emotion classification.
2.3. Procedure and data analytic strategy
2.3.1. Experimental settings. Python programs were developed
for corresponding emotion classifications. First, we reviewed the
recorded videos of the players in order to examine the physical
expressions that were evoked during gameplay (Fig. 1). The total
extraction time for signal analysis was at least 30 minutes for
neutral status and emotion triggered status. HRV and RRI data
were extracted during both the neutral status and the period
during which emotions were triggered. The window of the time
duration was set as 5 seconds[19] and resampled to 4Hz for the
Fast Fourier Transform (FFT). In this manner, HRV data
segments were created to extract features for further emotion
analysis. Time-domain and frequency-domain analyses were
conducted to extract corresponding features with heart rate as
inputs for ANN-based emotion classification (Fig. 1).

2.3.2. Emotion stimulation. The selection of 4 categories of
emotions was based on the valence-arousal theory, which
consists of 2 dimensions, namely, valence (i.e., the polarity of
negativity or positivity of emotions) and arousal (i.e., the intensity
of emotions; Table 1).[20] According to the circumplex model of
affect developed by Russell,[20] happiness and pleasure were
positive-valence emotions, whereas anger and fear were negative-
valence emotions. Happiness entails greater arousal intensity
than pleasure; similarly, anger elicits stronger arousal than
fear.[20] Based on user comments across various famous game-
user platforms (http://store.steampowered.com), 4 frequently
played games, namely, Portal, Left 4 Dead 2, Five Nights at
Freddy’s, and League of Legends, were selected to stimulate the
corresponding emotions of players (Table 1).
2.4. Calculation and normalization of features

Time-domain analysis of HRV data was used to calculate the
mean and standard deviation of heart rate across a period of time.
As per the suggested standards of measurement of HRV,[21] the
mean heart R-R interval (RR mean), Standard Deviation of
Normal to Normal (SDNN), and Root Mean Square of
Successive Differences (RMSSD) were used (Fig. 1). In the
following sections, we discuss how these features were calculated.

http://store.steampowered.com/


Figure 1. System architecture and flowchart of automatic emotion interpretation. The system architecture consists of three components. Heart rate (HR) data and
R-R interval (RRI) during neutral and triggered-emotion statuses were extracted for signal analysis. The total extraction time was up to 30 minutes for each of the
neutral and triggered-emotion statuses. Window duration time was set as 5seconds and resampled to 4Hz for the Fast Fourier Transform (FFT). Time-domain
features, frequency-domain features, and HR were used for ANN-based classification. As per the suggested standards of measurement of HRV, the RR mean,
Standard Deviation of Normal to Normal (SDNN), and Root Mean Square of Successive Differences (RMSSD) were used for time domains. With regard to power
spectrum density, frequencies between 0.04Hz and 0.15Hz were defined as low frequency (LF) and those between 0.15Hz and 0.4Hz were defined as high
frequency (HF). The features of the data were calculated and normalized for the classification algorithm (Norm.HF = normalized high frequency; Norm.LF =
normalized low frequency).
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RRmean is the average of R-R intervals across a period of time.
The calculation method is as shown in Eq. (1) and the respective
unit of measurement is milliseconds (ms).

RR mean ðmsÞ ¼ 1
N

XN

i¼1
RRi; ð1Þ

In this equation, N represents the number of R-R interval data
within a given period of time, and RRi represents the ith R-R
interval.
SDNN is the standard deviation of R-R intervals across a

period of time. The calculation method is shown in Eq. (2). First,
the R-R interval of each period is subtracted from the mean R-R
interval of the period; subsequently, the standard deviation is
calculated. The respective unit of measurement is milliseconds.

SDNN ðmsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1 RRi � RRmeanð Þ2
N

� 1000;

s
ð2Þ

In Eq. (2),N represents the number of R-R interval data within
a period of time, and RRi represents the ith R-R interval.
RMSSD is the root-mean-square value of R-R intervals across

a period of time. The calculation method is shown in Eq. (3); in
this equation, each adjacent R-R interval is subtracted for a given
period of time; subsequently, the standard deviation is calculated
in milliseconds.
3

RMSSD ðmsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1 RRi � RRiþ1ð Þ2
N

� 1000;

s
ð3Þ

In this equation, N represents the number of R-R intervals
within a given period of time, and RRi represents the ith R-R
interval.
The frequency-domain analysis of HRV was used to calculate

the energy intensity at different frequencies through power
spectrum density (PSD). The PSD of HRV has been proven to be a
useful tool in the evaluation of cardiovascular autonomic
activity. The calculation method of PSD was divided into 2:
parametric and non-parametric. The parametric method utilized
the Autoregressive (AR) and Moving-average (MA) models.
When the sample size is small, the accuracy of the PSD is high;
however, the adaptability and complexity of the selection model
has to be verified. In contrast, the non-parametric method utilizes
the Fast Fourier Transform (FFT); thus, the operation and
processing speed of the model is faster.
According to the standard protocol for examining the

functioning of parasympathetic and sympathetic pathways, the
PSD frequency of the recorded HRV is broken down into 2
frequency bands, based on their effects on heart-rate cyclic
variability: low frequency (LF) and high frequency (HF).[21] The
HF component can be used as an indicator of parasympathetic

http://www.md-journal.com


Figure 2. Illustration of the photoplethysmogram (PPG). In the wristband heart rate monitor, there are 2 green light emitting diodes (LEDs) and 1 light-intensity
sensor (Panel A). The photodiode sensor detects the reflected green light that is emitted by the LEDs; it penetrates the skin to reach the dermis layer where
abundant blood vessels exist. Because hemoglobin in the blood vessels absorbs the light emitted by the green LED, we are able to detect rhythmic changes in the
reflected light intensity that is synchronized with the cardiac pumping rate. The changes in the reflected light intensity can be utilized to calculate heart rate and heart
rate variability. The detected PPG wave was strongest at the middle line of the ventral wrist, which is denoted as “P” in Panels B and C.
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activity; in contrast, the LF component is believed to either be an
indicator of sympathetic activity or affected by both the
sympathetic and parasympathetic nervous system.[21] Therefore,
a high LF/HF ratio suggests a low parasympathetic tone or high
sympathetic tone, which in turn reflects a nervous, irritable, and
hyperactive emotional state; conversely, a low LF/HF ratio is
indicative of a depressed mood.
To reduce differences in daily physiological signals, the

normalization method that is presented in Eq. (4) was performed;
specifically, the calculated feature valueswere removed to decipher
the maximum and minimum values for their normalization.
Table 1

The 4 games used to stimulate corresponding emotions in the playe

Emotions Valence Arousal Corresponding games

Happiness High High Left 4 Dead 2
Pleasure High Low Portal
Anger Low High League of Legends
Fear Low Low Five Nights at Freddy’s

4

Si; normalized ¼ Si � Smin

Smax � Smin
ð4Þ

In this equation, Si represents the ith feature value before
normalization, Smax and Smin represent the maximal and minimal
feature values, respectively, and Si; normalized represents the ith
normalized feature value.
In total, 7 features were used in the analysis: 3 time-domain

features (i.e., RRmean,RMSSD, andSDNN), 3 frequency-domain
features in normalized units (HF, LF, LF/HF), and heart rate.
rs.

Characteristics of the games

Content that made the players laugh and feel interested
Content that made the players feel relaxed and comfortable
Content that made the players feel unhappy, knock on the table, and yell
Content that made the players feel horrified and frightened



Figure 3. Illustration of the structure of a multi-layer artificial neural network (ANN). A multilayer ANN consists of 1 or more hidden layers. The network has the ability
to correct the feedforward when the input signal enters the network. When the output signal was different from the expected output, the error value was calculated
and fed forward to the input to adjust the weight. In the ANN-related parameter settings, the number of hidden layer neurons, the number of hidden layers, and the
learning rates affected the accuracy of ANN-based classification.
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2.5. ANN classification

ANN is an algorithm that has self-learning capabilities. The
multilayer ANN consists of 1 or more hidden layers as shown in
Fig. 3. Python 2.7 and Scikit-Learn ANN were utilized to
implementANNclassification.Weadoptedmultilayerperceptrons
in scikit-neuralnetwork (SKNN, http://scikit-neuralnetwork.read
thedocs.io/en/latest/index.html) as our ANN-based classification
mechanism. In addition, the number of hidden layers and the
number of neurons within the hidden layer may be highly
correlatedwith the accuracy of the trainingmodel in themultilayer
ANN. Therefore, we adjusted and estimated the values of various
ANN parameters to achieve the most accurate classification.

2.6. Process of emotion recognition

The values of the emotion features were inputted into the ANN to
train the model to generate an individual emotion-classification
model. When feature values were inputted into the classification
model, the emotion type was subsequently interpreted and
outputted. The processing of the classification included 3 steps.
First, during the training process, a portion of the data in each
emotion was used as the training data. After the feature values
were calculated and normalized, they were inputted into the
ANN to train the classification model. Subsequently, during the
sub-testing process, the remaining data were used as the testing
data. In other words, the testing data did not overlap with the
training data. After the feature values were calculated and
normalized, they were inputted into the ANN to determine the
classification. Finally, K-fold cross-validation was undertaken,
whereby a 10-fold cross-validation was used to verify the
correctness of the emotion classification.
2.7. Statistical analyses and power estimation

A general linear model (GLM) was used to examine the emotions
that are associated with HRV features. Individual differences in
5

HRV features were examined and adjusted as a confounding
factor in the GLM models. The normality of distributions of
continuous data was tested using the Shapiro–Wilk test. All
statistical analyses were conducted using Version 9.4 of SAS
software (SAS Institute). P values (P) of <.05 were considered to
be statistically significant.
3. Results

3.1. Emotion classification with HRV features

There were significant individual differences across all param-
eters (P < 1 � 10�90); therefore, they were adjusted as a
confounding factor in all the GLM models. Differences in HRV,
as a function of emotional changes during gameplay, are shown
in Table 2. HRV traits were log-transformed (RMSSD, SDNN,
and LF/HF) to reduce non-normality. All HRV parameters,
including the parameters of time-domains, frequency domains,
and heart rate, significantly differed between emotions, despite
disparities in their magnitudes and associations with certain
emotions. For example, when compared to the neutral status,
GLM adjusting for individual differences showed that the effects
of the RRmean was significantly higher for pleasure (beta= 55.4,
95% confidence interval, CI = 50.2–60.1) and fear (beta = 7.8,
95%CI = 1.7–14.0) but lower for happiness (beta =�42.2, 95%
CI = �47.5–�36.8) and anger (beta = �13.6, 95% CI =
�19.5–�7.6); (Table 2). When compared to neutral status,
pleasure evidenced a higher RR mean, RMSSD (beta = 0.2, 95%
CI = 0.1–0.2), and SDNN (beta = 0.2, 95% CI = 0.1–0.2) and a
lower heart rate (beta = �5.6, 95% CI = �6.1–�5.2), thereby
suggesting that parasympathetic activation is superior to
sympathetic activation in pleasure. Happiness was associated
with a lower RR mean and a higher heart rate (beta = 3.2, 95%
CI = 2.7–3.7) than neutral status; these trends suggest that
sympathetic activation is dominant over parasympathetic
activation in happiness. However, fear had a higher RR mean
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Table 2

Differences in heart rate variability as a function of emotional changes during gameplay.
Features Pleasure Happiness Fear Anger Neutral

Time Domain (ms),
P (post-hoc: compared
with neutral)

RR Mean 857.3±141.0 763.3±91.5 823.2±146.2 778.6±131.3 763.9±138.0

9.4 � 10�220 (post-hoc: P=9 � 10�92 for pleasure, 1 � 10�52 for happiness, 0.01 for fear, and 7 � 10�6 for anger)
RMSSD 55.0±75.2 47.5±59.1 32.5±18.9 32.0±26.6 34.6±43.1∗

1.7 � 10�56 (post-hoc: P=5 � 10�19 for pleasure, 0.23 for happiness, 4 � 10�17 for fear, and 1 � 10�8 for anger)
SDNN 46.8±48.9 40.4±37.7 31.2±20.3 29.4±23.3 31.7±30.0∗

6.6�10�64 (post-hoc: P=3 � 10�20 for pleasure, 0.94 for happiness, 7 � 10�20 for fear, and 1 � 10�10 for anger)
Fequency Domain (ms2/Hz),

P (post-hoc: compared
with neutral)

Norm.HF 33.0±18.4 34.0±18.9 31.8±16.9 31.8±17.2 34.0±17.5

3.1 � 10�4 (post-hoc: P= .61 for pleasure, .06 for happiness, .02 for fear, and .03 for anger)
Norm.LF 67.0±18.4 66.0±18.9 68.2±16.9 68.2±17.2 66.0±17.5

3.1 � 10�4 (post-hoc: P= .61 for pleasure, .06 for happiness, .02 for fear, and .03 for anger)
LF/HF 0.7±0.7 0.7±0.7 0.6±0.6 0.6±0.6 0.7±0.7∗

7.1 � 10�3, (post-hoc: P= .83 for pleasure, .21 for happiness, .07 for fear, and .02 for anger)
Heart rate (beat/min),

P, (post-hoc: compared
with neutral)

72.3±12.2 80.2±10.3 75.6±14.9 79.4±13.1 81.3±14.2

3.7 � 10�218 (post-hoc: P=9 � 10�122 for pleasure, 1 � 10�37 for happiness, .17 for fear, and 4 � 10�3 for anger)
∗
RMSSD, SDNN, and LF/HF were log-transformed for GLM.

Data are expressed as percentages or means± standard deviations (SD). The P values, which were derived from general linear models (GLM) that were adjusted for individual differences, show the effects of each
parameter of heart rate variability on each emotion.
Norm, HF=normalized high frequency, Norm.LF=normalized low frequency, RR mean=mean heart R-R interval, RMSSD= root mean square of successive differences, SDNN= standard deviation of normal to
normal.
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(beta = 7.8, 95% CI = 1.7 to 14) and HF (beta = 1.5, 95% CI =
0.2–2.7), and lower RMSSD (beta = �0.15, 95% CI = �0.19 to
�0.12), SDNN (beta =�0.17, 95%CI =�0.2 to�0.13), and LF
(beta = �1.5, 95% CI = �2.7 to �0.2); these trends yield
inconclusive results about the interpretation of autonomic
function. Similarly, HRV data were inconclusive because anger
tended to have a lower RRmean, RMSSD (beta=�0.10, 95%CI
= �0.14 to �0.07), and SDNN (beta = �0.12, 95% CI = �0.17
to�0.09) and a higher heart rate (beta =0.8, 95% CI = 0.3–1.3),
which suggested sympathetic activation; at the same time, anger
had a higher HF (beta =1.5, 95% CI = 0.1–2.8) and a lower LF
(beta = �1.5, 95% CI = �2.8 to �0.1), which suggested
parasympathetic activation.
The characteristics of the PSD intensity of emotions are

illustrated in Fig. 4. Specifically, anger evidenced a high LF and a
low HF, fear evidenced a low LF and a low HF, happiness
evidenced a low LF and a high HF, and pleasure evidenced a high
LF and a high HF; these findings suggest that there are differences
in autonomic regulation between emotions. Although both
pleasure and anger showed signal strength in LF and HF parts,
the intensity of the HF of pleasure was higher than that of anger,
which can be used for separation of pleasure and anger.

3.2. Parameter settings for hidden layers of multilayer
ANN

In multilayer ANN, the optimal number of hidden layers and the
number of neurons in the hidden layer were estimated in order to
achieve the best recognition accuracy in emotion classification. In
the single hidden layer, recognition accuracy was increased by
expanding the number of neurons (Fig. 5). When an additional
hidden layer was included, the overall accuracy was lowered. In
addition, with 2 hidden layers, there was a ceiling for the
recognition accuracy rate when the number of neurons was
increased from 200 to 300. Thus, we set our ANN as a single
layer with the number of neurons set to 300 to achieve the
best accuracy.
6

3.3. Emotion recognition by ANN

The normalized values of the 7 HRV features were inputted into
Python programs for ANN-based classification model training,
with the condition of a single hidden layer with 200 to 300
neurons. The average accuracy is shown in Table 3. Data about
the players’ emotions were cross-validated to estimate the rate of
accuracy. The accuracy rates for pleasure, happiness, fear, anger,
and neutral status were 84.4%, 79.1%, 86.8%, 88.6%, and
75.3%, respectively. Overall, the accuracy rate of the ANN in
emotion classification was higher than 75%.
We tested the accuracy rate of the ANN in distinguishing

between emotions with different valences and arousals; we found
that the ANN had the greatest classification ability to separate 2
emotions, when they were significantly different in both valence
and arousal (happiness vs fear: accuracy rate = 93.4%; pleasure
vs anger: accuracy rate = 90.8%; Table 4). With regard to
emotions with similar valence, we found that the accuracy of
classification of fear and anger (91.6%) was higher than that of
pleasure and happiness (82.8%).
3.4. Individual differences in HRV features in response to
emotions

To verify whether there were individual differences in HRV
features in response to emotions in the ANN algorithm, the
accuracy of emotion classification was estimated by adding 1
player’s data to the model in each iteration (Table 5). When
additional player’s data were inputted into the model, the
accuracy decreased; this suggested that there were heterogeneities
in the HRV features in responses to emotions between
individuals. Therefore, a personalized model is recommended
for the classification of emotions.

4. Discussion

This study utilized a wristband heart rate monitor to instantly
and continuously collect large amounts of HRV data during



Figure 4. Frequency-domain analysis of differences in heart rate variability between the emotions of pleasure, happiness, fear, and anger. In power spectrum
density (PSD), frequencies between 0.04Hz and 0.15Hz are defined as low frequency (LF) and those between 0.15Hz and 0.4Hz are defined as high frequency
(HF). Utilizing the differences in the distribution of PSD with frequency changes, we found that the characteristic of the PSD was low for both the HF and LF of fear;
high HF and low LF were observed for happiness. Although both pleasure and anger have signal strength in LF and HF parts, the intensity of the HF of pleasure was
relatively higher than that of anger; this difference can be used for emotion classification.

Figure 5. The number of hidden layers and neurons in the proposed artificial neural network. Inmultilayer ANN, the optimal number of hidden layers and the number
of neurons in the hidden layer were estimated in order to achieve the best recognition accuracy in emotion classification. When an additional hidden layer was
added, the overall accuracy was lowered. With a single hidden layer, the recognition accuracy was augmented by increasing the number of neurons. However, in
the model with 2 hidden layers, there was a ceiling for the recognition accuracy rate when the number of neurons was raised from 200 to 300.
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Table 3

Accuracy of artificial neural networks-based emotion classifica-
tion.

Original

Tested Pleasure Happiness Fear Anger Neutral

Pleasure 84.4% 7.8% 5.0% 1.6% 1.2%
Happiness 16.5% 79.1% 1.6% 1.2% 1.6%
Fear 5.2% 2.4% 86.8% 2.9% 2.7%
Anger 5.2% 2.3% 2.0% 88.6% 1.8%
Neutral 5.2% 2.5% 8.3% 8.8% 75.3%

Table 5

Accuracy of ANN-based classification in each iteration of
cumulitative player data.

No. of
input players

Training
data quantity

Testing
data quantity

Classification
accuracy

1 4095 1455 82.4%
2 5015 1670 76.8%
3 7793 1977 63.3%
4 10,016 2224 56.3%
5 11,952 2430 50.5%
6 12,792 2647 52.5%
7 14,208 2964 50.5%
8 17,032 3081 51.6%
9 18,824 3215 42.4%
10 20,900 3320 46.4%
11 24,284 3437 30.0%
12 25,908 3819 36.2%

The quantity of training and testing data represent the total input number of 5-second windows of heart
rate variability features sets.
ANN= artificial neural networks.
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emotional stimulation. The findings of this study showed that all
the HRV features, including the parameters of time domains,
frequency domains, and heart rate, significantly differed across
emotions, despite significant individual differences in all features.
There were significant disparities in the associations between
individual HRV features and emotions. The ANN model using
HRV features was capable of accurately and effectively
classifying emotions. The accuracy of classification was especially
high when emotions with opposing valence and arousal were
compared. The findings of the present study suggest that the
ANN may be a time-efficient means to accurately classify
emotions. This integrated platform may help monitor and
quantify human emotions and physiological biometrics.
Classification from labeled data is one of the most important

applications for machine learning. Several important algorithms,
such as ANN, support vectormachines, and random forests, have
been proposed as classification tools. In contrast to support
vector machines that are more suitable for a supervised method
for homogenous dataset and random forests that are designed for
large amount of data classification, ANN was the best algorithm
for classifying the heterogeneous HRV dataset with 29,727
segments of dataset.[22,23] We have thus decided to utilize ANN
as our classification algorithm for emotion prediction.
HRV was regarded as a reflection of balance between

excitatory sympathetic and inhibitory parasympathetic compo-
nents. In statistical terms, the findings suggested that parameters
of time domains, frequency domains, and heart rate, significantly
differed across emotions, which underscore the effects that are
related to autonomic regulation.[24] Emotional status is often
assessed using self-report questionnaires and professional
personnel’s interpretations, whereas autonomic responses to
emotions are assessed using objective data that are obtained
through physiological examinations.[6,13,14] HRV, an indicator
Table 4

Accuracy of classification of paired emotions.

Paired emotion groups Accuracy of emotion classification

Pleasure Happiness 82.8%
Fear 87.9%
Anger 90.8%
Neutral 89.3%

Happiness Fear 93.4%
Anger 89.1%
Neutral 82.0%

Fear Anger 91.6%
Neutral 88.9%

Anger Neutral 88.3%
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of autonomic nervous system activity, has been found to be an
accessible research marker to understand the role of emotions in
psychopathological processes.[15,16] High HRV has been linked
to elevated parasympathetic activity and well emotional regula-
tion.[12] Elevated parasympathetic activity has been associated
with body regeneration, which is prominent during sleeping and
resting;[21] conversely, low parasympathetic activity is linked to
the risk of prominent physiological stress and decreased electric
heart stability. Interestingly, fear was associated with remarkably
low autonomic activity on PSD in this study. In rodent models,
fearful events have been found to rapidly reduce HRV with or
without a simultaneous increase in heart rate.[25,26] This fearful
response was inhibited by a beta-adrenergic antagonist, indica-
tive of strong sympathetic activation.[27]

This study has several limitations. First, because the sample size
was small and the participants were young, the results may not be
generalizable to senior or aging populations. Further study with a
larger cohort is needed to draw final conclusions in this regard.
Second, we did not consider the effect of motion on the wristband
device during gameplay, which may influence the PPG sensitivity.
Because hand swinging may have an influence on the PPG signal,
the individual should try to maintain stationary during gameplay
to improve the accuracy of the HRV. When our participants
played the games, they were requested to place both of his/her
hands on the keyboard to avoid hand swinging and subsequent
non-stationary PPG data. Third, although autonomic modula-
tion of HRV can be influenced by respiration, HRV measure-
mentsmay be less affected by breathing rate because wemeasured
HRV on the wrist. Fourth, we did not obtain direct biomarkers of
autonomic regulation or continuous electrocardiography for
comparisons; these may have provided direct evidence regarding
the accuracy of the PPG performance. Therefore, future studies
that employ a larger number of participants and traditional
electrocardiography recordings are needed to examine the
validity of the present study findings.
5. Conclusions

Wristband heart rate monitors and smartphones are efficient
means to gather large amounts of instant and continuous HRV
data during periods of emotional stimulation. The findings of the
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present study suggest that the ANN may instead be a time-
efficient means to classify emotions with accuracy rates that range
from 75.3% to 88.6%. This integrated platform may help
monitor and quantify human emotions and physiological
biometrics. Further, personalized models are recommended for
the classification of emotions because they account for individual
differences in HRV features.
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