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Temperature-induced vulnerability in the plant is regulated through the optimized CBP60g expression and salicylic acid (SA) biosynthesis: 

SA plays a vital role in plant defense. Under high temperatures, plant defense mechanism is compromised. A recent study by Kim et al. 

(2022) demonstrated that elevated temperature negatively affects GDAC (GBPL3 defense-activated biomolecular condensates) formation 

and its recruitment to the CBP60g promoter. This causes SA biosynthesis suppression. The findings of this work will serve as a benchmark in 

understanding the molecular mechanism underlying of plant-environment-disease triangle. PAMP, pathogen-associated molecular pattern; 

MAMP, microbe-associated molecular pattern; LRR, leucine-rich repeat; TF, transcription factor.
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PLANT DEFENSE IS COMPROMISED IN  
HIGH-TEMPERATURE STRESSES

Plants often face a wide range of biotic and extreme envi-

ronmental stresses as sessile organisms. These stresses cause 

physiological changes, resulting in plant growth and yield 

penalty. Since plants lack a circulatory immune system, they 

solely depend on the cell-autonomous local responses, for 

example, the transportation of signaling molecules through 

a membrane-separated vesicular system (Kwon et al., 2020; 

Won and Kim, 2020). Elevated temperature profoundly im-

pacts plant defense responses and render plants vulnerable 

to pathogens. Research breakthroughs elucidating the un-

derlying molecular mechanisms of this pathway were made 

in the last decade. Zhu et al. (2010) reported that a mutation 

in the resistance (R) gene sufficiently changes the tempera-

ture sensitivity of the plant immune response and confers 

resistance at high temperatures. Another study (Cheng et al., 

2013) reported that high temperature decreased the secre-

tion of pathogenic effectors but accelerated the proliferation 

of pathogenic organisms, inhibiting effector-triggered immu-

nity (ETI) while enhancing PAMP-triggered immunity (PTI). 

Defense-related hormones, such as jasmonic acid, salicylic 

acid (SA), and ethylene, play an essential role in pathogen-in-

duced hypersensitive responses (Huot et al., 2014). Previous 

studies have indicated that a higher temperature significantly 

suppresses pathogen-induced SA production while enhanc-

ing other hormone pathways (Gangappa et al., 2017; Huot 

et al., 2017; Malamy et al., 1992). However, the mechanism 

underlying the selective inhibition of SA signaling under high 

ambient temperatures in the presence of pathogens has re-

mained elusive (Gangappa et al., 2017; Huot et al., 2017). 

Recently, Kim et al. (2022) found that the calmodulin-bind-

ing protein 60-like g (CBP60g) transcription factor impacts 

SA production, basal immunity, and ETI at an elevated tem-

perature. CBP60g proteins are highly conserved in plants. 

Therefore, they might play an essential role in mediating the 

triangular interactions among crop plants, the pathogen, and 

the environment (Kim et al., 2022; Zhu et al., 2010).

TEMPERATURE-SENSITIVE PHASE TRANSITION OF 
GBPL3 COORDINATES CBP60g MEDIATED DEFENSE 
SIGNALING

Calcium signaling is essential in plant defense responses as-

sociated with PTI and ETI (Wang et al., 2009). Within the cell, 

calcium signals are transduced by binding calcium ions to 

calmodulins (CaMs), which subsequently bind to CaM bind-

ing proteins (Bouché et al., 2005). In Arabidopsis thaliana, 

Arabidopsis hereafter, the CBP60 family comprised seven 

members (CBP60a-CBP60g). A previous report (Wang et al., 

2009) suggested that CBP60g is induced by infection with 

Pseudomonas and plays a critical role in disease resistance 

through the activation of SA signaling. In a recently published 

study, Kim et al. (2022) discovered that the temperature-in-

duced inhibition of SA biosynthesis in response to pathogens 

is because of the transcriptional suppression of CBP60g. 

Through bulk RNA-sequencing analysis between Col-0 seed-

lings, which were challenged with Pseudomonas syringae pv. 

tomato (Pst) DC3000 at ambient (23°C) and high tempera-

tures (28°C), the authors discovered that the transcription of 

CBP60g and SARD1, a closely related gene of CBP60g (Wang 

et al., 2011), were down-regulated at the high temperature. 

Kim et al. (2022) further examined the upstream regulators 

that transcriptionally repressed CBP60g and SARD1 expres-

sion.

 GUANYLATE BINDING PROTEIN-LIKE 3 (GBPL3) forms 

GBPL defense-activated biomolecular condensates called 

GDACs, which bind to the promoters of CBP60g and other 

defense-related genes by recruiting mediator complex and 

RNA polymerase II (Huang et al., 2021). Kim et al. (2022) 

discovered the disassembly of the GDACs at a higher growth 

temperature (28°C) and concomitant inhibition in the expres-

sion of CBP60g and SARD1. This observation unveils a pre-

viously unknown pathway behind the inhibition of SA pro-

duction at elevated temperatures when plants are challenged 

with a pathogenic elicitor.

SECURING PLANT DEFENSE UNDER HIGH 
TEMPERATURES WITHOUT GROWTH PENALTY

To survive in an unfavorable environment, plants must man-

age limited resources to relocate to the designated organ for 

growth and accelerate their defense mechanisms. During 

this process, plants often activate defense signaling at the ex-

pense of growth. However, recent studies (Figueroa-Macías 

et al., 2021; Neuser et al., 2019) suggested that there could 

be an alternative instead of this ‘trade-off’ signaling between 

growth and defense regulatory mechanism that reprogram 

developmental pathways based on the hostile environment. 

When Kim et al. (2022) over-expressed CBP60g under the 

35S promoter using the uORFsTBF1 strategy, which contains 

the upstream open reading frame (uORF) region of the TBF1 

gene, they found that transgenic Arabidopsis plants could 

maintain a defense system and SA production even at high 

temperatures. Notably, the uORFsTBF1 region allows controlled 

protein translation in response to pathogenic infection (Xu et 

al., 2017). This observation, with the other conclusion led by 

Kim et al. (2022), strongly proposed that CBP60g is the miss-

ing link that inversely regulates plant vulnerability toward the 

pathogen under high temperatures.

 Recent studies (Jing et al., 2019; Okada et al., 2021; Pon-

cini et al., 2017) reported that root growth was impaired 

by perceiving biotic or abiotic stress signals. Consistent with 

this finding, we also identified that plant elicitor peptide 1 

(PEP1), a general sensor of biotic and abiotic stresses, affects 

the reprograming of Arabidopsis root apical meristem and 

vascular development (Dhar et al., 2021). In addition, PEP1 

strongly impacts the cell-to-cell symplastic connection, which 

is responsible for transporting developmental signals over a 

long distance. A molecular link between PEP1 perception and 

reprograming of the developmental signal is yet to be un-

covered, which could also be employed in engineering plants 

with intact danger sensing without root growth penalty.

 In summary, the study led by Kim et al. (2022) provided 

comprehensive evidence of how environmental factors con-

trol the SA-induced defense signaling pathway in connection 

to plant immunity. The author’s results will serve as a bench-
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mark for understanding the concept of the plant-environ-

ment-disease triangle and prompt future researchers to iden-

tify the mechanistic approach toward the underlying defense 

response pathways.
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