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examination. Key proteins involved in the oxidative 
stress response, mRNA or protein stability, basement 
membrane (BM) composition, aerobic glycolysis, 
and mitochondrial function were significantly altered 
with aging. Relative abundance of superoxide dis-
mutase-1/-2, catalase and thioredoxin were reduced 
with aging. Proteins participating in either mRNA 
degradation or pre-mRNA splicing were significantly 
increased in old mice MVs, whereas protein stabiliz-
ing proteins decreased. Glycolytic proteins were not 
affected in middle age, but the relative abundance 
of these proteins decreased in MVs of old mice. 
Although most of the 41 examined proteins compos-
ing mitochondrial complexes I–V were reduced in 
old mice, six of these proteins showed a significant 
reduction in middle-aged mice, but the relative abun-
dance increased in fourteen proteins. Nidogen, colla-
gen, and laminin family members as well as perlecan 
showed differing patterns during aging, indicating 
BM reorganization starting in middle age. We suggest 
that increased oxidative stress during aging leads to 
adverse protein profile changes of brain cortical MVs 
that affect mRNA/protein stability, BM integrity, and 
ATP synthesis capacity.

Keywords Cortical microvessels · Proteomics · 
Brain aging · ROS scavengers · mRNA/protein 
stability · Glycolytic/mitochondrial proteins

Abstract Differentially expressed (DE) proteins in 
the cortical microvessels (MVs) of young, middle-
aged, and old male and female mice were evaluated 
using discovery-based proteomics analysis (> 4,200 
quantified proteins/group). Most DE proteins (> 90%) 
showed no significant differences between the sexes; 
however, some significant DE proteins showing sex-
ual differences in MVs decreased from young (8.3%), 
to middle-aged (3.7%), to old (0.5%) mice. There-
fore, we combined male and female data for age-
dependent comparisons but noted sex differences for 
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Introduction

Cerebral microvessels (MVs: end arterioles, capil-
laries, and venules) are essential for maintenance 
of nutrient supply for brain metabolic needs while 
ensuring immunological and physical sequestration of 
brain tissues from harmful circulating substances via 
the blood–brain barrier (BBB) and basement mem-
brane (BM) [1]. MVs are also the most vulnerable-to-
stress segments of the brain vasculature. They must 
maintain high ATP production rates via glycolysis 
and oxidative phosphorylation (OXPHOS), essential 
for a variety of functions: the regulation of capillary 
perfusion pressure, transport across the BBB, BM 
maintenance, and tight nutrient delivery/brain metab-
olism coupling. They are also subject to exposure 
from potentially disruptive or toxic agents released 
from neurons or circulating blood. Aging is an una-
voidable stress with an ever-increasing detrimental 
effect on the brain microvasculature, which affects 
neuronal health and function and adds vulnerability 
to strokes and dementias, such as Alzheimer’s disease 
(AD). Gross anatomical age-related changes also are 
reported: decreases in small blood vessel [2] and cap-
illary density [3–5], looping, tortuosity, and twisting 
[6–11] of MVs, and reorganization and BBB leakage. 
Unfortunately, the role of different proteins in corti-
cal MVs in the etiology of aging and development of 
neurological diseases has received little attention due 
to a prior focus on large arteries and because of meth-
odological challenges in interpreting the complexity 
of factors involved in the synthesis and stability of 
proteins and protein interactions.

Recently, we reported on our proteomics 
approaches to examine expression and interactions of 
large numbers of proteins in MVs in young male and 
female rodents, with an emphasis on mitochondrial 
and related proteins [12, 13]. In the current study, we 
have expanded our investigation and have performed 
a more extensive examination of proteins involved in 
the structure and function of MVs using a discovery-
based quantitative proteomics approach quantify-
ing more than 4200 differentially expressed (DE) 
proteins/group in cortical MVs of young, middle-
aged, and old male and female mice. Specifically, we 
focused on proteins involved in BM formation, ROS 
scavenging, mRNA/protein stability maintenance, 
and ATP production via glycolysis and OXPHOS.

Materials and methods

Animals

Age-matched, male and female, young (4–6  months), 
middle-aged (12–14  months), and old (20–21  months) 
mice were included in this study. Mice were obtained 
from Jackson Laboratory [Tg(Thy1-EGFP)MJrs/J] (Jax 
No. 007788) and bred in a C57B16J background. Sample 
sizes included 3 male and 3 female MVs per age group. 
Mice were kept in group housing at ~ 23 ºC on a 12-h 
light/dark cycle with ad libitum access to food and water. 
This study conforms to the Institutional Animal Care 
and Use Committee guidelines of Tulane University, the 
National Institutes of Health Office of Laboratory Animal 
Welfare guidelines, and the ARRIVE guidelines for ani-
mal research. All MVs were collected at the same time of 
day to avoid any differences due to circadian rhythm.

Microvessels isolation

The MVs were isolated as previously described [12, 
13]. Large, superficial, blood-vessel-free, cortical tis-
sue from mice brains was homogenized in ice cold 
Dulbecco’s phosphate-buffered saline (DPBS) (Life 
Technologies Corporation, NY, USA) and centrifuged 
at 3300 × g for 15 min. The pellet was resuspended in 
17.5% dextran (Thermo Fisher Scientific, Waltham, 
MA) and passed through a 300-µm filter (pluriSelect 
Life Science, CA, USA). The filtrate was centrifuged 
at 7900 × g for 15 min. The contaminated myelin was 
eliminated, and the MV pellet was resuspended in 
2% bovine serum albumin (BSA) (Sigma-Aldrich, St 
Louis, MO) and passed through a 70-µm filter (Corn-
ing Incorporated, NY, USA). To achieve impurity-
free MVs, the subsequent sample was centrifuged at 
13,000 × g for 15 min with a final clean-up with dextran 
(17.5%) followed by BSA (2%). Last, the MV pellet 
was resuspended in DPBS and stored at − 80  °C until 
used. The MV preparation integrity has been validated 
as described in our studies [12–15].

Quantitative discovery-based proteomics using 
tandem mass tags (TMT) and liquid chromatography 
mass spectrometry (LC–MS)

Samples were prepared for discovery-based quanti-
tative proteomic analysis by the addition of 1% SDS 
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and sonicated until completely homogenous. The pro-
tein concentration was determined using BCA protein 
assay kit (Pierce, Thermo Scientific) and an eight-
point standard curve. Based on the protein concen-
tration, 100 µg of each protein sample was prepared 
for trypsin digestion by reducing the cysteines with 
tris(2-carboxyethyl)phosphine followed by alkyla-
tion with iodoacetamide. After chloroform–methanol 
precipitation, each protein pellet was digested with 
1 µg trypsin overnight at 37 °C. Tryptic peptides were 
labeled using one of three TMT 6-plex reagents sets 
(Thermo Scientific Pierce); old, middle, and young.

An equal amount of each TMT-labeled sample 
was pooled in a single tube with SepPak purified 
(Waters, Ireland) using acidic reverse phase condi-
tions. We used off-line fractionation to reduce the 
sample complexity, as previously described [12, 13]. 
The fractionated, labeled peptide mixtures were run 
on a Dionex U3000 nano-flow system coupled to a 
Thermo Fisher Fusion Orbitrap mass spectrometer. 
Each fraction was subjected to a 95-min chroma-
tographic method employing a gradient from 2 to 
25% ACN in 0.1% formic acid (FA) (ACN/FA) over 
the course of 65  min, a gradient of 50% ACN/FA 
for an additional 10 min, and then 90% ACN/FA for 
5 min, with a 15-min re-equilibration into 2% ACN/
FA. Chromatography was carried out in a “trap-and-
load” format using an EASY-Spray source (Thermo); 
trap column C18 PepMap 100, 5  µm, 100 A, and 
the separation column was an EASY-Spray PepMap 
RSLC C18 2  µm, 100 A, 75  µm × 25  cm (Thermo 
Fisher Dionex, Sunnyvale, CA). The entire run had a 
flow rate of 0.3 µL/min. Electrospray was achieved at 
1.8 kV.

We used an MS3 approach for TMT data acquisi-
tion, as previously described [16]. Survey scans (MS1) 
were performed in the Orbitrap using 120,000 resolu-
tions. Data-dependent MS2 scans in the linear ion trap 
used a collision-induced dissociation (CID) of 25%. 
Reporter ions were fragmented using a high-energy 
collision dissociation (HCD) of 55% and detected in 
the Orbitrap at 50,000 resolutions (MS3). This was 
repeated for three technical replicates. The 3 runs of 
each age group were searched using the SEQUEST 
HT node of Proteome Discoverer 2.4 (Thermo). The 
Protein FASTA database was the Mus musculus, Swis-
sProt tax ID = 10,090, version 2017–10-25 contain-
ing 25,097 sequences. Static modifications included 

TMT reagents on lysine and N-terminus (+ 229.163); 
carbamidomethyl on cysteines (+ 57.021); dynamic 
phosphorylation of serine, threonine, and tyrosine 
(+ 79.966 Da); and dynamic modification of oxidation 
of methionine (+ 15.9949). Parent ion tolerance was 
10 ppm, fragment mass tolerance was 0.6 Da for MS2 
scans, and the maximum number of missed cleavages 
was set to 2.

Statistical analysis

Only high scoring peptides were considered using 
a false discovery rate of < 1%, and only one unique 
high-scoring peptide was required for inclusion of an 
identified protein in our results. Proteome Discoverer 
was also used to determine quantitative differences 
between biological groups. We used a t test analysis 
for quantitative data by grouping biological repli-
cates and performing pair-wise comparisons for fold 
change: old, middle-aged, and young mice. The nor-
malized abundance quantity of a biological replicate 
was calculated from an average of three experimental 
replicates. The data was presented as mean ± standard 
deviation (SD). Initially, the data sets were assessed 
by the Shapiro–Wilk test for normality followed by 
unpaired t test with Welch correction for normally 
distributed data. When the data did not pass the nor-
mality test, a non-parametric Mann–Whitney test was 
performed as indicated in the figure legends. The sta-
tistical analysis was performed using GraphPad Prism 
version 9.0.0 for Windows, and p < 0.05 was consid-
ered statistically significant.

Results

Age- and sex-specific quantification of DE proteins in 
cortical MVs of mice

More than 4200 DE proteins were quantified in corti-
cal MVs of young, middle-aged, and old mice. The 
number of significant sex-dependent DE proteins 
(abundance ratio: female/male) in cortical MVs gen-
erally decreased from young (8.3%), middle-aged 
(3.7%), to old (0.5%) mice (Supplementary Table 1). 
Due to the notable (> 90%) lack of significant sex dif-
ferences, especially in old mice MVs, we combined 
male and female data to strengthen the statistical 
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analyses. When sex differences were more promi-
nent and important to consider, we note this informa-
tion in the text and include details in Supplementary 
Materials.

Oxidative stress response proteins were altered with 
aging in mice cortical MVs

The expressions of superoxide dismutase 1 (SOD1) 
and superoxide dismutase 2 (SOD2) were signifi-
cantly decreased in aged compared with young and 
middle-aged mice (Fig. 1A–B). Moreover, the expres-
sions of catalase (CAT) and thioredoxin (TXN1) 
were significantly decreased both in middle-aged and 
old mice MVs (Fig.  1C–D). While glutathione syn-
thase (GSS) and glutathione peroxidase-1 (GPX1) 
levels were not significantly reduced during aging 
(Fig. 1E–F), the enzymes involved in the glutathione 
cycle were significantly differentially expressed in 
MVs of young, middle-aged, and old mice. For exam-
ple, glutathione hydrolase 1 proenzyme (GGT1)-
expression in old mice MVs was significantly 
decreased compared with middle-aged or young mice 
(Fig. 1G). Interestingly, the expression of glutathione 

S transferase kappa 1 (GSTK1) was significantly 
decreased, but glutathione hydrolase 7-expression 
was increased in middle-aged MVs (Fig.  1H–I). 
Remarkably, glutathione reductase-expression was 
significantly higher in old compared with young mice 
MVs (Fig. 1J).

Proteins involved in mRNA/protein stability changed 
during aging

Proteins involved in either mRNA stability (polyade-
nylate-binding protein 1: PABPC1) or proper protein 
folding (mitochondrial 60 and 70 kDa heat shock pro-
teins: HSPA9 and HSPD1, respectively) were more 
decreased in middle-aged and old cortical MVs than 
young MVs (Fig.  2A–C). Alternatively, non-canoni-
cal poly(A) RNA polymerase PAPD5 (Papd5), 5′-3′ 
exoribonuclease 2 (XRN2), and superkiller virali-
cidic activity 2-like 2 (SKIV2l2) which are involved 
in either mRNA degradation or pre-mRNA splicing 
were significantly upregulated in MVs of old com-
pared with middle-aged and young mice (Fig. 2D–F). 
The expression of U6 snRNA-associated Sm-like 
protein LSM7 (LSM7), which plays an important 

Fig. 1  Decreased expression of oxidative stress response 
proteins with aging in mouse cortical MVs  (panels A–J). 
Relative protein abundance quantified by TMT-based LC–MS 
study. Proteins that exhibited group differences are shown as 
bar graphs with red, green, and blue for young, middle-aged, 
and old mice, respectively. Graphs show mean ± SD of rela-
tive abundance, with between group significant differences 
indicated by asterisks. NS: not significant. All protein data 
sets passed the Shapiro–Wilk normality test, and unpaired 

t test with Welch correction. Age-matched, three males and 
three females were included in each group (n = 6/group). Sod1 
(SOD1), superoxide dismutase 1; Sod2 (SOD2), superoxide 
dismutase 2; Cat (CAT), catalase; Txn1 (TXN1), thioredoxin; 
Gss (GSS), glutathione synthetase; Gpx1 (GPX1), glutathione 
peroxidase 1; Ggt1 (GGT1), glutathione hydrolase 1 proen-
zyme; Gstk1 (GSTK1), glutathione S-transferase kappa 1; 
Ggt7 (GGT7), glutathione hydrolase 7; Gsr (GSR), glutathione 
reductase
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role in pre-mRNA splicing via spliceosome, was 
also increased in middle-aged and old mice MVs 
(Fig. 2G).

Glycolytic enzymes were significantly decreased with 
aging in mice

Aging led to reductions in almost all enzyme lev-
els involved in glycolysis in old compared with 
young and middle-aged mice, including hexoki-
nase-1 (Fig.  3A), glucose-6-phosphate isomerase 
(Fig. 3B), phosphofructokinase 1 (Fig. 3C), aldolase 
A (Fig. 3D), glyceraldehyde 3-phosphate dehydroge-
nase (GAPDH) (Fig.  3F), phosphoglycerate kinase 
1 (Fig.  3G), phosphoglycerate mutase 1 (PGAM1) 
(Fig.  3H), enolase alpha (Fig.  3I), and pyruvate 
kinase (Fig.  3J). Only triosephosphate isomerase 
(TPI) (Fig.  3E) was not significantly reduced in old 
mice. The expression of glycolytic proteins was simi-
lar between males and females for all age groups 
except for GAPDH and PGAM1 in young mice (Sup-
plementary Fig. 1).

OXPHOS proteins were affected by age

More than 800 mitochondrial and related DE pro-
teins in cortical MVs of young, middle-aged, and old 
mice were quantified. The number of sex-dependent 
significant mitochondria-related DE proteins (abun-
dance ratio: female/male) in cortical MVs gradually 
decreased from young (6.5%: 58/885) to middle-aged 
(4.4%: 36/816) to old mice (0.7%: 6/830) (Supple-
mentary Table 2). Data point proximity in each graph 
for complexes I–V support our male and female data 
grouping; details of sex differences are presented in 
Supplementary Figures.

The overall aging effect shows widespread 
decreases in old compared with young and middle-
aged mice MVs in all five complexes (6/9 for complex 
I, 1/3 for complex II, 6/7 for complex III, 8/9 for com-
plex IV, and 10/13 for complex V) (Figs. 4, 5, and 6). 
A surprising aspect of OXPHOS protein expression 
is that middle-aged mice often showed a significant 
increase in specific proteins compared with young 
mice before these decreased in old mice. We see this 

Fig. 2  Proteins involved in mRNA/protein stability changed 
during aging in mice MVs (panels A–G). Proteins that exhib-
ited between group differences are shown as colored bar 
graphs. Graphs show mean ± SD of relative abundance, with 
significant differences between groups presented as indicated. 
NS: not significant. Data presented in panels passed the Sha-
piro–Wilk normality test except HSPA9 and PAPD5, which 
and were followed by an unpaired t test with Welch correction. 
The non-parametric Mann–Whitney test was used for HSPA9 

and PAPD5. Age-matched, three males and three females were 
included in each group (n = 6/group). Pabpc1 (PABPC1), Pol-
yadenylate-binding protein 1; Hspa9 (HSPA9), stress-70 pro-
tein, mitochondrial; Hspd1 (HSPD1), 60 kDa heat shock pro-
tein, mitochondrial; Papd5 (PAPD5), non-canonical poly(A) 
RNA polymerase PAPD5; Xrn2 (XRN2), 5′-3′ exoribonuclease 
2; Skiv2l2 (SKIV2L2), superkiller viralicidic activity 2-like 2; 
Lsm7 (LSM7), U6 snRNA-associated Sm-like protein LSM7
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pattern with ND2 and NDUFS1 in complex I (Fig. 4B 
and D); SDHA in complex II (Fig.  4E); UQCRFS1 
and UQCRH in complex III (Fig. 4F and G); COX2, 
COX5a, and COX5b in complex IV (Fig.  5A–B); 
and ATP5B, ATP5C1, ATP5F1, and ATP5H in com-
plex V (Fig. 6A, B, and D). However, in some cases, 
mitochondrial proteins in MVs decreased in middle 
age compared with young mice: NDUFV2 in com-
plex I (Fig.  4C), 1/9; none for complex II (Fig.  4); 
UQCR10 for complex III (Fig. 4G), 1/7; COX6C and 
COX7C for complex IV (Fig.  5C and D), 2/9; and 
ATP5D and ATP5E for complex V, 2/13 (Fig.  6C 
and E). In complex I, the expression of NDUFS2 and 
NDUFS3 was significantly decreased in young female 
MVs (Supplementary Fig.  2A), whereas NDUFS1 
was significantly decreased in middle-aged female 
than male (Supplementary Fig.  2B). In complex II, 
SDHA expression was significantly less only in old 

female than male (Supplementary Fig. 3C). In com-
plex III, UQCR10 in young female and UQCRC2 and 
UQCRB in middle-aged female were significantly 
less expressed than male (Supplementary Fig. 4A–B). 
Similarly, in complex IV, the expression of COX4I1 
and COX6C in young female, COX2 and COX5A 
in middle-aged female, and COX7C in old female 
was significantly less than in male (Supplementary 
Fig. 5A–C). In complex V, the expression of ATP5C1 
was significantly decreased in both young and mid-
dle-aged female mice. Interestingly, the relative abun-
dance of ATP5J was significantly higher in young 
female but was decreased significantly in old female 
MVs (Supplementary Fig. 6A–C).

Although the OXPHOS proteins largely show par-
ity between the sexes, the expression of other mito-
chondrial-related proteins shows a more complex 
pattern (data not presented). For example, proteins 

Fig. 3  Decreased expression of glycolytic enzymes in mouse 
cortical MVs with aging  (panels A–J). Proteomics of glyco-
lysis and associated pathways. Stepwise intermediate products 
are highlighted in brown, and the pathway is indicated by blue 
arrows. The abundant expression of enzymes involved in each 
step is presented in panels A to J. The enzymes that exhibited 
between group differences are shown as bar graphs with red, 
green, and blue for young, middle-aged, and old mice, respec-
tively. Graphs show mean ± SD of relative abundance, with 
significant differences between groups indicated by asterisks. 
The protein abundance in MVs of old mice is presented in pan-

els (A), (B), (C), (E), (G), (H), and (J). These panels did not 
pass the Shapiro–Wilk normality test, and the non-parametric 
Mann–Whitney test was used. Proteins in panels (D), (F), and 
(I) passed the Shapiro–Wilk normality test and were followed 
by unpaired t test with Welch correction. Age-matched, three 
males and three females were included in each group (n = 6/
group). G-6-P Isomerase, glucose-6-phosphate isomerase; 
Triose-P-isomerase, triosephosphate isomerase; Gly-3-p-Dehy-
dogenase, glyceraldehyde 3-phosphate dehydrogenase; P-glyc-
erate kinase 1, phosphoglycerate kinase 1; P-glycerate mutase 
1, phosphoglycerate mutase 1
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involved in mitochondrial transcription/transla-
tion are heavily slanted to males in young mice, and 
proteins involved in fatty acid metabolism are more 
abundantly expressed in female compared with male 
mice in middle age. The other mitochondrial-related 
proteins are equally expressed in male and females in 
old mice.

Basement membrane proteins were affected by age

Basement membranes are composed of many struc-
turally different components, and the composition 
of BMs varies according to anatomical location. 

For cortical MVs, the BM is composed of nido-
gen, collagen, and laminin components and per-
lecan (HSPG2) (Fig.  7). While a modest decrease 
in old mice compared with young mice occurred 
with NID1, expression of NID2 did not change 
(Fig. 7A). The collagen proteins showed a complex 
pattern which differed among the subtypes. The 
expression of COL4A1, COL6A1, and COL4A2 
showed a progress decrease in middle-aged and 
old mice, whereas COL1A1, COL6A2, COL12A1, 
COL15A1, and COL18A1 showed increases 
either/and in middle-aged and old age compared 
with young mice (Fig.  7B–D). Laminin subtypes 

Fig. 4  Altered age-specific expression of mitochondrial com-
plexes I, II, and III proteins in mouse cortical MVs  (panels 
A–G). Abundant expression of different proteins involved in 
mitochondrial complex I (A–D), complex II (E), and complex 
III (F–G) that exhibited differences between groups are shown 
as bar graphs. Graphs show mean ± SD of relative abundance, 
with significant differences between groups presented as indi-
cated. Proteins presented in different panels passed the Shap-
iro–Wilk normality test followed by unpaired t test with Welch 
correction. Age-matched, three males and three females were 
included in each group (n = 6/group). ND1, NADH-ubiquinone 
oxidoreductase chain 1; ND2, NADH-ubiquinone oxidoreduc-
tase chain 2; ND4, NADH-ubiquinone oxidoreductase chain 
4; ND5, NADH-ubiquinone oxidoreductase chain 5; Ndufv1 
(NDUFV1), NADH dehydrogenase [ubiquinone] flavopro-
tein 1; Ndufv2 (NDUFV2), NADH dehydrogenase [ubiqui-

none] flavoprotein 2; Ndufs1 (NDUFS1), NADH-ubiquinone 
oxidoreductase 75  kDa subunit, mitochondrial; Ndufs2 
(NDUFS2), NADH dehydrogenase [ubiquinone] iron-sulfur 
protein 2; Ndufs3 (NDUFS3), NADH dehydrogenase [ubiqui-
none] iron-sulfur protein 3; Sdha (SDHA), succinate dehy-
drogenase [ubiquinone] flavoprotein subunit; Sdhb (SDHB), 
succinate dehydrogenase [ubiquinone] iron-sulfur subunit; 
Sdhc (SDHC), succinate dehydrogenase cytochrome b560 
subunit; Uqcrb (UQCRB), cytochrome b-c1 complex subu-
nit 7; Uqcrc1 (UQCRC1), cytochrome b-c1 complex subu-
nit 1; Uqcrc2 (UQCRC2), cytochrome b-c1 complex subunit 
2; Uqcrfs1 (UQCRFS1), cytochrome b-c1 complex subunit 
Rieske; Uqcrh (UQCRH), cytochrome b-c1 complex subunit 6; 
Uqcrq (UQCRQ), cytochrome b-c1 complex subunit 8; Uqcr10 
(UQCR10), cytochrome b-c1 complex subunit 9
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also showed a mixed response (Fig.  7E–F). Only 
LAMA5 and LAMB1 showed a reduction in mid-
dle-aged compared with young mice, whereas 
LAMA1 increased and LAMA2 decreased in old 
compared with middle-aged mice. For perlecan, a 
decrease in expression was seen in old compared 
with middle-aged mice (Fig. 7F).

Discussion

The major finding of this study is that significant 
changes occur in the protein composition of brain 
MVs of old mice, which increases the vulnerability 
of this cerebral vascular segment to ongoing damage 

and dysfunction, negatively affects cognition, and 
increases susceptibility to brain injury and disease. 
First, proteins regulating mRNA/protein stability 
are deranged starting in mid-life and continuing to 
old age. Thus, the length of time that intact mRNAs 
are available for translation is reduced, which leads 
to decreased protein synthesis, and those proteins 
that are synthesized will have a reduced lifespan in 
their original form. Second, important ROS scav-
enger levels are reduced with aging, correspond-
ing with reports of increased ROS availability in old 
age. Third, enzyme levels involved in glycolysis and 
many components of mitochondrial complexes I–V 
are reduced, which will decrease the ability of MVs 
to provide the necessary ATP response to stress and 
injury. Fourth, the BM components undergo aging 
changes, which may lead to inappropriate alterations 
in MV structural integrity. We propose that reduced 
ROS scavenging ability coupled with subsequent 
increased oxidative damage and mRNA/protein sta-
bility are early, precipitating events leading to energy 
failure and BM disruption (Fig.  8—schematic). In 
addition, the results indicate that detrimental effects 
of normal aging occur as early as 12–14  months in 
mice and thus provide support for the view that ther-
apies, especially in vulnerable individuals, should 
begin in mid-life.

ROS scavenger proteins during aging

A dominant theory in the aging literature focuses on 
the accumulation of damaging effects of ROS on cells 
which could arise via enhanced ROS production, 
decreased antioxidant systems, or a combination of 
both [17, 18]. Using two photon microscopies, Han 
et  al. [19] detected increased levels of ROS in the 
cerebral vessels of old mice. However, despite over-
whelming evidence supporting the idea that ROS are 
produced and can manifest damage in cells, a causal 
link between ROS and normal aging has not been 
clearly established. Mitochondria are major source 
of ROS in aging brain, but other important contribu-
tors include enzymes within the plasma membrane, 
NADPH oxidases (NOXs), lipid metabolism, and 
various cytosolic enzymes such as cyclooxygenases. 
In the vasculature, NOX enzymes are a substantial 
source of ROS, and are key players in mediating 
redox signaling under physiological and pathophysi-
ological conditions including age-associated diseases 

Fig. 5  Altered expression of mitochondrial complex IV pro-
teins in mouse cortical MVs during aging  (panels A–D). 
Proteins involved in mitochondrial complex IV that exhib-
ited between group differences are shown as colored bar 
graphs as in Figs.  1, 2, 3, and 4. Graphs show mean ± SD of 
relative abundance, with significant differences between 
groups presented as indicated. Proteins presented in differ-
ent panels passed the test for normal distribution and were 
followed by unpaired t test with Welch correction. Age-
matched, three males and three females were included in 
each group (n = 6/group). COX2, cytochrome c oxidase 
subunit 2; Cox4i1 (COX4I1), cytochrome c oxidase subu-
nit 4 isoform 1; Cox5a (COX5A), cytochrome c oxidase 
subunit 5A; Cox5b (COX5B), cytochrome c oxidase subu-
nit 5B; Cox6a1 (COX6A1), cytochrome c oxidase subunit 
6A1; Cox6b1 (COX6B1), cytochrome c oxidase subunit 6B1; 
Cox6c (COX6C), cytochrome c oxidase subunit 6C; Cox7a2 
(COX7A2), cytochrome c oxidase subunit 7A2; Cox7c 
(COX7C), cytochrome c oxidase subunit 7C
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[20–26]. However, the contribution of NOX enzymes 
as a source of oxidant stress during normal aging pro-
cess has not been clearly established. While we did 
not measure ROS production or the source of ROS in 
MVs, we intend to do so in future studies. Nonethe-
less, reduced ROS scavenging systems during aging 
compromise the brain microvasculature. There are 
studies supporting the concept that a decrease in anti-
oxidant defenses appears with aging [27–29] which 
support our findings. Postmortem studies of different 
human brain regions uncovered a gradual age-related 
decrease in SOD and CAT as well as GSH reductase 
activity, mainly in the hippocampus and frontal cortex 
[30]. In line with these observations, in vivo monitor-
ing of GSH content in the human brain from healthy 
subjects exhibited a steady decrease in this antioxi-
dant enzyme in old compared with young individuals 

[29]. Studies in old rat brains revealed a decrease in 
SOD2 activity compared with young rat brains [31]. 
In this regard, we found that the relative abundances 
of SOD1, SOD2, CAT, and TXN1 were significantly 
decreased in cortical MVs of old mice (Fig. 1A–D). 
The decrease in the relative abundance of CAT and 
TXN1 in middle age indicates that the potential for 
increased oxidative stress becomes manifest relatively 
early in mice MVs. In addition to the primary anti-
oxidants, many secondary antioxidants such as GPX1 
form redox cycles that offer necessary cofactors for 
primary antioxidants and can also function as direct 
scavengers of ROS [32–35]. Although the expres-
sion of GSS and GPX1 was not decreased with aging, 
the redox cycle proteins such as GGT1 and GSTK1 
were also significantly decreased in old mice MVs 
(Fig.  1E–H). These enzymatic and nonenzymatic 

Fig. 6  Age-specific expression of proteins in mitochondrial 
complex V in mouse cortical MVs  (panels A–E). Abundant 
expression of different proteins that demonstrate between 
group differences are shown as bar graphs. Graphs show 
mean ± SD of relative abundance, with significant between 
group differences indicated by asterisks. Proteins presented 
in different panels did not pass the Shapiro–Wilk test for nor-
mal distribution. The non-parametric Mann–Whitney test was 
performed for statistical significance in different groups. Age-
matched, three males and three females were included in each 
group (n = 6/group). Atp5a1 (ATP5A1), ATP synthase subunit 

alpha; Atp5b (ATP5B), ATP synthase subunit beta; Atp5c1 
(ATP5C1), ATP synthase subunit gamma; Atp5d (ATP5D), 
ATP synthase subunit delta; Atp5e (ATP5E), ATP synthase 
subunit epsilon; Atp5f1 (ATP5F1), ATP synthase F(0) com-
plex subunit B1; Atp5h (ATP5H), ATP synthase subunit 
d; Atp5j (ATP5J), ATP synthase-coupling factor 6; Atp5j2 
(ATP5J2), ATP synthase subunit f; Atp5k (ATP5K), ATP 
synthase subunit e; Atp5l (ATP5L), ATP synthase subunit g; 
Atp5o (ATP5O), ATP synthase subunit O; Atp5s (ATP5S), 
ATP synthase subunit s
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antioxidant systems are essential to ensure the health 
of cells by maintaining the optimal redox balance as 
well as decrease or avoid cellular damage caused by 
ROS [36–38].

mRNA/protein stability during aging

Messenger RNA turnover mechanisms regulate 
the lifetime of cytoplasmic mRNAs as a means of 
controlling gene expression under both normal and 
stress conditions, whereas the impact of mRNA 
turnover on aging and age-related disorders has 
recently become apparent [39]. Age-dependent 
changes in mRNA decay are currently unknown; 
however, some mechanistic pathways are beginning 
to emerge [40]. Several age-related neurodegen-
erative disorders are associated with deficiencies in 
RNA-binding protein function and play regulatory 

roles in longevity [41–44]. Many proteins, including 
cytoplasmic poly(A)-binding protein 1 (PABPC1), 
bind the poly(A) tail of mRNA, including that of 
its own transcript, and regulate mRNA metabo-
lism processes and mRNA stability [45–47]. We 
observed that PABPC1 expression was significantly 
decreased in cortical MVs with aging (Fig.  2A). 
On the other hand, the mRNA processing bodies 
(also known as P-bodies) are mainly involved in 
translational repression and mRNA decapping and 
degradation. The P-body components include the 
decapping enhancers LSM1–7, and the 5΄ to 3΄ exo-
nuclease XRN1 or XRN2 that regulate the decap-
ping or degradation rate of mRNAs [48–50]. In 
the 3΄ to 5΄ decay pathway, mRNAs are degraded 
in this direction by the SKI RNA helicase com-
plex [51, 52]. We observed that the expression of 
PAPD5, XRN2, SKIV2l2, and LSM7 involved in 

Fig. 7  Altered expression of basement membrane proteins in 
mouse cortical MVs with aging  (panels A–F). Proteins that 
exhibited between group differences are shown as colored bar 
graphs. Graphs show mean ± SD of relative abundance, with 
between group significant differences as indicated. Proteins 
presented in different panels passed the Shapiro–Wilk nor-
mality test followed by unpaired t test with Welch correction. 
Age-matched, three males and three females were included 
in each group (n = 6/group). Nid1 (NID1), nidogen-1; Nid2 
(NID2), nidogen-2; Col1a1 (COL1A1), collagen alpha-1(I) 
chain; Col4a1 (COL4A1), collagen alpha-1(IV) chain; Col6a1 
(COL6A1), collagen alpha-1(VI) chain; Col12a1 (COL12A1), 

collagen alpha-1(XII) chain; Col15a1 (COL15A1), collagen 
alpha-1(XV) chain; Col18a1 (COL18A1), collagen alpha-
1(XVIII) chain; Col1a2 (COL1A2), collagen alpha-2(I) 
chain; Col4a2 (COL4A2), collagen alpha-2(IV) chain; Col6a2 
(COL6A2), collagen alpha-2(VI) chain; Lama1 (LAMA1), 
laminin subunit alpha-1; Lama2 (LAMA2), laminin subunit 
alpha-2; Lama4 (LAMA4), laminin subunit alpha-4; Lama5 
(LAMA5), laminin subunit alpha-5; Lamb1 (LAMB1), laminin 
subunit beta-1; Lamb2 (LAMB2), laminin subunit beta-2; 
Lamc1 (LAMC1), laminin subunit gamma 1; Hspg2 (HSPG2), 
heparan sulfate proteoglycan core protein
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the mRNA degradation or pre-mRNA splicing criti-
cal for longevity [53, 54] were upregulated in MVs 
of old mice (Fig. 2D–G). Alternative RNA splicing 
is accomplished by large ribonucleoprotein com-
plexes, known as spliceosomes. Several RNA bind-
ing proteins act as splicing regulators to expedite 
or inhibit splice site recognition by spliceosome 
components [55]. A gene ontology analysis in both 
human and mouse reported that changes in path-
ways such as mRNA binding, RNA processing, and 
RNA splicing are strongly associated with age [56, 
57]. Age‐related splicing fluctuations in the human 
brain affect pathways such as sugar metabolism 
and DNA repair [58], both pertinent to aging [59, 
60]. Recently, Ubaida-Mohien et  al. [61] reported 
that spliceosomal proteins were increased by ~ 15% 
between the ages of 20 and 87 years, and they pro-
pose that changes in the splicing machinery enable 
muscle cells to respond to a rise in damage with 
human aging. Systematic changes in the splicing 
machinery with older age were also suggested by 
epidemiological studies [62], transcriptomic analy-
ses of skeletal muscle biopsies [63, 64], and human 

peripheral blood leukocytes [57] of young and old 
individuals. During or after translation, proteins 
adapt their structures in a process called folding. 
Generally, folding is accelerated by chaperones 
and associated protein activity. Decreased chaper-
one capacity with age has been shown in numer-
ous studies [65–67]. We observed that HSPA9 and 
HSPD1 were involved in protein folding and were 
decreased more significantly in MVs of middle-
aged and old than in young mice (Fig. 2B–C). The 
signaling process concerning whether to degrade a 
protein is affected in part by the availability of ATP 
in the cell. Decline of cellular energetics with age 
and disruption of fatty acid and glucose metabolism 
decreases the amount of available ATP and changes 
chaperone activity, leading to the accumulation of 
damaged proteins [68, 69].

Anaerobic glycolysis during aging

Glycolysis is crucial for energy production in the 
developing brain, whereas OXPHOS becomes more 
dominant in the mature brain [70]. We are unaware of 

Fig. 8  Putative events 
leading to stress and dys-
function of the brain MVs 
in aging. Brown, alkaline 
phosphate staining [ref 
12, 13] in normal micros-
copy shows the isolated 
cortical MVs as a mixture 
of arterioles (a), capillar-
ies, and venules (v). This 
study indicated that the 
reduction of ROS scaveng-
ing ability and subsequent 
increased oxidative damage, 
and decreased mRNA/
protein stability, represent 
early, precipitating events 
leading to energy failure 
and basement membrane 
(BM) disruptions in the 
cerebral microvasculature 
of the aging brain
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any studies which have considered the effects on gly-
colysis of aging brain cortical MVs. Recently, brain 
glycolysis has been recognized as a process not only 
involved in hypoxic conditions, but also as a criti-
cal pathway affecting signal transduction, synaptic 
activity, learning, and brain development [70–73]. 
In normoxic conditions, glycolysis can promptly 
increase intracellular ATP levels with the changing 
demands of a cell for activation, proliferation, secre-
tion, migration, and apoptosis [74–76]. Moreover, the 
metabolic control of angiogenesis or barriergenesis 
may be provided by glycolytic activity of the neuro-
vascular unit cells [77]. The ATP required by neurons 
[78], and microglia [79] is predominantly generated 
within mitochondria by OXPHOS. In contrast, energy 
requirements of astrocytes [80] and oligodendrocytes 
[81] are predominantly met by glycolysis. In the cer-
ebral vasculature, glycolysis promotes vessel branch-
ing [82, 83], and whereas endothelial migration is 
associated with angiogenic events [82], the suppres-
sion of glycolysis results in impairment of angiogen-
esis [84, 85]. During angiogenesis, the developing 
capillaries are more permeable than established ves-
sels [86]. However, there appears to be an age-related 
decrease in the capacity for cerebral angiogenesis 
[87, 88]. Several vascular density studies in aging rats 
reported decreases in capillary number, length, vol-
ume, and vascular density in hippocampus, cortex, 
white matter, and brain stem regions [89–96]. Simi-
larly, in human aging, decrease in capillary/vascular 
density in cortex and other brain areas is also reported 
in several studies [3–5, 97]. During aging, the human 
brain experiences normal changes including a global 
decline in glucose metabolism, oxygen consump-
tion, and cerebral blood flow [71, 98–100]. Recently, 
Goyal et al. (2017) reported that average aerobic gly-
colysis gradually decreases with age, approaching 
zero at the whole-brain level close to the age of 60 
[98]. These conclusions are strongly supported by a 
prior quantitative study in cognitively normal active 
young and older adults [101]. In healthy aging, brain 
glucose metabolism decreases mainly in the frontal 
cortex, whereas in AD and other neurodegenerative 
diseases, the parietal lobe and precuneus are the most 
significantly affected [102]. Our present study indi-
cates that except for TPI, the expressions of all other 
glycolytic enzymes were significantly decreased with 
aging in mice cortical MVs (Fig. 3). Inhibition of the 
“house-keeping” glycolytic enzyme, GAPDH, by 

nitric oxide results in higher BBB permeability and 
barrier dysfunction [103]; the same effect is provoked 
by overproduction of ROS in endothelial mitochon-
dria [104]. The aging-related decrease of anaerobic 
glycolysis may also indicate a loss of neuroprotec-
tion against oxidative stress via the pentose phosphate 
pathway, increasing the risk for oxidative damage. 
The aging-related loss of glycolysis in the absence 
of an amyloid or neurologically distinct brain pathol-
ogy suggests an underlying physiological change that 
harbors poor outcomes to the aging brain. Decreased 
anaerobic glycolysis might provide a template for the 
onset of more severe brain energetic deficits in neuro-
degenerative diseases [98, 105–108].

Mitochondrial proteins during aging

The mitochondrial theory of aging hypothesizes that 
mitochondria are the essential component in control 
of aging. Thus, the dynamic interactions between 
mitochondrial and glycolytic activity in endothelial 
cells is essential for maintaining endothelial layer 
integrity. Our proteomics study indicates that the 
number of significant mitochondrial proteins in corti-
cal MVs sequentially decreased from young to mid-
dle-aged to old mice. Moreover, a significantly higher 
number of mitochondrial proteins were expressed in 
young male (~ 67%) than female (~ 33%) MVs (Sup-
plementary Table  2). However, this trend reversed 
in middle-aged mice MVs, and surprisingly, only 
six mitochondrial proteins were significantly differ-
entially expressed in old male MVs (Supplementary 
Table  2). Increasing evidence, however, indicates a 
role for changes in mitochondrial function as a proba-
ble central regulator of the aging process. Abnormally 
rounded mitochondria [109] decreases in mitochon-
drial number [110] as well as mitochondrial DNA 
(mtDNA), and copy number decreases [111–113] are 
significantly linked with aging. We have previously 
shown that mitochondrial respiration is reduced in old 
mice [14]. Mitochondrial complex I (MC-I) is thought 
to be a site of impairment since more subunits are 
encoded by mitochondrial rather than nuclear DNA. 
Due to its proximity to ROS produced by mitochon-
dria, mtDNA is considered to be more susceptible 
to oxidative damage [114–116]. MC-I is often cited 
as the most likely site of an electron transport chain 
impairment [114, 117–119]. A human, postmortem 
study of different brain regions revealed a progressive 
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age-related decrease in MC-I activity, mainly in the 
hippocampus and frontal cortex [30]. In nonhuman 
primates, ATP synthesis capacity and pyruvate dehy-
drogenase activity were decreased in the putamen 
of old compared with young animals [120]. In mice 
[121, 122] and rats [119], the functional impairment 
of MC-I activity was also evident in the brain of old 
compared with young animals. A strong positive cor-
relation was demonstrated between decreased MC-I 
functionality and increased ROS production [119]. 
Antioxidant defensive failures were coupled with 
decreases in MC-I, MC-IV, and ATP synthase activ-
ity, leading to a reduction in ATP production [123, 
124]. Our study supports the concept that aging influ-
ences the expression of proteins in MC-I, MC-II, and 
MC-III (Fig. 4) in mouse cortical MVs. Moreover, the 
expression of proteins involved in MC-IV and MC-V 
(ATP synthase) was also significantly decreased in 
old mice MVs (Fig. 5 and 6).

Basement membrane during aging

The BM, an extracellular matrix, provides additional 
structural support to the BBB. The BM is composed 
of collagen, which provides structural integrity and 
flexibility. Laminin combines with type IV collagen 
to provide a mesh like framework for binding other 
proteins such as nidogen, which stabilize the BM as it 
binds to and bridges laminin, collagen, and perlecan, 
as well as provides for charge-dependent filtration and 
signal transduction. Type IV collagen subunits, clas-
sical fibrillar collagens, appear to be the predominant 
subtype in the MV BM, but the other subtypes are 
important in providing structural support. BM com-
position and structure is tissue‐specific and dynamic 
[125] and undergoes compositional and structural 
changes with aging [126, 127], including the cerebro-
vascular BM [128]. Our results indicate that consid-
erable rearrangements of the BM, especially in col-
lagen subtypes, occur during aging. For example, 
the relative abundance of type IV collagen subtypes 
shows a substantial decrease starting in middle age 
and continuing in old age, while collagen subtype 
1A1, a fibrillar collagen, shows increases with aging. 
Additionally, BM zone collagens such as collagens 
XV and XVIII, and FACIT-like/short chain collagens 
such as collagen 12A1, show increases with aging. 
Thus, a shift from longer to shorter collagens appears 
to occur with aging. Collagen 6, another shorter 

collagen, appears to undergo subunit substitution 
as collagen 6A1 decreases, while 6A2 increases. A 
decrease in many but not all of the laminin subtypes 
and perlecan is consistent with a decrease in colla-
gen 4. We speculate that the BM in old mice is not as 
tightly woven, is more permeable, and is less flexible 
than in younger mice MVs.

Blood–brain barrier disruption in the aging brain

BBB breakdown is an emerging biomarker in nor-
mal aging [129, 130]. Increases in oxidative stress, 
and the decreased stability of mRNA and/or proteins, 
declining ATP production, and changing BM proteins 
lead to altered BBB integrity in aging brain. Ung-
vari and colleagues reported that aging aggravated 
obesity-induced brain microvascular damage and 
BBB disruption in the mouse hippocampus [131]. In 
aging, oxidative stress induces cerebral endothelial 
cells to produce TNF-α that trigger the degradation 
of the BM, and TJ-proteins, which, in turn, results in 
BBB disruption and an increase in BBB permeabil-
ity [132–134]. Inhibition of the glycolytic enzyme, 
GAPDH, results in higher BBB permeability and bar-
rier dysfunction [103]; the same effect is provoked by 
overproduction of ROS in endothelial mitochondria 
[104]. In our discovery-based proteomics study, we 
also identified that expression of TJ-proteins is sig-
nificantly decreased in cortical MVs of old mice indi-
cating the probable disruption of BBB in aging brain 
(unpublished data).

Conclusions

The results of our study support the concept that 
reduced ROS scavenging ability and mRNA/protein 
stability are early, precipitating events leading to 
energy failure and BM disruptions, and which subse-
quently lead to adverse changes in proteins support-
ing ATP production by glycolysis and OXPHOS and 
structural integrity of the BBB-supporting BM. Thus, 
the results indicate that detrimental effects of normal 
aging occur as early as 12–14  months in mice and 
thereby provide support for the view that therapies, 
especially in vulnerable individuals, should begin in 
mid-life. While we are not yet able to define with cer-
tainty the specific critical events that lead to a com-
promised and vulnerable brain microvasculature, our 
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results indicate likely targets for further investigation 
which we expect will lead to novel therapies to pro-
tect not only the microvasculature but also the brain 
parenchyma.
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