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Abstract: Bacillus coagulans SNZ 1969 (B. coagulans SNZ 1969) is a spore-forming bacterium reported
to be effective in attenuating constipation. However, there is no study on whether B. coagulans SNZ
1969 could improve constipation through mucin secretion and changes in intestinal hormones. To
address this knowledge gap, rats were orally administrated with various treatments for four weeks.
The normal control (NOR) group received saline only. There were four constipation-induced groups.
The LOP group received only loperamide (LOP), a constipation-inducing agent. The BIS group
received both LOP and Bisacodyl (BIS, a constipation treatment agent). The SNZ-L group received
both LOP and B. coagulans SNZ 1969 at 1 × 108 CFU/day. The SNZ-H group received LOP and B.
coagulans SNZ 1969 at 1 × 1010 CFU/day. As indicators of constipation improvement, fecal pellet
weight, fecal water content, gastrointestinal transit time, and intestinal motility were measured.
Mucus secretion in the colon was determined by histological colon analysis and mucin-related gene
expressions. Gastrointestinal (GI) hormones were also measured. SNZ-L and SNZ-H groups showed
significantly increased fecal weights, fecal water contents, and intestinal motility than the LOP group.
SNZ-L and SNZ-H groups also showed higher secretion of mucin in the colon and mRNA expression
levels of Mucin 2 and Aquaporin 8 than the LOP group. The SNZ-H group showed significantly
increased substance P but significantly decreased somatostatin and vasoactive intestinal peptide than
the LOP group. The results of this study suggest that B. coagulans SNZ 1969 intake could attenuate
constipation through mucin secretion and alteration of GI hormones.

Keywords: Bacillus coagulans; probiotics; constipation; bowel movement; mucin; gastrointestinal hor-
mone

1. Introduction

Constipation is a symptom in which bowel movements are less frequent (usually
fewer than three times a week), and stools are hard, making it difficult to pass through
the intestine [1]. In modern society, the number of people with constipation symptoms
is increasing due to various environmental, genetic, social, and economic reasons [2].
Constipation can be alleviated by increasing the intake of sufficient fiber. However, dietary
fiber absorbs water in the large intestine and increases the volume of the abdomen, causing
discomfort such as bloating [3,4]. Long-term use of constipation medications such as
osmotic laxatives or stimulant laxatives may cause abdominal distension and diarrhea with
various complications [5].

As a functional food, probiotics have recently received attention for gut health [5].
Probiotics are defined as “living microorganisms that, when administered in appropriate
doses, confer a health benefit on the host” [6]. The microorganisms mostly used as probiotics
belong to the families of Lactobacillus and Bifidobacterium [7]. Among the Bacillus species,
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Bacillus coagulans SNZ 1969 is a lactic acid-producing bacteria. It is a rod-shaped, weakly
acidic, gram-positive, and spore-forming bacterium [8]. Spore-forming Bacillus species
have the advantage of surviving in the intestine and passing through the intestinal tract
due to their resistance to high heat and acidic conditions [9]. B. coagulans SNZ 1969 was
originally isolated in Japan in 1949 from green malt [10]. B. coagulans is also an economically
important species that is frequently involved in the production of lactic acid, coagulin,
and other thermostable enzymes [11]. B. coagulans has been stated as safe for human
consumption by the US Food and Drug Administration (FDA) and the European Union
Food Safety Authority (EFSA). It is on the list of Generally Recognized As Safe (GRAS) and
Qualified Presumption of Safety (QPS) [12,13].

Potential mechanisms of B. coagulans for attenuating constipation include changes in
gut microbiota, decreased pH due to increased production of short-chain fatty acids, and
improved intestine motility [14–22]. However, as a mechanism for preventing constipation
by B. coagulans SNZ 1969, it is not known whether intestinal motility is related to alterations
of mucin secretion and/or GI hormones. Therefore, the purpose of this study was to
determine how B. coagulans SNZ 1969 could improve intestinal motility and its action
mechanism in an animal model.

2. Materials and Methods
2.1. Experimental Design

Forty-eight five-week-old male Sprague Dawley rats were purchased from Dooyeol
biotech (Seoul, Korea). These experimental animals were fed AIN-93G (Dooyeol biotech,
Seoul, Korea) and acclimatized to the laboratory environment for one week. Each rat was
housed in a separate clean cage with a temperature of 22 ± 1 ◦C, a humidity of 60 ± 5%,
and a light/dark cycle of 12 h/12 h. After one week, the body weight of each rat was
measured. Based on their body weights, rats were classified into five groups (eight animals
in each group) by a randomized block design.

Experimental groups included one normal control group (NOR) and four consti-
pation groups induced by loperamide (LOP), including: (1) LOP group (receiving only
loperamide), (2) BIS group (receiving LOP + Bisacodyl (BIS, the constipation treatment
agent)), (3) SNZ-L group (receiving LOP + B.coagulans SNZ 1969 at 1 × 108 CFU/day), and
(4) SNZ-H group (receiving LOP + B.coagulans SNZ 1969 at 1 × 1010 CFU/day).

The experimental process is shown in Figure 1. B. coagulans 1969 was dissolved in
1 mL of saline and orally administered to both SNZ-L and SNZ-H groups once a day
for 4 weeks, respectively. NOR, LOP, and BIS groups were orally administered with 1
mL of physiological saline to create the same conditions as the SNZ groups. On the 18th
day of breeding, 6 mg/kg of loperamide (Sigma-Aldrich Co., St. Louis, MO, USA) was
orally administered to all groups (except for the NOR group) to induce constipation. After
30 min of loperamide administration, physiological saline was orally administered to
the LOP group. BIS group was orally administered with bisacodyl (Sigma-Aldrich Co.,
St. Louis, MO, USA) at a dose of 8 mg/kg for 11 days. Food and water were provided
ad libitum. The total experimental period was four weeks. The experiment was conducted
after obtaining approval from the Experimental Animal Steering Committee of Dankook
University (DKU-21-054).

2.2. Measurements of Body Weight, Food Intake, and Dietary Efficiency Ratio

The body weight of each experimental animal was measured once a week at a fixed
time. The weight gain was calculated as the difference between the final body weight to the
initial body weight of the experimental animal. The food intake was measured twice a week
at a fixed time, calculated as the difference between the food supply and the remaining
amount. The food efficiency ratio (FER) was calculated by dividing the weight gain during
the four weeks by the total food intake during the same period.
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Figure 1. Experimental design. Experimental animals were five-week-old male SD rats. NOR:
Normal group; LOP: Loperamide treated group; BIS: Loperamide and Bisacodyl 8 mg/kg treated
group; SNZ-L: Loperamide and B. coagulans SNZ 1969 at 1 × 108 CFU/day treated group; SNZ-H:
Loperamide and B. coagulans SNZ 1969 at 1 × 1010 CFU/day treated group.

2.3. Collection of Samples

After experimental animals fasted for 24 h, 1 mL (60 mg/mL in 0.9% NaCl) of carmine
red (Sigma-Aldrich Co., St. Louis, MO, USA) was orally administered to all groups to mea-
sure intestinal mobility. After 30 min, animals were anesthetized using a CO2 chamber and
sacrificed. After performing a laparotomy for experimental animals, blood was collected
from the abdominal aorta. The collected blood was placed in a tube containing heparin
(Bacton Dickinson, Franklin Lakes, NJ, USA) and centrifuged (Gyrozen, Deajeon, Korea)
at 3000 rpm for 15 min at 4 ◦C. The plasma was then collected and stored in a −70 ◦C
deep freezer for later analysis. After blood collection, the small intestine was collected to
measure intestinal motility, and the large intestine was used for histological analysis. The
liver, kidney, epididymal fat, spleen, and thymus were removed. The blood around each
organ was removed using 0.9% NaCl solution (JW-pharma, Seoul, Korea). The weights of
organs were then measured.

2.4. Measurement of Fecal Pellet Weight and Water Content

On the 10th day of loperamide administration, fecal pellets were collected for 24 h and
weighed. The fecal pellet was dried in a 70 ◦C dry oven until the weight of the fecal pellet
was constant. The fecal water content was calculated based on the difference between wet
and dry fecal weights as follows:

Fecal water content (%) = 100 (wet weight − dry weight)/wet weight

2.5. Measurement of Gastrointestinal Transit Time

On the fourth day of induction of constipation, experimental animals were fasted
for 24 h, and then an AIN-93G diet mixed with 0.5% carmine red (Sigma-Aldrich Co., St.
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Louis, MO, USA), a marker for intestinal transit, was fed. After feeding the carmine red
mixed diet, whether red marks appeared in the stool at 30-min intervals was checked. The
difference between the start time of the carmine red mixed diet fed and the time when the
first red stool appeared was defined as the intestinal transit time.

2.6. Measurement of Intestinal Motility

To measure intestinal motility, animals were fasted for 24 h before the end of the
experiment. At the end of the experiment, 1 mL (60 mg/mL in 0.9% NaCl) of carmine red
(Sigma-Aldrich Co., St. Louis, MO, USA) was orally administered 30 min after loperamide
treatment. After 30 min, the experimental animals were sacrificed, gastrointestinal tracts
were removed, lengths of small intestines were measured, and lengths of movement of
carmine red from the stomach were measured. Intestinal motility (%) was calculated by
dividing the length of movement of carmine red from the stomach by the total length of
the small intestine (the length of the stomach and ileum) using the following formula:

Intestinal motility (%) = distance traveled by carmine red/total length of the small
intestine × 100

2.7. Measurement of Mucus Secretion in the Colon

(1) Histological analysis.
The colon tissue was fixed in 10% neutral buffered formalin solution (Sigma-Aldrich

Co., St. Louis, MO, USA) after dissecting the lumen and spreading to expose the mucosal
surface. The fixed tissue was embedded in paraffin according to the general tissue process-
ing method. The paraffin block was cut into sections with a thickness of about 4 µm using
a thin slicer. Sections were stained with Alcian blue stain (pH 2.5) (Abcam, Cambridge,
UK) and examined under an optical microscope (Olympus BX53, Tokyo, Japan) at X200
magnification.

(2) mRNA expression levels of Mucin 2 and Aquaporin 8.
For RNA isolation and purification, the colon tissue stored at −70 ◦C was homoge-

nized, and total mRNA was extracted using TRI reagent (Sigma-Aldrich Co., St. Louis, MO,
USA). mRNA expression levels of Mucin 2 and Aquaporin 8 were measured by real-time
polymerase chain reaction (RT-PCR) with the same method mentioned in the previous
study by the same authors [23]. Sequences of primers used in this study are listed in Table 1.
Glyceraldehydes-3-phosphate dehydrogenase (GAPDH) was used as a control indicator.

Table 1. Primer sequences of transcription factors used for real-time PCR analysis.

Gene (1) Primer Sequence (2)

GAPDH
Forward primer 5’-AGTGCCAGCCTCGTCTCATA-3’
Reverse primer 5’-ACCAGCTTCCCATTCTCAGC-3’

MUC2
Forward primer 5’-GGTGGCCTTCAAATCAGGTG-3’
Reverse primer 5’-AGGGTTTGAAGATGGAGAAGCTC-3’

AQP8
Forward primer 5’-CAGATATGTCTGGGGAGCAG-3’
Reverse primer 5’-GCCTAATGAGCAGTCCCACA-3’

(1) GAPDH: Glyceraldehydes-3-phosphate dehydrogenase; MUC2: mucin 2; AQP8: aquaporin 8. (2) T: Thymine;
A: Adenine; C: Cytosine; G: Guanine.

2.8. Gastrointestinal Hormones

Gastrointestinal hormones such as gastrin (Gas), substance P (SP), cholecystokinin
(CCK), somatostatin (SS), and vasoactive intestinal peptide (VIP) in plasma were measured
using enzyme-linked immunosorbent assay (ELISA) kits (Cusabio, Houston, TX, USA)
according to the manufacturer’s instructions.

2.9. Statistical Analysis

All results of this experiment were analyzed using the IBM SPSS Statistics 26.0 (SPSS
Inc., Chicago, IL, USA) program. All values are expressed as mean ± standard error. Dun-
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can’s multiple range test was performed to verify the significance of differences between
groups at the significance level of p < 0.05 after analysis of variance (ANOVA).

3. Results
3.1. Body Weight, Dietary Intake, and Food Efficiency Ratio (FER)

The results of body weight, dietary intake, and dietary efficiency of experimental
animals are shown in Table 2. There was no significant difference in the initial body weight
among groups (p = 0.884). However, the final body weight was significantly (p < 0.05)
decreased in the BIS group compared to that in the NOR group. Both the LOP group and
SNZ-treated group showed a tendency to decrease in final weight compared to the NOR
group, although the decrease was not statistically significant (p = 0.071). There was no
significant difference in dietary intake (p = 0.442) or FER (p = 0.281) among groups.

Table 2. Initial and final body weight, total dietary intakes, and food efficiency ratio (FER).

Group Initial Weight (g) Final Weight (g) Weight Gain
(g/28 days)

Diet Intake
(g/28 days) FER (1)

NOR (2) 195.6 ± 5.9 NS,(3) 354.2 ± 5.0 (4),a,(5) 158.6 ± 7.6 NS 469.8 ± 11.3 NS 0.34 ± 0.01 NS

LOP 197.8 ± 4.9 342.8 ± 6.7 a,b 145.1 ± 6.9 453.5 ± 13.4 0.32 ± 0.01
BIS 192.4 ± 11.4 329.1 ± 4.5 b 136.7 ± 11.5 448.2 ± 10.1 0.30 ± 0.02

SNZ-L 198.4 ± 4.0 347.3 ± 5.0 a 148.9 ± 5.5 465.3 ± 9.4 0.32 ± 0.01
SNZ-H 202.0 ± 3.9 348.7 ± 3.9 a 146.7 ± 5.1 473.9 ± 11.0 0.31 ± 0.00

(1) FER: Body weight gain for 28 days (g)/food intake for 28 days (g). (2) NOR; Normal group, LOP; Loperamide
treated group, BIS; Loperamide and Bisacodyl 8 mg/kg treated group, SNZ-L; Loperamide and B. coagulans SNZ
1969 at 1 × 108 CFU/day treated group, SNZ-H; Loperamide and B. coagulans SNZ 1969 at 1 × 1010 CFU/day
treated group. (3), NS: Not significant. (4) Mean ± SE (n = 8). (5) Means with different letters within each row are
significantly different at p < 0.05 by Duncan’s multiple range test.

3.2. Various Organ Weights of Experimental Groups

The weights of liver and epididymal fat were significantly lower in the BIS group than
in the NOR group (Table 3, p < 0.05). There was no significant difference in the weight of
the kidney (p = 0.323), spleen (p = 0.609), or thymus (p = 0.594) among groups. B. coagulans
SNZ 1969 treated groups only showed a statistical difference in liver weight compared
to the NOR group. However, they showed no statistical significance in all organ weights
compared to the LOP group or the BIS group (p > 0.05).

Table 3. Weights of organs of experimental groups (g).

Group Liver Kidney Epididymal Fat Pad Spleen Thymus

NOR (1) 10.55 ± 0.33 (2),a,(3) 2.66 ± 0.08 NS,(4) 5.27 ± 0.287 a 0.72 ± 0.02 NS 1.61 ± 0.09 NS

LOP 9.90 ± 0.27 a,b 2.57 ± 0.08 5.29 ± 0.46 a 0.68 ± 0.01 1.67 ± 0.10
BIS 9.28 ± 0.32 b 2.51 ± 0.06 3.93 ± 0.26 b 0.70 ± 0.03 1.59 ± 0.06

SNZ-L 9.33 ± 0.24 b 2.58 ± 0.07 4.65 ± 0.29 a,b 0.70 ± 0.04 1.70 ± 0.09
SNZ-H 9.31 ± 0.37 b 2.45 ± 0.06 4.75 ± 0.51 a,b 0.74 ± 0.03 1.76 ± 0.06

(1) NOR: Normal group; LOP: Loperamide treated group; BIS: Loperamide and Bisacodyl 8 mg/kg treated
group; SNZ-L: Loperamide and B. coagulans SNZ 1969 1 × 108 CFU/day treated group; SNZ-H: Loperamide and
B. coagulans SNZ 1969 1 × 1010 CFU/day treated group. (2) Mean ± SE (n = 8). (3) Means with different letters
within each row are significantly different at p < 0.05 by Duncan’s multiple range test. (4), NS: Not significant.

3.3. Fecal Pellet Weight and Fecal Water Content

Results of fecal weights and fecal water contents of experimental animals induced
with loperamide are shown in Figure 2. Fecal weight showed a tendency to decrease in
the LOP group with a tendency to increase in the BIS group and SNZ groups compared
to that in the LOP group. The SNZ-H group had the highest fecal weight among all other
experimental groups. The SNZ-H group and LOP group showed a significant difference
in fecal weight (p < 0.05). The results of fecal water content were similar to those of fecal
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weight. The fecal water content showed a tendency to decrease in the LOP group and a
tendency to increase in the BIS group and SNZ groups. Fecal water contents in both SNZ-L
and SNZ-H groups were significantly (p < 0.05) increased compared to those of the LOP
group (Figure 2B).
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Figure 2. Effects of B. coagulans SNZ 1969 on fecal weight (A) and fecal water contents (B) in
loperamide-induced constipation rats. NOR: Normal group; LOP: Loperamide treated group; BIS:
Loperamide and Bisacodyl 8 mg/kg treated group; SNZ-L: Loperamide and B. coagulans SNZ 1969 at
1 × 108 CFU/day treated group; SNZ-H: Loperamide and B. coagulans SNZ 1969 at 1 × 1010 CFU/day
treated group. Results are presented as mean ± SE (n = 8). Means with the different letters above a
bar are significantly different at p < 0.05 by Duncan’s multiple range test.

3.4. Gastrointestinal Transit Time and Intestinal Motility
3.4.1. Gastrointestinal Transit Time

The intestinal transit time was defined as the difference between the start time of the
carmine red mixed diet fed and the time when the first red stool appeared. The results
of intestinal transit time on the fourth day after administration of loperamide are shown
in Figure 3A. The intestinal transit time was significantly increased in the LOP group
compared to that in the NOR group. The BIS group showed a significantly decreased
intestinal transit time compared to the LOP group (p < 0.05). In the case of the SNZ-H
group, the intestinal transit time showed a tendency to decrease compared to the LOP
group, although the decrease was not statistically significant (p > 0.05).
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3.4.2. Intestinal Motility

The movement distance of the dyeing reagent (as intestinal motility (%)) was confirmed
in the small intestine (Figure 3B). The intestinal motility in the LOP group was significantly
decreased compared to that in the NOR group. The intestinal motility in the BIS group
showed a tendency to increase compared to that in the LOP group, although such an
increase was statistically insignificant (p > 0.05). The group administered with B. coagulans
SNZ 1969 showed significantly increased intestinal motility compared to the LOP group
(p < 0.05). In the case of the SNZ-H group, intestinal motility was significantly increased as
much as that in the NOR group.

3.5. Secretion of Mucus in the Large Intestine
3.5.1. Histological Analysis

The results of the histological evaluation of the colon are shown in Figure 4. The
mucinous substance of the colon is shown in blue when stained in the NOR group. The
level of mucinous substance was decreased in the LOP group. On the other hand, in BIS
and the SNZ-treated groups, similar levels of mucinous substances as in the NOR group
were observed. In particular, the level of mucinous substances was significantly prominent
in the SNZ-H group.
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Figure 4. Effects of B. coagulans SNZ 1969 on mucous secretion capacity in loperamide-induced
constipation rats. (A) NOR: Normal group, (B) LOP: Loperamide treated group, (C) BIS: Loperamide
and Bisacodyl 8 mg/kg treated group, (D) SNZ-L: Loperamide and B. coagulans SNZ 1969 at 1 × 108

CFU/day treated group, (E) SNZ-H: Loperamide and B. coagulans SNZ 1969 at 1 × 1010 CFU/day
treated group. Magnification 200×. Scale bar = 50 µm.

3.5.2. mRNA Expression of Mucin 2 and Aquaporin 8

There were significant differences in the mRNA expression of Mucin 2 (MUC2) among
groups (NOR, LOP, BIS, and SNZ-L groups). In the SNZ-H group, the mRNA expression of
MUC2 was significantly increased compared to those in the other groups (Figure 5A) (all
p < 0.05). The mRNA expression of Aquaporin 8 (AQP8) was significantly decreased in the
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LOP group compared to that in the NOR group but significantly increased in both SNZ-L
and SNZ-H groups compared to that in the LOP group (Figure 5B) (all p < 0.05).
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Figure 5. Effects of B. coagulans SNZ 1969 on mRNA expression of MUC2 (A) and AQP8 (B) in the
transverse colon of loperamide-induced constipation rats. NOR: Normal group; LOP: Loperamide
treated group; BIS: Loperamide and Bisacodyl 8 mg/kg treated group; SNZ-L: Loperamide and B.
coagulans SNZ 1969 at 1 × 108 CFU/day treated group; SNZ-H: Loperamide and B. coagulans SNZ
1969 at 1 × 1010 CFU/day treated group. Total mRNA was isolated by Tri-reagent and used for cDNA
synthesis and real-time PCR. The GAPDH level was used for comparison as a loading control. The
results were analyzed by the ∆∆CT method, and statistical treatment was performed by repeating
three times independently. The results are presented as mean ± SE (n = 8). Means with different
letters above a bar are significantly different at p < 0.05 by Duncan’s multiple range test.

3.6. Measurement of Gastrointestinal Hormones

Concentrations of gastrin (Gas), substance P (SP), cholecystokinin (CCK), somatostatin
(SS), and vasoactive intestinal peptide (VIP) in plasma samples of experimental animals are
shown in Figure 6. The Gas level was significantly (p < 0.05) decreased in groups treated
either with loperamide alone or loperamide with BIS or loperamide with SNZ treatment
compared to that in the NOR group (Figure 6A). The SP level was significantly decreased
in the LOP group compared to that in the NOR group but was significantly increased
in the BIS group and the SNZ-H group compared to that in the LOP group (Figure 6B)
(all p < 0.05). There was no significant difference in CCK concentration among groups
(p = 0.415) (Figure 6C). The concentration of SS showed a significant decrease only in the
SNZ-H group compared to that in the LOP group (Figure 6D) (p < 0.05). VIP concentrations
in the BIS group, SNZ-L group, and SNZ-H group also tended to decrease compared to
that in the LOP group, but statistical significance was found only in the LOP group and
SNZ-H group (p < 0.05) (Figure 6E).
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induced constipation rats. NOR: Normal group, LOP: Loperamide treated group; BIS: Loperamide
and Bisacodyl 8 mg/kg treated group; SNZ-L: Loperamide and B. coagulans SNZ 1969 at 1 × 108

CFU/day treated group; SNZ-H: Loperamide and B. coagulans SNZ 1969 at 1 × 1010 CFU/day treated
group. Concentrations of (A) Gastrin, (B) Substance P, (C) Cholecystokinin, (D) Somatostatin, and
(E) Vasoactive intestinal peptide in plasma were estimated by ELISA. The results are presented as
mean ± SE (n = 8). Means with the different letters above a bar are significantly different at p < 0.05
by Duncan’s multiple range test. NS: not significant.

4. Discussion

One of the symptoms of constipation is the hardening of the stool due to a decrease in
water in the stool. A study on the correlation between decreased stool weight caused by
constipation and the water content of the stool has been reported [1]. Thus, fecal weight
and fecal water content were measured after two levels of B. coagulans SNZ 1969 were
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administered to constipated rats. In this study, fecal weight and fecal water content were
significantly decreased in the LOP group compared to the NOR group, confirming that
constipation was induced due to loperamide. Meanwhile, when B. coagulans SNZ 1969 was
ingested in the state of induced constipation, the fecal weight and fecal water content were
significantly increased compared to those in the LOP group, confirming that B. coagulans
SNZ 1969 was effective in attenuating constipation.

Proper concentrations of probiotics used in constipation-induced rats were 106–1010

colony-forming units (CFU) in different studies [14–17,23–25]. Accordingly, in this study,
108 as a low concentration and 1010 as a high concentration of B. coagulans SNZ 1969 were
orally administrated to constipation-induced rats. In this study, the high concentration of B.
coagulans SNZ 1969 (1 × 1010 CFU) intake had a greater effect in attenuating constipation
and intestinal motility than the low concentration. Previous studies have shown no death
or toxicity symptoms when animal models receive the highest dose level of 1.36 × 1011

CFU B. coagulans kg BW/day [24,25].
This study also measured intestinal transit time and intestinal motility. Together

with the above results, they could determine the interlocking effect of the large intestine
and small intestine on constipation. The intestinal transit time was measured as the total
motility of the gastrointestinal tract (including the small intestine and large intestine) by
the time for the red marker to first appear in the stool after feeding the carmine red mixed
diet. On the other hand, the intestinal mobility rate measures the degree of movement in
the small intestine. This study showed that feeding B. coagulans SNZ 1969 in constipated
rats shortened the passage time of stool in the large intestine compared to the LOP group,
although the difference was not statistically significant. Meanwhile, the intestinal motility
decreased by loperamide was increased significantly by SNZ in a dose-dependent manner.

Loperamide is used as an agent to set a constipated animal model. It could induce
constipation by inhibiting intestinal water secretion or by inhibiting intestinal smooth
muscle contraction, thus reducing bowel movements [26,27]. Therefore, contrary to the
mechanism of action of loperamide, the ingestion of B. coagulans SNZ 1969 improved
constipation by activating intestinal motility. During the experiment period, diet intake
and weight gain between SNZ groups and other experimental groups were not statistically
different, meaning that the improvement of constipation in the SNZ groups resulted from
the intake of B. coagulans SNZ1969. This result is consistent with previous studies showing
that various strains of probiotics are effective at preventing constipation [14–20]. Various
strains of B. coagulans can improve the imbalance of colonic microflora by enhancing
beneficial bacteria, Lactobacillus, reducing the harmful bacteria Clostridium, and further
increasing the peristalsis of the colon, thereby attenuating constipation [15–17]. Some
clinical studies have also confirmed that the intake of B. coagulans SNZ 1969 can improve
intestinal motility and microbial alterations [18]. B. coagulans can produce lactic acid and
short-chain fatty acids, which can reduce the pH of the colon, strengthen peristalsis, reduce
colonic transit time, and further improve defecation frequency, fecal volume, and fecal
characteristics [19–21]. Another clinical study by Maity et al. [28] also reported that the
intake of B. coagulans LBSC can improve intestinal microbiota in irritable bowel syndrome
subjects.

Next, this study investigated whether the constipation improvement effect of B. co-
agulans SNZ 1969 was related to changes in mucin secretion and GI hormones known to
affect intestinal motility. In histological examination, the group with B. coagulans treatment
showed more mucin secretion in the colon of rats compared to the LOP group. Consistent
with those results, expression levels of mucin-related genes MUC2 and AQP8 were also
increased after B. coagulans treatment. Meanwhile, all mucin-related indices were decreased
in the LOP group. The mucus can lubricate fecal flow, making it easier to defecate [29].
Studies have reported that a decreased thickness of the mucus in the large intestine can
interfere with intestinal motility when loperamide is administered to rats, which can re-
sult in worsened constipation [30,31]. A clinical study on chronic constipation has also
reported that the supplementation of a mucus stimulant can result in profoundly increased
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mucin and viscosity, which, in turn, can accelerate gastrointestinal transit and evacuation
of non-digestible food components in feces [32]. Consistent with the studies described
above, this study also confirmed that the intake of B. coagulans SNZ 1969 could relieve
constipation symptoms by increasing mucin secretion, maintaining intestinal lubricity, and
further increasing intestinal motility.

In this study, among the five gastrointestinal (GI) hormones, Substance P (SP) and an
indicator of gastrointestinal peristalsis were significantly increased, whereas somatostatin
(SS) and Vasoactive intestinal peptide (VIP) levels were decreased after treatment with
a high concentration of B. coagulans SNZ 1969 compared to loperamide treatment. SP is
an excitatory peptide neurotransmitter that can stimulate bowel movements and relieve
constipation. However, SS and VIP are inhibitory peptide neurotransmitters that can
inhibit the contraction of the gastrointestinal tract and intestinal motility [33]. Studies
have reported that GI hormones such as motilin (MTL), cholecystokinin (CCK), gastrin
(Gas), and SP are significantly decreased while SS and VIP are increased in constipation-
induced rats [34–37]. Altered GI hormones in slow colonic transit constipation patients
play important roles in the regulation of GI motility [38]. A study on treatment with B.
adolescentis, a probiotic, significantly increased levels of MTL, Gas, and SP but decreased
levels of SS and VIP compared with constipation-induced rats, which stimulated peristalsis
and transport of feces, thus attenuating constipation [37]. The result of this study was
consistent with the above studies, suggesting that changes in GI hormones, especially
SP, SS, and VIP, after supplementation of B. coagulans SNZ 1969 relieved constipation by
enhancing intestinal motility. One thing that needs to be considered is that among the five
hormones investigated in this study, only three showed statistical significance between
probiotic treatment and loperamide treatment. Thus, whether the change of GI hormones
is an important factor for constipation improvement by B. coagulans SNZ 1969 remains to
be clarified.

5. Conclusions

In this study, the effect of B. coagulans SNZ 1969 administration in attenuating intesti-
nal function was evaluated in an animal model of loperamide-induced constipation. B.
coagulans SNZ 1969 increased fecal weights and fecal water contents, ultimately increasing
intestinal motility. Furthermore, the present study suggests that B. coagulans SNZ 1969 can
enhance intestinal motility by regulating mucin secretion and GI hormones such as SP, SS,
and VIP. The results of this study suggest that B. coagulans SNZ 1969 intake might be effec-
tive in attenuating constipation by enhancing mucin secretion and GI hormone alterations.
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