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ensemble-learning framework

Phasit Charoenkwan,1 Nalini Schaduangrat,2 Pietro Lio’,3 Mohammad Ali Moni,4 Watshara Shoombuatong,2,*

and Balachandran Manavalan5,6,*

SUMMARY

Discovery of potential drugs requires rapid and precise identification of drug tar-
gets. Although traditional experimental methodologies can accurately identify
drug targets, they are time-consuming and inappropriate for high-throughput
screening. Computational approaches based onmachine learning (ML) algorithms
can expedite the prediction of druggable proteins; however, the performance of
the existing computational methods remains unsatisfactory. This study proposes
a computational tool, SPIDER, to enhance the accurate prediction of druggable
proteins. SPIDER employs various feature descriptors pertaining to several as-
pects, including physicochemical properties, compositional information, and
composition-transition-distribution information, coupled with well-known ML al-
gorithms to facilitate the construction of the final meta-predictor. The experi-
mental results showed that SPIDER enabled more precise and robust prediction
of druggable proteins than the baseline models and current existing methods
in terms of the independent test dataset. An online web server was established
and made freely available online.

INTRODUCTION

A druggable protein refers to a protein that can bind to small drug-like molecules with a high affinity and

produce desirable therapeutic effects (Liu and Altman, 2014). Druggable proteins are usually members of

large protein families that have been successfully identified as drug targets (Owens, 2007). Failure of pro-

jects in the drug discovery field is usually due to the target being undruggable, as estimated in approxi-

mately 60% of all cases (Sakharkar et al., 2007). As such, the druggability of a protein is crucial for the pro-

gression of a drug discovery project, wherein the accurate identification of drug targets is necessary

(Overington et al., 2006). Experimental methods require the analysis of the three-dimensional structure

of a protein, which results in a long development cycle (Sakharkar et al., 2007). Traditional experimental

methods can precisely identify the drug targets; however, these methods are laborious and challenging

for high-throughput applications. Computational methods based solely on the primary sequences of drugs

can complement experimental methods to expedite the characterization and prediction of druggable pro-

teins. Owing to the vast number of novel proteins generated via next-generation sequencing, the possibil-

ity of identifying candidate druggable proteins that have not yet been characterized is immense. Hence,

the precise and quick identification of druggable proteins from a vast pool of sequenced proteins is highly

desirable for the development of new drugs (Lindsay, 2005).

Drug target prediction is complemented by numerous computational tools. For instance, Dezs}o and Cec-

carelli developed a random forest (RF)-based method for selecting and prioritizing drug targets. In their

study, the predictive model was trained using different feature descriptors and achieved an area under

the receiver operating curve (AUC) of 0.89 in terms of the independent test dataset (Dezs}o and Ceccarelli,

2020). In addition, existing data-driven approaches can predict the drug similarity (Ma’ayan et al., 2014),

drug-target interactions (Fakhraei et al., 2014; Perlman et al., 2011), and similarities between drugs and po-

tential predicted targets (Wang et al., 2013). Detailed information on these data-driven approaches is avail-

able in the articles by Dezs}o and Ceccarelli (2020) and Gong et al. (2021). Several computational methods

based on machine learning (ML) techniques, such as DrugMiner (Jamali et al., 2016), Sun’s method (Sun

et al., 2018), GA-bagging-SVM (Lin et al., 2019), DrugHybrid_BS (Gong et al., 2021), Yu’s method
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(Yu et al., 2022), and XGB-DrugPred (Sikander et al., 2022), have been designed for the in silico prediction of

druggable proteins based on their protein sequence information, as summarized in Table 1.

In 2016, Jamali et al. developed DrugMiner (Jamali et al., 2016), the first computational method in this field,

based on their own dataset comprising 1224 druggable and 1319 non-druggable proteins. DrugMiner was

created using a neural network algorithm in conjunction with various types of feature descriptors. Further-

more, Lin et al. created a GA-bagging-SVM (Lin et al., 2019) by integrating various support vector machine

(SVM)-based classifiers and a genetic algorithm (GA) through the bagging ensemble learning strategy. In

the GA-bagging-SVM, Lin et al. employed three feature encodings to represent the druggable proteins,

dipeptide composition (DPC), pseudo amino acid composition (PAAC), and reduced sequences (RS), which

encompass the secondary structure, DHP, acidity, polarity, and charge (referred to herein as RSsecond,

RSDHP, RSacid, RSpolar, and RScharge, respectively). Recently, Gong et al. (2021) developed

DrugHybrid_BS, a bagging ensemble learning model combined with monoDiKGap, cross-covariance,

and grouped amino acid composition. DrugHybrid_BS can provide a reasonably high predictive perfor-

mance with an accuracy (ACC) of 0.970 and an AUC of 0.992. Recently, Yu et al. (2022) created hybrid con-

volutional recurrent neural networks (CNN-RNNs), which utilized both dictionary and sequence encoding

schemes to enhance the prediction performance. Yu et al. first established an independent test dataset,

which contained 224 druggable and 237 non-druggable proteins. This method provided an ACC of

0.898 and a Matthew’s correlation coefficient (MCC) of 0.799 for the independent test dataset.

All aforementioned methods have facilitated the identification of druggable proteins and promoted the

progress in this field. However, certain concerns still need to be addressed. First, most of the existing

methods, except Yu’s method (Yu et al., 2022), were not performed on an independent test dataset;

thus, their prediction performance may fail in terms of generalizability. Second, there is no comprehensive

analysis or evaluation of conventional feature encodings and ML algorithms for druggable proteins. Third,

all existing methods are considered as black-box models; as such, it is difficult to provide a straightforward

interpretation of the functional mechanisms of druggable proteins. Finally, all existing methods, except

that of DrugMiner (Jamali et al., 2016), were not deployed as web servers. Therefore, they can only be

used by experimental scientists.

Considering the above-mentioned limitations, herein, a new computational tool, named SPIDER (Stacked

PredIctor of DruggablE pRoteins), is presented to improve the prediction accuracy of druggable proteins

and enhance the most important features contributing to druggable protein prediction (see Figure 1). The

significance and major advantages of SPIDER are as follows: (i) SPIDER represents the first stacked

Table 1. Summary of existing methods and tools for prediction of druggable proteins

Method (Year) Classifiera Featuresb
Evaluation

strategyc
Web server

availability

DrugMiner (2016) (Jamali et al., 2016) NN AAC, DPC, PCP 5CV Yes

Sun’s method (2018) (Sun et al., 2018) NN CTD 5CV/IND No

GA-Bagging-SVM (2019)

(Lin et al., 2019)

SVM DPC, RC, PAAC 5CV No

DrugHybrid_BS (2021)

(Gong et al., 2021)

SVM CC, GAAC, monoDIKgap 5CV No

Yu’s method (2022) (Yu et al., 2022) CNN-RNN Dictionary, DPC, TPC, CTD 5CV/IND No

XGB-;DrugPred (2022)

(Sikander et al., 2022)

XGB GDPC, S-PseAAC, RAAA 10CV No

SPIDER (This study) SVM AAC, APAAC, DPC, CTD,

PAAC, RC

10CV/IND Yes

aCNN-RNN: hybrid model integrating convolutional recurrent neural networks and deep neural networks, NN: neural net-

works, SVM: support vector machine.
bAAC: amino acid composition, APAAC: amphiphilic pseudo-amino acid composition, CC: Cross Covariance, CTD:

Composition-Transition-Distribution, DPC: dipeptide composition, DPS: dipeptide propensity score; GAAC: grouped amino

acid composition, PCP: physicochemical properties, PACC: pseudo amino acid composition, TPC: tripeptide composition.
c5CV: 5-fold cross-validation test, 10CV: 10-fold cross-validation test IND: independent test.
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ensemble learning approach proposed for druggable protein prediction. Specifically, SPIDER was trained

and constructed by integrating m = 10 selected ML classifiers to facilitate the stable and accurate predic-

tion of druggable proteins; (ii) we comprehensively investigated and assessed the predictive ability of

various types of feature encodings coupled with popular ML algorithms in the prediction of druggable pro-

teins. SPIDER was found to be more effective and outperformed several ML classifiers and existing

methods for this prediction problem in terms of an independent test dataset; (iii) we employed an inter-

pretable Shapley Additive exPlanations (SHAP) method to shed light on the impact of each feature on

the output of SPIDER. Finally, to facilitate community-wide efforts in the prediction of druggable proteins,

an online web server based on SPIDER was created and is easily accessible at http://pmlabstack.

pythonanywhere.com/SPIDER.

RESULTS AND DISCUSSION

Performance of different feature-encoding schemes and ML algorithms

In this study, we comprehensively analyzed and assessed the predictive ability of various baseline models

trained with ten feature encodings and six ML algorithms to distinguish druggable proteins from non-drug-

gable ones. Comprehensive information regarding the feature encodings and ML algorithms is presented

in Table 2 and S1. Both 10-fold cross-validation and independent tests were implemented on the training

and independent test datasets to assess the performance of each baseline model, as summarized in Fig-

ure 2 and Tables S2–S5. As described in the SPIDER framework section, the baseline model with the highest

MCC in the training dataset is regarded as the most efficient.

To analyze the overall effect of each feature encoding on the prediction of druggable proteins, we

computed the average cross-validation performance for each feature encoding over six different ML algo-

rithms. Among the ten feature encodings, the top five feature encodings comprising the highest perfor-

mance corresponded to RSpolar, RSDHP, RSsecond, RSacid, and RScharge, with average MCC values of

0.727, 0.721, 0.716, 0.713, and 0.712, respectively (Table S4). Similarly, the top-three feature ML algorithms

with the highest performance contained SVM, RF, and extremely randomized trees (ET), with correspond-

ing average MCC values of 0.762, 0.747, and 0.743, respectively (Table S5). Interestingly, the SVM, RF, and

Figure 1. Schematic flowchart of the development of the SPIDER

There are four major steps, including dataset construction, feature engineering, new feature generation, and meta-predictor development.
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ET models developed using RSpolar, RScharge, and RSpolar achieved the highest MCC values of 0.796,

0.778, and 0.769, respectively. This observation indicates that the feature group of RS could be more bene-

ficial for druggable protein prediction. Among the 60 baseline models, the highest MCC of 0.796 was

achieved by the SVM-RSpolar model, while the second and third highest MCC values of 0.792 and 0.780

were achieved by the SVM-RSDHP and SVM-Rsecond models, respectively. This indicated that the SVM-

RSpolar model could be considered the most efficient one for the prediction of druggable proteins.

Regarding the independent test results, the best-performing model provided an MCC of 0.770, an ACC

of 0.883, and an AUC of 0.936. In contrast, the highest independent MCC of 0.808 was obtained using

the PLS-AAC model. Overall, our comprehensive analysis suggests that single-feature-based models

might fail in terms of generalizability and stability in this prediction problem. As such, we applied a stacked

ensemble learning methodology to generate a model with the strongest stability and generalization ability

in terms of both cross-validation and independent tests.

Construction of SPIDER

Next, we developed an ensemble model that integrates several ML classifiers using the stacking approach.

To this end, we employed both 60-D andm-D feature vectors to developmSVMpredictors. As described in

the SPIDER framework section, the GA in combination with the self-assessment-report (GA-SAR) approach

was employed to optimize the 60-D feature vector by selecting m informative probabilistic features (PFs).

After applying the GA-SAR approach, the experimental results indicated that the best number of informa-

tive PFs was m = 10. Specifically, m = 10 informative PFs were derived from ten baseline models, namely

SVM-AAC, LR-DPC, ET-CTD, RF-PAAC, LR-APAAC, SVM-RSacid, SVM-RSpolar, LR-RSsecond, PLS-

RScharge, and ET-RSDHP.

Table 3 provides information pertaining to the performance evaluation of the two new feature vectors. As

shown in Table 3, the 10-D feature vector (referred to herein as the optimal feature vector) was found to

provide an enhancement, as judged by ACC, MCC, sensitivity (Sn), and specificity (Sp), not only in the

training dataset but also in the independent dataset. Remarkably, the ACC, MCC, and Sn of the optimal

feature vector in the independent test dataset were 0.907, 0.816, and 0.857, respectively, which were

1.74%, 3.37%, and 2.68% higher than the compared feature vectors, respectively. For convenience of dis-

cussion, we denote the mSVM predictor trained with the optimal feature vector as SPIDER. We also

compared the performance of SPIDER with that of a popular ensemble approach (voting strategy) in the

independent test dataset. As shown in Table S6, the ACC, MCC, Sn, and Sp of SPIDER outperformed

the voting strategy by 1.52%, 2.97%, 2.23%, and 0.84%, respectively.

Table 2. Summary of ten different sequence-based feature descriptors along with their corresponding description

and dimension

Order Descriptors Description Dimension Reference

1 AAC Frequency of 20 amino acids 20 (Charoenkwan et al.,

2021b, 2022)

2 APAAC Amphiphilic pseudo-amino acid composition 22 (Chou, 2001, 2005)

3 CTD Composition, transition, and distribution 273 (Li et al., 2006)

4 DPC Frequency of 400 dipeptides 400 (Chen et al., 2016;

Lin and Chen, 2011)

5 PAAC Pseudo amino acid composition 21 (Chou, 2001, 2005)

6 RSacid Reduced amino acid sequences according

to acidity

32 (Xu et al., 2017)

7 RScharge Reduced amino acid sequences according

to charge

50 (Xu et al., 2017)

8 RSDHP Reduced amino acid sequences according

to DHP

32 (Xu et al., 2017)

9 RSpolar Reduced amino acid sequences according

to polarity

32 (Xu et al., 2017)

10 RSsecond Reduced amino acid sequences according

to secondary structure

40 (Xu et al., 2017)
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Performance comparison between SPIDER and single-feature-based models

To elucidate the advantage of the stacking approach, we compared the performance of SPIDER with that of

single-feature-based models. Figure 2 shows the five top-ranked baseline models, as indicated by MCC—

SVM-RSpolar, SVM-RSDHP, SVM-RSsecond, SVM-AAC, and RF-RScharge—with corresponding MCC

values of 0.796, 0.792, 0.780, 0.779, and 0.778, respectively. Thus, the performance of SPIDER was evaluated

against the top five baseline models. The performance results are summarized in Figure 3 and Table 4. As

summarized in Table 4, SPIDER clearly outperformed the top five baseline models in the training dataset

and the independent dataset in terms of most of the performance metrics, with the exception of AUC. Spe-

cifically, SPIDER achieved enhanced performance in comparison to the best-performing baseline model

(SVM-RSpolar) in the independent dataset in terms of ACC (0.907 vs. 0.883), Sn (0.857 vs. 0.821), Sp

(0.954 vs. 0.941), and MCC (0.816 vs. 0.770). The above-mentioned results demonstrate that SPIDER
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Figure 2. Performance evaluations of top 30 baseline models

(A and B) Cross-validation ACC and MCC of top 30 baseline models.

(C and D) Independent test ACC and MCC of top 30 baseline models.

Table 3. Cross-validation results for the control and optimal model

Evaluation strategy Model Number of feature ACC Sn Sp MCC AUC

Cross-validation Control 60 0.909 0.888 0.929 0.819 0.955

Optimal 10 0.919 0.895 0.942 0.839 0.950

Independent test Control 60 0.889 0.830 0.945 0.783 0.934

Optimal 10 0.907 0.857 0.954 0.816 0.902
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achieved improved performance and stability compared with several single-feature-based models in both

the training and independent test datasets.

To further reveal the improved performance of SPIDER, the distribution of the 2D feature space from the

top three informative feature descriptors (RSpolar, RSDHP, and RSsecond), all features, the 60-D feature

vector, and the optimal feature vector were visualized using the t-distributed stochastic neighbor

embedding (t-SNE) (Van Der Maaten, 2014; Van der Maaten and Hinton, 2008) framework, wherein the

red and green dots indicate druggable and non-druggable proteins, respectively (Figure 4). As shown

in Figures 4A–4D, the red and green dots derived from the four t-SNE plots were mixed together, indi-

cating that these feature descriptors have limited discriminative power for identifying druggable pro-

teins. However, we noticed that the 60-D and optimal feature vectors showed a sharp distinction be-

tween the distribution of red and green dots (Figure 4F). Altogether, the stacking strategy used in

SPIDER seems to be an effective and useful approach for improving prediction performance and model

generalizability.

Performance comparison between SPIDER and state-of-the-art methods

Here, the performance of SPIDER was compared with that of state-of-the-art methods. Table 1 provides

details of various ML-based methods that have been designed based on sequence information, namely

DrugMiner (Jamali et al., 2016), Sun’s method (Sun et al., 2018), GA-Bagging-SVM (Lin et al., 2019),

DrugHybrid_BS (Gong et al., 2021), Yu’s method (Yu et al., 2022), and XGB-DrugPred (Sikander et al.,

A

C

B

D

Figure 3. Predictive performance of various models

Performance comparison of SPIDER with the top five baseline models on the training (A–B) and independent test (C–D) datasets. Prediction results of

SPIDER and the top five baseline models in terms of ACC, Sn, Sp, and MCC (A, C). ROC curves and AUC values of SPIDER and the top five baseline models

(B–D).
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2022), to determine the druggability of proteins. Among these existing methods, Yu’s method (Yu et al.,

2022) was the only one that was evaluated on both the training (1,224 druggable and 1,319 non-druggable

proteins) and independent test (224 druggable and 237 non-druggable proteins) datasets. To perform a

A

D

B

E

C

F

Figure 4. t-distributed stochastic neighbor embedding (t-SNE) distribution of positive and negative samples on the training dataset

(A) RSpolar, (B) RSDHP, (C) RSsecond, (D) All features, (E) 60-D feature vector, and (F) Optimal feature vector.

Table 4. Performance comparison of SPIDER and top five baseline models on the training and independent test

datasets

Evaluation strategy Method ACC Sn Sp MCC AUC

Cross-validation SPIDER 0.919 0.895 0.942 0.839 0.950

SVM-RSpolar 0.898 0.885 0.911 0.796 0.960

SVM-RSDHP 0.896 0.884 0.908 0.792 0.960

SVM-RSsecond 0.890 0.885 0.895 0.780 0.957

SVM-AAC 0.890 0.882 0.897 0.779 0.956

RF-Scharge 0.889 0.862 0.914 0.778 0.943

Independent test SPIDER 0.907 0.857 0.954 0.816 0.902

SVM-RSpolar 0.883 0.821 0.941 0.770 0.936

SVM-RSDHP 0.879 0.821 0.932 0.760 0.937

SVM-RSsecond 0.889 0.844 0.932 0.781 0.944

SVM-AAC 0.889 0.835 0.941 0.782 0.944

RF-Scharge 0.868 0.786 0.945 0.743 0.928
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comprehensive comparison, we compared the performance of SPIDER with that of Yu’s method. The re-

sults of the comparison of the two methods are listed in Table 5. As can be observed, SPIDER attained

the highest performance in terms of ACC, MCC, Sn, and F-values on the training dataset, which were

1.94%, 3.92%, 0.53%, and 1.80% higher than those obtained using Yu’s method, respectively. Furthermore,

the independent test results demonstrated that SPIDER achieved better performance, achieving an ACC of

0.907, Sn of 0.857, MCC of 0.816, and F-value of 0.899. Taken together, these results demonstrate that

SPIDER is an accurate prediction model with efficient generalization ability compared with the available

methods.

Mechanistic interpretation of SPIDER

As mentioned above, we applied the GA-SAR algorithm to select m important features to generate the

optimal feature vector. However, the relationship between these features remains unknown. To address

this problem, we used the SHAP framework not only to assess the value of each feature but also to shed

light on the output of the model, which plays a crucial role in many bioinformatic applications (Li et al.,

2021a, 2021b). As previously stated, SPIDER was constructed using a combination of ten selected baseline

models—SVM-AAC, LR-DPC, ET-CTD, RF-PAAC, LR-APAAC, SVM-RSacid, SVM-RSpolar, LR-RSsecond,

PLS-RScharge, and ET-RSDHP. SHAP positive and negative values indicate the prediction of druggable

and non-druggable proteins, respectively. As illustrated in Figure 5, the top five informative features

with the highest SHAP values were SVM-RSpolar, LR-DPC, LR-RSsecond, SVM-AAC, and PLS-RScharge.

Interestingly, most of the top five informative features (except PLS-RScharge) had positive SHAP values.

Taking SVM-RSpolar as an example, for a given uncharacterized protein sequence P, if the value of

SVM-RSpolar is very high, then P is predicted as a druggable protein; otherwise, P is predicted as a non-

druggable protein.

To further reveal the influence of the optimal feature vector on the functioning of SPIDER, the performance

of SPIDER was compared with that of a model lacking the optimal feature vector. Detailed comparison re-

sults of the two models on the training and independent test datasets are presented in Figure 6 and

Table 5. Performance comparison of SPIDER and the state-of-the-art method

Evaluation strategy Method ACC Sn MCC F-score PRE

Cross-validation Yu’s methoda 0.900 0.890 0.800 0.896 0.905

SPIDER 0.919 0.895 0.839 0.914 0.895

Independent test Yu’s methoda 0.898 0.848 0.799 0.889 0.936

SPIDER 0.907 0.857 0.816 0.899 0.857

aResults were reported from the work of Yu’s method (Yu et al., 2022).

Figure 5. Ten important features of SPIDER ranked by SHAP values

SHAP values represent the directionality of the ten important features, where positive and negative SHAP values

represent druggable protein and non-druggable protein predictions, respectively.
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Table S7. The comparison outcomes clearly indicated that SPIDER achieved an overall better performance

than the compared model with regard to all performance metrics, with the exception of AUC. Specifically,

the ACC, Sn, Sp, andMCC of SPIDER in the independent test dataset were 2.60%, 4.02%, 1.27%, and 5.05%

higher, respectively, than those of the model lacking the optimal feature vector. These results demonstrate

thatm = 10 selected informative PFs are vital in capturing the key information pertaining to druggable pro-

teins, thus contributing to the improvement in performance.

Utilization of the SPIDER webserver

Publicly accessible web servers are more beneficial for experimental researchers to identify their desired

samples rather than developing their own internal prediction models. Therefore, we developed an online

webserver for SPIDER, which is freely available at http://pmlabstack.pythonanywhere.com/SPIDER, to aid

the broader research community in the identification of druggable protein candidates from large-scale

proteins. In addition, we have provided stepwise instructions on the usage of the SPIDER webserver, which

can be accessed using the ‘‘About’’ tab of the webserver.

Conclusion

This study presents SPIDER, an innovative stacked ensemble learning framework established for the

precise prediction of druggable proteins. In SPIDER, we utilized ten distinctive feature descriptors

based on various features, including physicochemical properties, composition-transition-distribution

information, and compositional information. These feature descriptors, in conjunction with popular

ML algorithms, have been used to develop numerous baseline models. Ultimately, m = 10 selected

baseline models derived from the GA-SAR method were integrated to create the final meta-predictor in

this study. Comparative experimental results showed that SPIDER was more efficient for druggable protein

predictions compared to its baseline models in terms of cross-validation and independent tests. Moreover,

SPIDER achieved better performance than the existing method, Yu’s method, with an ACC of 0.907, Sn of

0.857, and MCC of 0.816, in terms of the independent test dataset. In addition, the SHAP algorithm was

applied to determine the impact of each baseline model on the output provided by SPIDER. Finally, to

aid highly efficient prediction of druggable proteins, we created an accessible webserver based on

SPIDER that is readily available at http://pmlabstack.pythonanywhere.com/SPIDER. We believe that

SPIDER will be a useful tool for the screening and identification of potential druggable proteins and to

expedite their application in the drug discovery and development process.

Limitations of the study

Overall, the computational tool proposed in this study could enable a more precise and robust prediction

of druggable proteins as compared to the current existing methods. In the meanwhile, we employed the

Figure 6. Predictive performance of various models

Performance comparison of SPIDER with the model without the optimal feature vector, as assessed by 10-fold cross-validation (A) and independent test (B).
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SHAP approach to elucidate the effect of each feature on the prediction of druggable proteins. However,

there is still ample room for improving the prediction performance. Recently, several computational frame-

works have been developed and reported, such as a flexible deep learning (DL)-based approach (Liang

et al., 2022), DL-based hybrid approach (Hasan et al., 2022; Xie et al., 2021), and multilayer ensemble

learning frameworks (Shoombuatong et al., 2022). In consideration of the effectiveness of these frame-

works, in the future, we plan on integrating the appropriate computational methodologies for further

enhancement of the prediction performance of druggable proteins.
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RESOURCE AVAILABILITY

Lead contact

Further information regarding the methods and the dataset should be directed to and will be fulfilled by

the lead contact, Professor Balachandran Manavalan (bala2022@skku.edu).

Materials availability

This study did not generate new reagents.

Data and code availability

All the dataset used in this study are available at http://pmlabstack.pythonanywhere.com/SPIDER. The

source code for the SPIDER has been deposited at https://github.com/plenoi/SPIDER. Any additional in-

formation required to reanalyze the data reported in this paper is available from the lead contact upon

request.

METHOD DETAILS

Benchmark datasets

We used the same training dataset derived from a study by Jamali et al. (2016) to generate and optimize our

proposed models. The dataset comprised 1,224 druggable and 1,319 non-druggable proteins, represent-

ing positive and negative samples, respectively. Specifically, compilation of the positive samples was per-

formed using the DrugBank database (Law et al., 2014), while Swiss-Prot was employed for the negative

samples using the methods described by Li et al. (Li and Lai, 2007) and Bakheet et al. (Bakheet and

Doig, 2009). Yu et al. (2022) recently established the first independent test dataset for this prediction prob-

lem. This independent test dataset contained 224 druggable and 237 non-druggable proteins. Additional

details regarding the construction of the training and independent test datasets can be found in the articles

by Jamali et al. (2016) and Yu et al. (2022), respectively. These datasets are available at http://pmlabstack.

pythonanywhere.com/dataset_SPIDER.

Feature engineering

To obtain key information on druggable proteins, we utilized ten different feature-encoding schemes

based on sequence information, namely PAAC, DPC, RSsecond, RSDHP, RSacid, RSpolar, RScharge, amino

acid composition (AAC), amphiphilic pseudo-amino acid composition (APAAC), and composition-transi-

tion-distribution (CTD), indicating different aspects, including physicochemical properties, composition-

transition-distribution information, and compositional information. The ten sequence-based feature en-

codings are sorted into three key groups as follows: (i) the first group consists of CTD-based features

(Charoenkwan et al., 2021b, 2022); (ii) the second group consists of composition-based features (AAC

and DPC (Rao et al., 2020; Wei et al., 2018)); and (iii) the third group consists of physicochemical prop-

erty-based features (APAAC, PAAC, RSsecond, RSDHP, RSacid, RSpolar, and RScharge (Lin et al., 2019;

Xu et al., 2017)). In this study, the aforementioned feature encodings were retrieved using the iFeature

package (Chen et al., 2018). Comprehensive information regarding the feature encoding is presented

in Table 2.

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

iFeature (Chen et al., 2018) https://github.com/Superzchen/iFeature/

Reduced Sequences (Lin et al., 2019) https://github.com/QUST-AIBBDRC/GA-Bagging-SVM

Python package Scikit-learn v0.24.1 (Pedregosa et al., 2011) https://scikit-learn.org/stable/

SPIDER This paper https://github.com/plenoi/SPIDER
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Feature selection based on GA-SAR

To enhance the predictive capability of the proposed models, we employed the GA-SAR approach to

determine the model parameters and optimize the selection of informative features. This method was

initially introduced by our group for the prediction of quorum-sensing peptides (Charoenkwan et al.,

2019). This feature selectionmethod has been successfully used in several bioinformatic applications (Char-

oenkwan et al., 2020, 2021a, 2021c, 2022). In brief, GA-SAR creates a profile that is employed to assess the

importance of a feature. Note that the most important feature shows the highest correlation between the

feature and output variable (Charoenkwan et al., 2019; Ho et al., 2004). In the GA-SAR algorithm, the chro-

mosome contains binary and parametric genes, which are created for two main purposes: feature selection

andML parameter optimization. For ease of discussion, Gene and Chromwere used to represent the genes

and chromosomes, respectively. Features with increased frequency are deemed significant for the predic-

tion of druggable proteins. The implementation of GA-SAR algorithm to identify important features in-

volves the following steps: (i) Randomly create 50 Chroms containing assigned values of binary Genes as

means to get the number of features (m) equal to the selected number; (ii) Evaluate the performance for

each Chrom in terms of the 10-fold cross-validation test; (iii) Construct a mating pool by performing a tour-

nament selection; (iv) Perform a 20-point crossover on the selected parents; (v) Identify the optimal feature

set by employing the SAR mutation operator; and (vi) Stop if the termination condition is reached; other-

wise go to Step (ii). Additional information regarding the GA-SAR approach is available in the article by

Charoenkwan et al. (2019).

SPIDER framework

In this study, we employed the stacking approach to establish SPIDER to improve the prediction of drug-

gable proteins. This approach represents an efficient learning technique based on the ensemble method,

which incorporates the individual abilities of various ML classifiers to create a single stable model (Cao

et al., 2018; Fu et al., 2020; Mishra et al., 2019; Wolpert, 1992). To date, various stacking-based computa-

tional approaches have achieved improved performance compared with their baseline models (Charoenk-

wan et al., 2021b, 2021c; Li et al., 2021a, 2021b; Qiang et al., 2020; Xie et al., 2021). In particular, the con-

struction process of the SPIDER includes three major steps, as summarized in Figure 1. Briefly, several

baseline models were created and used to generate PFs. Finally, informative PFs were selected and em-

ployed in meta-predictor construction. Further details of the SPIDER framework are provided in the

following paragraphs.

First, we created 60 baseline models developed using six different ML algorithms, SVM, RF, logistic regres-

sion (LR), k-nearest neighbor (KNN), ET, and partial least squares (PLS), in conjunction with ten widely used

feature encodings, CTD, AAC, DPC, APAAC, PAAC, RSsecond, RSDHP, RSacid, RSpolar, and RScharge.

We then systematically assessed the implementation of these six ML algorithms and ten feature encodings

in the prediction of druggable proteins using the training and independent test datasets. Notably, the

baseline model yielding the highest MCC in terms of the training dataset was deemed as the best-perform-

ing model. The Scikit-learn v0.24.1 package (Pedregosa et al., 2011) was utilized for the development and

optimization of all baseline models, and the search range is documented in Table S1.

As each baseline model provided probabilistic information, we used this as the second step. Specifically,

this information is the prediction confidence that the implied protein is druggable. Herein, the predicted

confidence was considered PF, where the value of PF ranged from 0 to 1. As a result, for a given protein

sequence P, we obtained 60 PFs generated by all 60 baseline models, which can be defined as follows:

P =
�
PFðM1; F1Þ;.:;PF

�
Mi; Fj

�
;.;PFðM6; F10ÞÞ

�T
(Equation 1)

where PðMi; FjÞ represents the PF generated by the baseline model trained using the ith ML algorithm

coupled with the jth feature descriptor. Finally, P is converted into a 60-dimensional (60-D) feature vector.

In the third step, we used the 60-D feature vector to construct the meta-predictor based on the SVM algo-

rithm (mSVM) using the Scikit-learn v0.24.1 package. To improve the performance of the mSVM predictor,

we employed a GA-SAR approach (Charoenkwan et al., 2019). This allowed us to determine m informative

PFs from 60 PFs, wherem is in the range from 5 to 20. Herein, Chrom consisted of n = 60 binary genes (bgi)

to select m informative PFs (m < n) and 3-bit genes to optimize the parameters of the mSVM predictor

(Table S1). If bgi = 1, the ith PF is used for the construction of the mSVM predictor; otherwise, the ith PF
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is omitted from the optimal feature vector. Finally, the feature vector that achieves the highest cross-vali-

dation MCC is deemed to be the ideal one and is applied for the final meta-predictor construction.

Performance evaluation

Seven widely used performance metrics, MCC, ACC, AUC, F-value, precision (PRE), Sn, and Sp, were

applied to the two-class prediction problem (Azadpour et al., 2014; Charoenkwan et al., 2021b) as follows:

ACC =
TP+TN

ðTP+TN+ FP+ FNÞ (Equation 2)

F � value = 23
TP

2TP+ FP3 FN
(Equation 3)

PRE =
TP

ðTP+ FPÞ (Equation 4)

Sn =
TP

ðTP+ FNÞ (Equation 5)

Sp =
TN

ðTN+ FPÞ (Equation 6)

MCC =
TP3TN � FP3 FN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTP+ FPÞðTP+ FNÞðTN+ FPÞðTN+ FNÞp (Equation 7)

Specifically, TP and TN represent the numbers of correctly predicted true druggable and true non-drug-

gable proteins, respectively. Furthermore, FP and FN indicate the number of non-druggable proteins

that are predicted to be druggable proteins and the number of druggable proteins that are predicted

to be non-druggable proteins, respectively (Dao et al., 2021a, 2021b; Lv et al., 2021a, 2021b; Wang

et al., 2021).
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