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Regio- and enantioselective remote hydroarylation
using a ligand-relay strategy
Yuli He 1, Jiawei Ma 1, Huayue Song1, Yao Zhang1, Yong Liang 1✉, You Wang 1✉ & Shaolin Zhu 1,2✉

The design of a single complicated chiral ligand to well-promote each step of an asymmetric

cascade reaction is sometimes a formidable challenge in transition metal catalysis. In this

work, a highly regio- and enantioselective Ni-catalysed migratory hydroarylation relay pro-

cess has been achieved with the combination of two simple ligands, one which accomplishes

chain-walking and the other causing asymmetric arylation. This formal asymmetric C(sp3)−H

arylation provides direct access to a wide range of structurally diverse chiral 1,1-diarylalkanes,

a structural unit found in a number of bioactive molecules. The value of this strategy was

further demonstrated by the Ni-catalysed migratory asymmetric 1,3-arylboration.
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The synergistic combination of olefin isomerization and
cross-coupling, nickel-catalysed1–3 migratory hydrofunction-
alization4–9 of olefins has emerged as a complementary and

versatile platform that can realize a wide variety of remote C(sp3)
−H functionalizations10–26. So far, much progress has been made in
the NiH-catalysed asymmetric ipso-hydrofunctionalization of
alkenes27–50. However, designing a chiral ligand for nickel that could
promote both chain-walking and subsequent regio- and enantiose-
lective reductive coupling at a remote position remains a formidable
challenge (Fig. 1a).

Overcoming the limitation of single metal catalysis [ML],
multimetallic catalysis [MALA & MBLB] provides a com-
plementary strategy that has been well exploited. The alternative
reaction using multiligands has remained largely underexplored.
Pioneering work in this area has shown that multiligand based
binary ligand complexes [MLALB] could be formed and are more
reactive catalysts51–53. A catalyst mixture [MLA & MLB] formed
by multiligands was also used by Buchwald et al.54 to broaden the
substrate scope of a system using a single catalyst [MLA]. Instead
of designing a complex ligand, another unique mode of

employing multiligands is to undergo multiligand relay catalysis
via dynamic ligand exchange in cases where a single ligand fails to
selectively or efficiently promote all the steps of the transforma-
tion. In this attractive but largely underexplored pathway, each
ligand is only required to promote partial steps of the catalytic
cycle. This concept was preliminarily explored by White’s group
in the Pd-catalysed non-asymmetric allylic oxidation system
while using stoichiometric amount of benzoquinone or DMSO as
another ligand for functionalization step55–57. Very recently, Fu
et al.58 and Mauleón et al.59 demonstrated that the exchange of
dynamic mutiligands with metals could be used to sequentially
promote different steps in Cu-catalysed relay reactions. At the
same time, our laboratory60 successfully introduced this concept
to the nickel-catalysed asymmetric migratory hydro-
functionalization process, wherein the entire catalytical cycle
could be subsequently promoted by an achiral chain-walking
ligand and a structurally simple chiral asymmetric coupling
ligand27–44 (Fig. 1b). Pursuing this theme, we hypothesized that
migratory asymmetric hydroarylation which consists of an achiral
ligand (L) promoting chain-walking and a chiral ligand (L*)

L: achiral chain-walking ligand    L*: chiral asymmetric coupling ligand

L*NiLNi
()n

FG

alkylmetal reagent
generated in situ

+

b Multiligand-relay catalysis: Solution for asymmetric remote hydrofunctionalization

c MLRC (L/L*): Asymmetric remote hydroarylation to access chiral 1,1-diarylalkanes

Multiligand-Relay Catalysis (L/L*)
MLRC

Ar'()n

H

L promoted
chain-walking

regioconvergent
enantioconvergent

ligand
exchange

L* promoted

LNiH reductive
elimination

asymmetric
coupling

Ar'()n

NiL

Ar'()n

NiIIIL*
Ar X

Ar'()n

Ar

Ar'()n+2

NiL*

L*NiLNi

aryl halideunrefined alkenes
isomerization enantioenriched

1,1-diarylalkane

a NiH catalyzed remote hydrofunctionalization: Stereochemistry is still a challenging issue

()n

unrefined alkenes

+

low rr or ee
coupling
partners

FG X L*Ni design of chiral L*
is challenging

H

X = I, Br

single L*

unrefined alkenes enantioenriched

()n

+

coupling
partners

FG X
H

asymmetric coupling

chain-walking

()n

FG

alkene

+

coupling
partners

FG X L*Ni
FG

well-exploited

asymmetric
hydrofunctionalization

Fig. 1 Design plan: Synergistic combination of a chain-walking ligand (L) and an asymmetric arylation ligand (L*) to access chiral 1,1-diarylalkanes.
a Stereochemistry in remote NiH catalysis is still a challenging issue. b Multiligand-relay catalysis as a solution for asymmetric remote
hydrofunctionalization. c Ni-catalysed multiligand-relay catalysis to access chiral 1,1-diarylalkanes.
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promoting asymmetric arylation at benzylic position61–65 could
be possible, leading to the facile synthesis of an enantioenriched
1,1-diarylalkane, a biologically active pharmacophore (Fig. 1c).

In this work, we describe a highly regio- and enantioselective
Ni-catalysed migratory hydroarylation relay process enabled by a
multiligand relay catalysis strategy. By synergistic combination of
a simple ligand for chain-walking and a known ligand for
asymmetric arylation, a wide variety of enantioenriched 1,1-dia-
rylalkanes can be rapidly obtained under mild conditions.

Results and discussion
Reaction design and optimization. Our initial investigation
focused on the enantioselective remote hydroarylation of 4-
phenyl-1-butene (1a) with 4-iodoanisole (2a) (Fig. 2). It was
found that NiCl2 ∙ glyme (glyme= ethylene glycol dimethyl ether)
and the synergistic combination of a chain-walking ligand (L, 2,9-
dimethyl-1,10-phenanthroline) and an asymmetric arylation

ligand (L*, (4 R,4′R)-1,1′-bis(3-(tert-butyl)-phenyl)-4,4′-di(heptan-
4-yl)-4,4′,5,5′-tetrahydro-1H,1′H-2,2′-biimidazole)31 with DMMS
(dimethoxymethylsilane) could afford the desired migratory pro-
duct 1-methoxy-4-(1-phenylbutyl)-benzene (3a) as a single
regioisomer in 84% isolated yield and with 95% enantiomeric
excess (ee) (entry 1). Control experiments revealed that these two
ligands are both essential for simultaneous control of the regio- and
stereochemistry, and poor regioselectivity was observed in the
absence of the chain-walking ligand (entries 2–4). Importantly,
lowering the loading of the chain-walking ligand to 0.4 mol% had
little impact on the overall performance (entry 5). Increasing the
chain-walking ligand loading and decreasing the arylation ligand
loading led however to a moderate decrease of both the yield
and the enantioselectivity (entry 6). An alternative chain-walking
ligand (L1) was found to be competent but less effective than L
(entry 7). Evaluation of arylation ligands revealed that L* provided
the highest ee (entry 1 vs. entries 8–10). Diminished yields were
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obtained when using other nickel sources (entry 11) or employing
other silanes (entry 12) or replacing K3PO4 ∙H2O as base (entry
13). The use of a single solvent led to either diminished yield (entry
14) or almost complete failure of the reaction (entry 15). Notably, a
slightly reduced yield was obtained when a less reactive aryl bro-
mide was used (entry 16).

Substrate scope. With the well-established conditions in hand,
the scope and generality of the reaction were evaluated. As illu-
strated in Fig. 3, a wide variety of aryl and heteroaryl iodides or
bromides are tolerated. In general, the less reactive aryl bromides
resulted in a slightly decreased yield (3a, 3b, 3f, 3h, 3k, and 3t).
The reaction proceeded well with both electron-rich (3b–3e) and
electron-withdrawing aryl halides (3f–3q). A variety of functional
groups are readily accommodated, including ethers (3a, 3e–3g, 3i,
and 3s), esters (3b, 3k), a Boc carbamate (3c), an amide (3d), a
trifluoromethyl group (3j), a nitrile (3l), an aryl fluoride (3m),
and an aryl chloride (3n). Notably, under these exceptionally mild
reaction conditions, sensitive functional groups such as aryl tri-
flate (3o) commonly used for subsequent complementary cross-
coupling, and readily reduced aldehydes (3p) and ketones (3q)
were all unaffected. Heterocycles such as indole (3r) and pyridine
(3s and 3t) are also competent coupling partners. However, o-
substituted (hetero)aryl halides gave lower yields under current
conditions.

We next explored the scope of alkenes (Fig. 4). As shown in
Fig. 4a, a wide range of terminal aliphatic alkenes bearing a
remote aryl (4b–4n, 4s, 4t) or heteroaryl (4o–4r) group undergo
asymmetric migratory hydroarylation smoothly, regardless of the
chain length between the C=C bond and the remote aryl group.
In general, a slightly increased loading of the chain-walking
ligand is beneficial for alkene substrates with a long chain (4m). A
variety of substituents on the remote aromatic ring, including
both electron-donating (4c–4e) and electron-withdrawing (4f–4l)
substituents, are all well-tolerated. Notably, the 1,1-disubstituted
alkene (4n) is also a suitable substrate, although the migratory
product was obtained in decreased yield. As shown in Fig. 4b,
unactivated internal alkenes are also suitable substrates (4u–4a’).
Both E (4y, 4z) and Z (4a’) alkenes, as well as E/Z mixtures
(4u–4x) were suitable substrates. In addition, a range of different
substituents at the other terminus of the alkyl chain, even with a
heteroatomic substituent (4x–4z), were all well-tolerated, and
arylation at benzylic position was still preferred.

Application. Benefiting from the chain-walking catalysis, iso-
meric mixtures of olefins could be used directly to produce the
enantioenriched product (4m) in a regioconvergent fashion
(Fig. 5a). The current multiple ligand catalysis could also be
applied to migratory difunctionalization of alkenes66–70. As
shown in Fig. 5b, a nickel-catalysed 1,3-arylboration reaction was
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carried out using a racemic ligand (L2)66 to promote NiBpin
insertion/chain-walking together with the asymmetric arylation
ligand (L*) which promotes asymmetric arylation. The desired
migratory chiral products (7a–7h) were obtained with high
regioselectivity and excellent ee.

Mechanistic investigation. A series of mechanistic experiments
were carried out to understand the relay process. As shown in
Fig. 6a, isomeric mixtures of olefins could be produced during
the reaction process, an observation that is consistent with a
fast chain-walking step. As shown in Fig. 6b, in the absence of
cross-coupling partner, control experiment revealed that the
alkene isomerization could also proceed smoothly with dual
ligands or with a single chain-walking ligand. These results
indicate that chain-walking precedes arylation without the
participation of cross-coupling partner. In contrast, only a very
small quantity of isomerized alkenes was observed while using
arylation ligand L* alone. This observation is consistent with
the conclusion that the chain-walking process is mainly pro-
moted by achiral chain-walking ligand L. To probe whether
hydronickellation is the enantio-determining step, isotopic
labelling experiments of a cyclic styrene (1b’) substrate were

carried out with deuteropinacolborane (Fig. 6c). If the migra-
tory insertion of NiD into styrene is the enantio-determining
step, a diastereomerically pure product (4b’-D) should be
obtained. However, a diastereomeric mixture was observed
with asymmetric arylation ligand (L*) alone or with dual
ligand (L/L*), and the diastereomeric ratio decreased while
increasing the amount of achiral chain-walking ligand L. This
observation indicates that the hydronickellation is not likely to
be the enantio-determining step.

To better understand the reaction mechanism, we conducted
a DFT study of the reaction pathways shown in Fig. 7 (see
Supplementary Data 1). Previous computational studies have
clarified that achiral Ni(II)H controls chain-walking process
and gives the desired internal alkylnickel(II)20,60, which
undergoes transmetallation with Ni(I)H to generate the
corresponding alkylnickel(I)60. Here we started from achiral
alkylnickel(I) INT1-a and investigated the asymmetric aryla-
tion process. The direct oxidative addition of INT1-a with aryl
iodide via TS1-a requires an activation free energy of 20.4 kcal/
mol. Alternatively, INT1-a can first exchange its achiral
bipyridine ligand with chiral bisimidazoline ligand to form
either INT1-R or INT1-S. Although this process is endergonic
by about 6 kcal/mol, the subsequent Ni(I)/Ni(III) oxidative
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additions involving chiral ligand via TS1-R and TS1-S are
much easier. The overall barrier for the formation of chiral
Ni(III) species INT2-R is 16.2 kcal/mol via TS1-R, which
is 4.2 kcal/mol lower than that for the oxidative addition
of achiral alkylnickel(I) via TS1-a (20.4 kcal/mol). For two
competing enantioselective transition states TS1-R and TS1-S,
there is a 1.8 kcal/mol preference toward (R)-intermediate,
corresponding to a 91% ee value of the final product at 298 K.
In TS1-R, a less sterically demanding phenyl is placed close to
the bulky isopropyl group of ligand, while in TS1-S, it is the
ethyl group that generates steric repulsions with the bulky
isopropyl group (highlighted in pink, Fig. 7). Meanwhile, the
unreacted INT1-S can be rapidly converted to INT1-R via a
reversible ligand exchange, transmetallation and alkene inser-
tion process (see Supplementary Fig. 5). After the irreversible
formation of chiral Ni(III) intermediate INT2-R, the
following reductive elimination via TS2-R to yield product is
very facile with a barrier of only 4.1 kcal/mol, which is
much lower than the possible homolysis via TS3-R62. There-
fore, the chiral bisimidazoline ligand controlled the Ni(I)/
Ni(III) oxidative addition with aryl iodide, which is the rate-

and enantioselectivity-determining step in the asymmetric
arylation.

In conclusion, by the combination of a chain-walking ligand
and an asymmetric arylation ligand used in nickel chemistry, we
have developed a highly enantioselective remote hydroarylation
protocol. This mild, general and attractive route allows rapid
access to an array of enantioenriched 1,1-diarylalkanes. Further
application of this multiligand relay catalysis to simplify the chiral
ligand design in nickel and other metal-catalysed multistep
asymmetric reactions are currently in progress.

Methods
General procedure (A) for the regio- and enantioselective C(sp3)−H aryla-
tion. In a nitrogen-filled glove box, to an oven-dried 8 mL screw-cap vial equipped
with a magnetic stir bar was added NiCl2·glyme (2.2 mg, 5.0 mol%), KF (23.2 mg,
2.0 equiv), L* (7.2 mg, 6.0 mol%), L (0.42 mg, 0.2 mL stock solution, 2.1 mg/mL in
toluene), anhydrous toluene (0.60 mL) and DMPU (0.20 mL). The mixture was
stirred for 15 min at rt, at which time 4-phenyl-1-butene (30 μL, 0.20 mmol),
4-iodoanisole (94.0 mg, 0.40 mmol) and DMMS (49.3 μL, 0.40 mmol) were added
to the resulting mixture in this order. The tube was sealed with a teflon-lined screw
cap, removed from the glove box and the reaction was stirred at rt (22 ~ 26 °C) for
up to 24 h (the mixture was stirred at 750 rpm, ensuring that the base was uni-
formly suspended). After the reaction was complete, the reaction mixture was
directly filtered through a short pad of silica gel (using EtOAc in petroleum ether)
to give the crude product. n-Dodecane (20 μL) was added as an internal standard
for GC analysis. The product was purified by chromatography on silica gel for each
substrate. The yields reported are the average of at least two experiments, unless
otherwise indicated. The enantiomeric excesses (% ee) were determined by HPLC
analysis using chiral stationary phases.
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b    Application of multiligand-relay catalysis (MLRC) in 1,3-arylboration reaction
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Fig. 5 Regioconvergent experiment and further application.
a Regioconvergent, enantioselective, and bench-top set up experiment.
b Application of multiligand-relay catalysis in 1,3-arylboration reaction.

b Olefin isomerization in the absense of aryl iodide
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a Tracing experiment
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c NiD experiment: NiD syn-hydrometallation is not the enantio-determining step
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Fig. 6 Tracing experiment, olefin isomerization experiment, and isotopic
labelling experiment. a Tracing experiment. b Olefin isomerization in the
absence of aryl iodide. c NiD experiment: NiD syn-hydrometallation is not
the enantio-determining step.
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