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Abstract 

Non-communicable diseases (NCDs) such as cardiovascular diseases, chronic respiratory diseases, cancers, diabe‑
tes, and mental health disorders pose a significant global health challenge, accounting for the majority of fatalities 
and disability-adjusted life years worldwide. These diseases arise from the complex interactions between genetic, 
behavioral, and environmental factors, necessitating a thorough understanding of these dynamics to identify effec‑
tive diagnostic strategies and interventions. Although recent advances in multi-omics technologies have greatly 
enhanced our ability to explore these interactions, several challenges remain. These challenges include the inherent 
complexity and heterogeneity of multi-omic datasets, limitations in analytical approaches, and severe underrepre‑
sentation of non-European genetic ancestries in most omics datasets, which restricts the generalizability of findings 
and exacerbates health disparities. This scoping review evaluates the global landscape of multi-omics data related 
to NCDs from 2000 to 2024, focusing on recent advancements in multi-omics data integration, translational applica‑
tions, and equity considerations. We highlight the need for standardized protocols, harmonized data-sharing policies, 
and advanced approaches such as artificial intelligence/machine learning to integrate multi-omics data and study 
gene-environment interactions. We also explore challenges and opportunities in translating insights from gene-
environment (GxE) research into precision medicine strategies. We underscore the potential of global multi-omics 
research in advancing our understanding of NCDs and enhancing patient outcomes across diverse and underserved 
populations, emphasizing the need for equity and fairness-centered research and strategic investments to build local 
capacities in underrepresented populations and regions.
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Introduction
Non-communicable diseases (NCDs), such as cardio-
vascular diseases, cancers, chronic  respiratory diseases, 
diabetes, mental health disorders, and other complex 
diseases, pose a significant and growing global health 
challenge [1]. Annually, NCDs account for 41 million 
deaths, constituting 60% of Disability Adjusted Life Years 
(DALYs), 81% of Years Lived with Disability (YLDs), and 
74% of all global fatalities [2, 21], making them the pri-
mary cause of disease burden and death worldwide [1]. 
For example, cardiovascular diseases alone claim 17.9 
million lives each year, followed by cancers (9.3 million), 
chronic respiratory diseases (4.1 million), and diabetes-
related conditions (2.0 million), together accounting for 
over 80% of all premature NCD deaths [2]. Economi-
cally, the cumulative global burden of NCDs from 2010 
to 2030 is estimated to exceed USD 47 trillion—a figure 
that represents 75% of the global GDP in 2010 [3]. This 
rise in NCDs can largely be attributed to rapid unplanned 
urbanization, the globalization of unhealthy lifestyles, 
and an aging population [2, 4].

NCDs affect individuals across all demographics and 
countries, with a disproportionately severe impact on 
low- and middle-income countries, where over three-
quarters of global NCD-related deaths, approximately 
31.4 million, occur annually [5]. These diseases arise from 
complex interactions between genetic and environmen-
tal— including physical inactivity, unhealthy diets, obe-
sity, and the use of tobacco or alcohol [6, 7]. Although 
NCDs typically manifest in adulthood, their roots are 
often traced back to behaviors and conditions established 
during childhood and adolescence [8, 9]. The burden of 
NCDs alongside existing infectious diseases poses sig-
nificant economic stability and development challenges, 
exacerbating poverty and straining health systems, 
reducing resilience to emergencies such as infectious dis-
ease outbreaks and natural disasters [1, 3]. Furthermore, 
the high burden of NCDs is a major obstacle to progress 
towards the 2030 Agenda for Sustainable Development, 
specifically the target to reduce premature mortality 
from the four principal NCDs (cancers, cardiovascular 
diseases, chronic respiratory diseases, and diabetes) by 
one-third by 2030 [2, 3, 10].

Family- and population-based studies have revealed 
that most NCDs possess substantial genetic components, 
with diseases such as coronary artery disease (CAD) [11] 
and autism spectrum disorder (ASD) [12] demonstrat-
ing high heritability, estimated at approximately 50% and 
80%, respectively. Most NCDs are predominantly poly-
genic, involving numerous genetic variants that each con-
tribute subtly to overall disease risk [13–[15]. Advances 
in omics technologies, particularly genome-wide associa-
tion studies (GWAS), have successfully identified many 

genetic variants linked to NCDs [15–[18]. However, our 
understanding of the genetic etiology of NCDs remains 
incomplete [8, 9, 96]. There are several challenges, 
including the ’missing heritability problem,’ where known 
genetic variants associated with a disease/trait account 
for only a small fraction of the expected heritability 
[19–[23]. Additionally, pinpointing the true causal vari-
ants that contribute to disease mechanisms has proven 
difficult due to the complex linkage disequilibrium (LD) 
structure of GWAS nominated variants, which limits 
thier clinical utility [24–[26]. Recent advances in  whole 
genome sequencing (WGS) studies have begun to eluci-
date the role of rare genetic variants in NCDs, while also 
offering additional insights into the contribution of com-
mon variants through improved resolution and compre-
hensive genomic coverage. Despite these insights, rare 
variants do not fully explain the missing heritability in 
NCDs, underscoring their complexity and multi-factorial 
nature [27]. A key factor that may explain this missing 
heritability is the complex interplay between genetic vari-
ants and environmental factors—often called gene-envi-
ronment (GxE) interactions [21, 21–[30]. In this context, 
an ‘environment’ could be any endogenous or exogenous 
non-genetic factor that influences the risk of developing 
NCDs [31].

To fully understand the complex GxE interactions that 
underpin the biological basis of NCDs, it is essential to 
integrate information across multiple levels [32–[36]. 
This integration encompasses molecular profiles from the 
genome, epigenome, transcriptome, proteome, metabo-
lome, lipidome, and microbiome—collectively referred 
to as multi-omics—along with environmental exposures 
known as the exposome. Rapid advancements in compu-
tational methodology have made the integration of multi-
omics including high-throughput sequencing, mass 
spectrometry, smart wearable devices, and expanded 
electronic health records (EHRs) data increasingly feasi-
ble [33, 37, 38]. Such omics integration generates com-
prehensive data at an unprecedented speed and scale, 
enhancing our understanding of disease mechanisms and 
revolutionizing precision medicine [37, 39, 40] by ena-
bling targeted prevention, precise diagnostics, personal-
ized treatments, and accurate prognosis [37].

The multi-omics approach requires innovative inte-
gration methods that combine information from diverse 
omics data sources [35, 41, 42]. These methods facili-
tate the assessment of information flow from one omics 
layer to another and help elucidate the intricate interplay 
between various molecular profiles. Recently, advances 
in statistical modeling and machine learning have ena-
bled more effective integration of omics data, which is 
crucial for tackling the complexity of NCDs [37, 38, 43, 
44]. Despite this potential, several significant challenges 
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remain. A primary obstacle is deciding which omics layer 
to prioritize in multi-omics studies [37]. While many 
researchers adopt a genome-first approach, the optimal 
strategy may vary depending on the specific disease and 
available data. Another challenge is the lack of genetic 
diversity in most multi-omics datasets, as most of these 
datasets have predominantly been based on samples 
of European genetic ancestry [45–[48]. Studies have 
shown that results derived from predominantly Euro-
pean datasets often do not translate well to individuals of 
non-European ancestry, potentially exacerbating health 
disparities by limiting research benefits to certain groups 
[48, 49]. Furthermore, the heterogeneity and massive 
scale of multi-omics datasets pose substantial challenges 
in data integration, requiring significant computational 
resources, skills, and advanced analytical techniques [50].

In this scoping review, we examine the multi-omics lit-
erature comprehensively, specifically focusing on NCDs 
and omics (multi-omics) diversity. Our primary goal is to 
assess the current landscape of global multi-omics data 
as it relates to NCDs, summarizing key advances in data 
integration techniques that enable a deeper understand-
ing of the intricate GxE interactions at play. We will delve 
into the significant role of multi-omics research in elu-
cidating the complex pathways influencing the develop-
ment, progression, and response to treatment in NCDs. 
Next, we illustrate practical translational applications and 
point out critical limitations currently facing the field. 
Additionally, we discuss the transformative potential of 
global multi-omics research initiatives in advancing pre-
cision medicine, specifically in tailoring prevention, diag-
nosis, and treatment strategies to individual genetic and 
environmental profiles. Lastly, we propose directions to 
address existing challenges of multi-omics research to 
enhance our understanding of the biological mechanisms 
of NCDs and development of effective interventions.

Omics technologies for unraveling GxE interactions 
in NCDs
Research has consistently demonstrated that the risk of 
developing most NCDs and the effectiveness of treat-
ments are influenced by both the independent effects of 
an individual’s genetic makeup and various environmen-
tal exposures, as well as by the potential synergistic or 
antagonistic interactions between these two factors [13, 
14, 36, 51]. One type of GxE interaction occurs when an 
individual’s genotype modulates the effect of environ-
mental exposure on disease risk. For example, certain 
genetic variants may alter the risk of developing Parkin-
son’s disease in individuals exposed to organophosphate 
pesticides [52, 53]. Conversely, another form of GxE 
interaction happens when the influence of a genotype 
on disease risk changes with different environmental 

exposures [28]. A notable case is how the impact of the 
FTO gene on body mass index (BMI) can significantly 
vary depending on lifestyle factors such as physical 
activity, diet, alcohol consumption, and sleep duration 
[54]. These examples underscore the dynamic interplay 
between our largely static genetic code and the respon-
sive molecular layers of the genome and epigenome. 
These layers dynamically respond to environmental 
changes, affecting gene expression and cellular functions, 
representing key mechanisms through which GxE inter-
actions manifest.

Omics technologies— powered by advances in high-
throughput sequencing technologies such as next-gener-
ation sequencing (NGS) and rapidly expanding electronic 
data (exosomes), enable a comprehensive analysis of vari-
ous biological systems [55]. Each technology focuses on 
a different aspect: genomics and epigenomics explore 
genetic and epigenetic variations; transcriptomics exam-
ines gene expression dynamics; proteomics investi-
gates protein functions and interactions; metabolomics 
assesses metabolic responses; exposomics evaluates life-
long environmental exposures. While each technology 
excels at quantifying specific types of biomolecules, the 
complete picture of disease mechanisms often involves 
intricate molecular machinery such as transcriptional 
and translational regulation, RNA and peptide degra-
dation, posttranslational modifications, and molecular 
transport [55, 56]. Thus, focusing solely on one type of 
omics data can overlook critical interactions between 
these processes.

Genomics
Genomics, the most established omics technologies, 
has profoundly enhanced our understanding of NCDs 
through extensive profiling of genetic variants such as 
SNPs, insertions-deletions, and structural variants [16, 
24, 25, 16–[59]. Pioneering advancements in NGS tech-
nologies have been crucial, providing extensive genome-
wide coverage that is faster and more cost-effective 
than ever before [60]. Significant and fast reduction 
in sequencing costs has spurred substantial growth in 
genomic and multi-omics research, making large-scale 
studies more feasible and affordable (Fig. 1). So far, over 
6000 GWASs have been conducted for more than 3000 
traits, yielding thousands of associated genetic variants 
[58, 59]. This represents a substantial advance over the 
pre-GWAS era when only a handful of genetic associa-
tions were robustly identified [58]. For instance, a GWAS 
of Crohn’s disease implicated the IL-12/IL-23 pathway 
in the development of the disease, which subsequently 
informed clinical trials of drugs that targeted these path-
ways [61]. Furthermore, polygenic scores (PGSs) that 
aggregate genetic risk information across the genome are 
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increasingly used to predict an individual’s risk of devel-
oping NCDs and other diseases [61]. A recent clinical 
study demonstrated the effectiveness of PGS-based risk 
assessments for 10 NCDs, including coronary artery dis-
ease, atrial fibrillation, type 2 diabetes, chronic kidney 
disease, and breast cancer. Notably, this study returned 
genome-informed risk assessment results to patients, 
marking a significant milestone in clinical genetics [62]. 
Additionally, in psychiatric genomics, PGSs have shown 
promise in predicting treatment outcomes for mental 

health disorders, including treatment response, resist-
ance, side effects, and hospitalization rates [63–[65].

Although GWASs have successfully identified repli-
cable genetic variants associated with many NCDs and 
other traits, there are significant methodological and 
ethical challenges that must be addressed before these 
findings can be fully translated into preventive and 
clinical treatments. One major limitation is the poor 
transferability of findings across different genetic ances-
tries [48, 49]. This discrepancy largely stems from the 

Fig. 1  Log-Transformed Trends in PubMed Citation Frequencies and Sequencing Costs (2000–2024). This figure illustrates trends in sequencing 
costs and PubMed citation frequencies for key terms (“multi-omics,” “personalized/precision medicine,” and “gene-environment (GxE) interactions”) 
from 2000 to 2024. Citation data were derived using a Python-based web scraping approach that sends HTTP requests to PubMed and parses 
the HTML response using the BeautifulSoup library. For each year, search queries targeted keywords in the title/abstract, filtering results 
by publication year to extract the annual citation count. Sequencing cost data were sourced from the National Human Genome Research 
Institute’s (NHGRI) Genome Sequencing Program (GSP) database (Wetterstrand KA, www.​genome.​gov/​seque​ncing​costs​data; accessed June 17, 
2024). Both the citation frequencies and sequencing costs are log-transformed for improved visibility of trends across a wide range of values. The 
y-axis for citations represents log10-transformed counts, where each unit increase corresponds to a tenfold increase in the number of citations. 
Similarly, the y-axis for sequencing costs reflects log10-transformed values, where each unit decrease corresponds to a tenfold reduction 
in the cost per megabase of sequencing. This transformation ensures that both very small and very large values are clearly represented, allowing 
for meaningful interpretation of exponential changes over time. The visualization emphasizes the rapid advancements in sequencing technology 
and the concurrent growth in research interest in multi-omics, personalized medicine, and GxE interactions

http://www.genome.gov/sequencingcostsdata
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underrepresentation of non-European ancestry in GWAS 
cohorts (only 14%) [48, 66]. This lack of diversity not only 
impedes the clinical application of PGSs but also exacer-
bates health disparities, because the benefits of ancestry-
biased genetic research cannot equitably be distributed 
across populations [46, 47, 46–[69]. A critical aspect 
often overlooked is that Africa harbors the greatest 
human genetic diversity in the world, which offers unique 
opportunities for understanding genetic susceptibility to 
NCDs and other complex traits [70–[72]. The African 
Genome Variation Project (AGVP), for example, uncov-
ered over 8 million novel variants, with a substantial pro-
portion identified in Ethiopian and Zulu populations [73]. 
Moreover, African populations possess shorter haplotype 
blocks and complex population substructures, which 
allow for more precise fine mapping of disease suscep-
tibility alleles [70, 71, 74]. This diversity, combined with 
the unique genetic adaptations in response to diverse 
climates, diets, and infectious diseases, underscores the 
necessity of expanding large-scale sequencing efforts in 
African populations. Incorporating these genomes will 
not only advance our understanding of NCDs but also 
ensure that the benefits of genomic medicine are equita-
bly distributed across all populations [72].

Despite the slow progress, there are promising global 
efforts aimed at tackling the significant lack of diversity 
in genomic research. The Human Heredity and Health in 
Africa (H3Africa) initiative, the largest genomic research 
consortium in Africa, is spearheading this effort with a 
10-year project aimed at studying the genetic basis of dis-
ease among African populations and establishing sustain-
able genomics research across the continent [66]. This 
initiative includes the creation of three biorepositories in 
Uganda, South Africa, and Nigeria, and the development 
of the Pan African Bioinformatics Network (H3ABioNet), 
supporting advances in handling biological data [66]. In 
Latin America, the Latin American Genomics Consor-
tium is harmonizing data from existing cohorts and plan-
ning new recruitments to build a substantial biobank, 
addressing the underrepresentation of admixed popula-
tions [66]. In the United States, the All of Us Research 
Program aims to mirror the country’s diversity by collect-
ing data from over one million participants, half of whom 
are of non-European genetic ancestry. This program has 
identified over 275 million previously unreported genetic 
variants, with 77% of its participants coming from his-
torically underrepresented communities in biomedical 
research [75]. Despite these encouraging efforts, the pro-
gress is far from sufficient. There is a substantial disparity 
within continents, particularly in Africa, Latin America, 
South Asia, and West Asia, where only a few countries 
have well-established biobanks [66]. This highlights 
the ongoing need for more comprehensive initiatives to 

ensure that genetic research benefits all global popula-
tions equitably.

Another limitation of standard population-based 
GWAS is the bias arising from population stratification 
and assortative mating, which can distort the estimated 
effects of variants on phenotypes [76–[79]. Standard-
GWAS results are influenced by several factors, includ-
ing the direct effects of alleles carried by an individual 
on their phenotype; the indirect effects of alleles carried 
by relative(s) through environmental influences (genetic 
nurture); and confounding due to population stratifica-
tion and assortative mating. Although methods such as 
principal-component (PC) analysis and linear mixed 
models (LMMs) are used to adjust for population strati-
fication, residual confounding often persists in GWAS 
summary statistics [78–[80]. These biases are particu-
larly pronounced in polygenic scores (PGSs), which 
aggregate genetic risk information from thousands of 
variants [78]. Additionally, such biases can also impact 
post-GWAS analyses, including biological annotation, 
heritability estimation, genetic correlations, Mendelian 
Randomization (MR), and GxE interaction [78]. While 
family-based GWASs typically have lower power than 
population-based GWASs due to smaller sample sizes, 
they have been shown to mitigate biases from population 
stratification effectively [78, 80]. A recent within-fam-
ily GWAS, conducted on a large sample of siblings, has 
demonstrated that within-family association estimates 
are significantly attenuated compared to standard GWAS 
estimates for traits such as depressive symptoms, height, 
and smoking [78]. The increasing availability of family-
based data offers great potential for disentangling direct 
and indirect genetic effects affecting NCDs, thereby aid-
ing in unraveling complex GxE interactions.

Transcriptomics
Transcriptomics, through RNA sequencing (RNA-seq) 
technologies, has become instrumental in elucidating 
cellular pathways critical to the pathophysiology of many 
NCDs [81]. By analyzing all RNA transcripts, including 
coding and non-coding types, RNA-seq provides com-
prehensive insights into mRNA abundance, alternative 
splicing, nucleotide variations, and structural alterations 
[81, 82]. By revealing how gene expression is regulated 
and altered under various conditions, transcriptomics 
plays a pivotal role in bridging genotypic variations with 
phenotypic manifestations.

For instance, a study by Romanoski et  al. (2010) inte-
grated transcriptomics and genomics to examine human 
aortic endothelial cells’ response to oxidized phospho-
lipids, a key factor in atherosclerosis—a major cause of 
heart disease [83]. They treated cells with oxidized phos-
pholipids, known to induce vascular inflammation, and 
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simultaneously performed analysis to identify expression 
quantitative trait loci (eQTLs) influencing gene expres-
sion changes. This approach revealed that approximately 
one-third of the highly regulated transcripts exhibited 
gene-environment (GxE) interactions, often influenced 
by distal, trans-acting effects. Some notable interactions 
were further validated through small interfering RNA 
(siRNA) knockdown experiments, confirming the sig-
nificant role of specific genetic loci in modulating gene 
expression responses to environmental stimuli [83]. This 
and other related studies [84–[86] illustrate how integrat-
ing genomic and transcriptomic data can uncover com-
plex GxE interactions, enhancing our understanding of 
the genetic and environmental underpinnings of cardio-
vascular diseases and other NCDs.

Building on the capabilities of RNA sequencing tech-
nologies, the surge in transcriptomic data has prompted 
the establishment of comprehensive consortia tasked 
with managing, curating, and distributing these resources 
to the broader scientific community. Among the most 
noteworthy is The Cancer Genome Atlas (TCGA), which 
provides a rich repository of cancer-related transcrip-
tomic data. Similarly, the Allen Human Brain Atlas offers 
specialized RNAseq databases focusing on brain diseases, 
encompassing studies on aging, dementia, and traumatic 
brain injury. Additionally, repositories such as the Gene 
Expression Omnibus (GEO), Encyclopedia of DNA Ele-
ments (ENCODE) [87], and the Genotype-Tissue Expres-
sion (GTEx [88]) Project significantly contribute to the 
availability of transcriptomic data across various tissues 
and conditions. By providing access to extensive tran-
scriptomic data, these consortia support the ongoing 
exploration of how gene expression is intricately regu-
lated and modified, thus continuing to bridge genotypic 
variations with phenotypic manifestations in complex 
disease research.

Epigenomics
Epigenomics, which examines the full spectrum of epi-
genetic modifications such as DNA methylation and 
histone modification, plays a crucial role in under-
standing how environmental factors and genetic pre-
dispositions interact to influence the development 
of diseases [89]. These modifications regulate gene 
expression without altering the DNA sequence and are 
involved in critical processes like cellular differentiation 
and tumorigenesis [89, 90]. The epigenome’s respon-
siveness to various environmental exposures—such as 
metals, air pollution, electromagnetic radiation—and 
lifestyle factors like diet, smoking, and physical activ-
ity, as well as the natural aging process, underscores its 
dynamic nature [89, 91]. For example, chronic exposure 
to arsenic and lead is associated with DNA methylation 

changes that heighten the risk of various cancers [92, 
93]. Similarly, prenatal dietary factors like folate intake 
can alter the epigenome, influencing fetal development 
and disease susceptibility later in life [94–[96]. Addi-
tionally, medications such as sodium valproate (VPA), 
used for treating epilepsy and bipolar disorder, dem-
onstrate the complexity of interactions between phar-
macological treatments and epigenetic regulation by 
affecting gene expression through their histone deacet-
ylase (HDAC) inhibitor properties [97, 98].

Epigenomics can provide a molecular framework 
to understand how GxE effects manifest in NCDs. 
Through studying epigenetic modifications, research-
ers can discover novel genes and pathways influenced 
by genetic factors and environmental exposures. The 
epigenome is partly regulated by the genome, with 
genetic variation influencing the establishment of DNA 
methylation marks [99–[102], while also being highly 
responsive to environmental factors [103–[105]. This 
dual regulation highlights the complexity of gene-envi-
ronment interactions. For instance, the expression of 
certain NCD risk variants may depend on specific DNA 
methylation states, which environmental factors can 
alter. Alternatively, genetic variations might predispose 
certain epigenomic profiles to respond differently to 
environmental exposures, thus influencing disease risk 
[94]. Recent studies, such as those by Teh et al. (2014), 
have shown that a significant proportion of variably 
methylated regions, areas where methylation levels 
vary substantially among individuals, can be attributed 
to GxE interactions, revealing the intricate molecular 
mechanisms at play [106].

Advances in next-generation sequencing technolo-
gies have significantly enhanced the precision and scope 
of epigenic profiling [94]. While techniques like bisulfite 
conversion have been widely used to map methylation, 
they come with challenges, such as incomplete conver-
sion and DNA degradation. The advent of long-read 
sequencing technologies, such as PacBio’s HiFi sequenc-
ing, has addressed some of these limitations. HiFi 
sequencing can directly detect 5mC methylation with-
out the need for bisulfite conversion, offering both high 
accuracy and the ability to resolve methylation profiles 
alongside phased haplotyping in a single run [107]. This 
capability significantly improves our understanding of 
epigenetic modifications linked to genetic variants and 
environmental factors. On the other hand, major collab-
orative efforts like the NIH Roadmap Epigenomics pro-
ject, the International Human Epigenome Consortium 
(IHEC), and ENCODE project have provided compre-
hensive maps of the human epigenome. By linking epi-
genetic changes to functional outcomes, these consortia 
enhance our understanding of the complex interactions 
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that define health and disease, paving the way for 
advances in precision medicine.

Proteomics
Proteomics explores the entire array of proteins pro-
duced or modified by an organism, offering crucial 
insights into the development and progression of NCDs. 
The proteome is highly dynamic, exhibiting considerable 
variability due to processes like alternative splicing, pro-
tein modifications, and the complex assembly of proteins 
into signaling networks [108]. These processes, regulated 
spatially and temporally, allow proteomics to measure 
critical changes in amino acid mutations, peptide iso-
forms, and posttranslational modifications (PTMs) [109, 
110]. PTMs like phosphorylation, acetylation, and glyco-
sylation are especially significant, as their dysregulation 
is often implicated in cancer, cardiovascular diseases, 
and neurodegenerative disorders [109, 110]. Proteomic 
profiles also capture responses to environmental stimuli, 
such as diet [111], chemical exposure [112], and smoking 
[113], highlighting their value in understanding complex 
gene-environment or proteome-environment interac-
tions and refining the selection of target genes for further 
investigation [32].

A hallmark example of proteomics integration with 
genomic and phenotypic data is the UK Biobank Pharma 
Proteomics Project (UKB-PPP), a public–private partner-
ship that profiled over 2,900 proteins in plasma samples 
from over 54,000 participants [114]. This initiative identi-
fied over 14,000 protein quantitative trait loci (pQTLs), 
with 81% being novel. By comparing results from dif-
ferent platforms like Olink and SomaScan and across 
diverse ancestries, the project underscored the power 
of multi-level data integration in revealing protein-level 
differences that influence disease studies, enhancing 
our understanding of genomic associations and disease 
mechanisms across populations [114]. Among the most 
notable associations with NCDs include a strong link 
between natriuretic peptide B (BNP) and heart failure 
and inflammatory bowel disease (IBD) associated with 
higher plasma levels of prostaglandin-H2 D-isomerase 
[114]. While most analyses focused on participants 
of European genetic ancestry (n = 34,557), ancestry-
specific pQTL studies in African (n = 934), Central/
South Asian (n = 920), and other non-European groups 
revealed unique variants, many of which were absent or 
rare in Europeans [115]. These findings underscore the 
importance of expanding proteomic studies to diverse 
ancestries to capture population-specific genetic and pro-
teomic interactions, addressing disparities in disease risk 
and treatment. Another UK Biobank study identified over 
5,000 associations between rare protein-coding variants 
and plasma protein abundances, significantly expanding 

our understanding of how rare variations influence pro-
teomic profiles and highlighting their potential in identi-
fying new therapeutic targets and biomarkers [116].

Despite its promise, proteomics faces challenges in 
scalability, cost and analytical complexity. High-through-
put platforms such as mass spectrometry (MS) and 
proximity extension assays (PEA) enable precise pro-
tein profiling from minimal amounts of biological sam-
ples, but they remain costly, limiting their application in 
large-scale studies [117, 118]. The high dynamic range of 
protein expression and complexity of many PTMs and 
sequence variations pose further technical hurdles [109, 
110]. Addressing these challenges is crucial for fully lev-
eraging the potential of proteomics for novel biomarker 
discovery, targeted drug development, and understand-
ing NCD mechanisms.

Public–private collaborations like the UKB-PPP high-
light the transformative potential of proteomics to bridge 
the gap between genetics and phenotypes in multi-omics 
research. By integrating proteomics into population-scale 
biobanks, researchers can enhance causal gene identifica-
tion, refine patient stratification, and accelerate therapeu-
tic discovery. However, ensuring equitable applications 
requires broadening the representation of underrepre-
sented populations and addressing cost barriers. These 
advancements will enable proteomics to significantly 
contribute to precision medicine and effective manage-
ment of NCDs globally.

Metabolomics
Metabolomics focuses on small-molecule metabolites—
such as hormones, amino acids, and lipids—that serve as 
substrates, intermediates, and products of metabolism, 
offering a direct window into the biochemical pathways 
driving complex diseases, including NCDs [119]. Closer 
to the actual phenotype than mRNA or protein, metabo-
lite levels provide a particularly valuable physiological 
readout because they integrate environmental and mul-
tiple regulatory inputs [120]. Each tissue or cell type has 
a unique metabolic signature, allowing metabolomics 
to highlight organ or tissue-specific changes linked to 
disease [120]. The dynamic nature of the metabolome, 
highly responsive to factors such as diet and chemical 
exposure, makes it indispensable for studying gene-envi-
ronment interactions in NCDs [121]. Integrating metab-
olomics data with other omics layers, such as genomics 
and proteomics, enhances our ability to map metabolic 
pathways, predict metabolite abundances, and identify 
novel biomarkers and therapeutic targets across diverse 
populations.

Metabolomics enables the quantification of both 
endogenous metabolites and xenobiotics—foreign sub-
stances like environmental chemicals, pollutants, and 
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drugs—offering a comprehensive view of how external 
exposures impact biological systems [119]. By analyz-
ing these external compounds alongside changes in the 
endogenous metabolome, metabolomics reveals critical 
insights into the biological effects of environmental expo-
sures. For example, a study on occupational exposure 
to trichloroethylene (TCE) identified TCE metabolites 
in human plasma and linked them to changes in endog-
enous metabolites associated with immunosuppression, 
hepatotoxicity, and nephrotoxicity, highlighting the toxic 
effects of TCE [122]. Similarly, the EXPOsOMICS project 
explored biofluids and exhaled breath for disinfection 
by-products (DBPs) from swimming pools, uncovering 
potential disruptions to metabolites in the tryptophan 
pathway [123]. In another study, researchers examined 
the relationship between SNPs in the methionine salvage 
enzyme APIP and mortality risk in sepsis triggered by 
infections like Salmonella. By analyzing plasma metab-
olomic profiles from about 1,000 patients, the study 
showed that sepsis survivors had significantly lower lev-
els of the enzyme’s substrate, methylthioadenosine, than 
nonsurvivors, illustrating how genetic variation and 
metabolite levels jointly influence sepsis outcomes [124]. 
These examples demonstrate metabolomics’ capacity to 
unravel gene-environment interactions and the biological 
consequences of external exposures.

A key challenge in metabolomics is the identification 
and measurement of metabolites, but recent advance-
ments have significantly eased this bottleneck [119, 120, 
125]. Technological advances in nuclear magnetic reso-
nance (NMR) and mass spectrometry (MS)-based meth-
ods, such as GC–MS and LC–MS, have also improved 
the precision and range of metabolite quantification. 
Expanded metabolite databases, such as The Human 
Metabolome Database (HMDB) and XCMS-METLIN, 
now contain tens of thousands of metabolites, includ-
ing xenobiotics from environmental sources. Addition-
ally, various bioinformatics tools now enable more robust 
analysis, linking metabolic signatures to disease states 
and outcomes, thus enhancing the potential of metabo-
lomics in NCD research [119].

Exposomics
Exposomics is a burgeoning field that explores the com-
prehensive impact of environmental factors on human 
health over an individual’s lifetime [126]. This discipline 
considers various exposures—from chemical and biologi-
cal agents to psychosocial factors, socioeconomic status 
and interpersonal relationships. These factors can trigger 
various biological responses, including changes in gene 
and protein expression, which in turn may influence the 
microbiome and epigenome [126]. This complex inter-
play underscores how environmental factors, intertwined 

with genetic predispositions, contribute to the develop-
ment of NCDs (Fig.  2). Examples of replicated gene-
environment interactions include BRCA-1 associated 
protein-1 (BAP1) mutations and asbestos exposure for 
mesothelioma [127], chromodomain helicase DNA-bind-
ing protein 8 (CHD8) and pesticide exposure for autism 
spectrum disorder [128], the fat mass and obesity-asso-
ciated gene (FTO) and physical activity for obesity, and 
dopamine receptor D4 (DRD4) and parenting style for 
attention-deficit/hyperactivity disorder (ADHD) [129]. 
These interactions highlight how specific genetic suscep-
tibilities can be activated or exacerbated by environmen-
tal factors, demonstrating the crucial role of exposomics 
in understanding NCDs. A subset of notable GxE inter-
actions implicated in common NCDs is shown in Fig. 3. 
While most of these GxE examples have focused on sin-
gle environmental variables, the broader and more sys-
tematic measurement of environmental factors—such as 
those captured through exposomics—holds tremendous 
potential for deepening our understanding of complex 
diseases. Although still in its early stages, a few studies 
have ventured into multi-exposure genome-wide interac-
tion analysis, jointly modeling the effects of the genome 
and the environment using methods like StructLMM 
(structured linear mixed model) [130], GxEMMs (GxE 
Mixed Model) [131], and IGE (integrative analysis of 
genomic and exposomic data) [132]. These approaches 
account for genome-exposome correlations and the 
interrelationships among exposome variables, offering 
a more holistic view of gene-environment interactions 
[133]. However, such methods are often computationally 
intensive and challenging to interpret, underscoring the 
complexity and potential of exposomics in advancing our 
understanding of NCDs.

Recent technological advancements, especially in 
high-resolution mass spectrometry (HRMS) and wear-
able devices, have significantly improved the ability to 
measure the exposome with precision and individual 
specificity [134]. HRMS enables the detailed detection 
of small molecules in biological samples like plasma and 
urine, allowing for an in-depth analysis of exposures to 
pharmaceuticals, pollutants, and nutrients [135]. Com-
plementing this, wearable technologies such as sili-
cone wristbands and other personal passive samplers 
have emerged as powerful tools for capturing personal 
exposure data. These devices can monitor environmen-
tal exposures in real-time across different settings and 
critical life stages, such as during pregnancy or early 
childhood, thus providing a dynamic and personalized 
exposome profile [136]. For instance, studies employing 
wristband samplers in China have successfully profiled 
personal chemical exposures, demonstrating the diversity 
and complexity of environmental interactions individuals 
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face daily [137]. Another innovative approach uses a min-
iaturized wearable device that samples air to capture par-
ticulates, further analyzed using HRMS to identify both 
hydrophobic and hydrophilic chemical compounds [138]. 
These studies exemplify how wearables can offer insights 
into the spatiotemporal dynamics of personal exposures 
and their potential health impacts. By integrating data 
from these wearables with systems biology approaches, 
researchers can now begin to unravel the intricate gene-
environment interactions that significantly influence the 
pathogenesis of NCDs, paving the way for targeted pre-
vention and therapeutic strategies.

Furthermore, new initiatives are expanding the scope 
of exposomics research, leveraging large-scale resources 
to deepen our understanding of environmental con-
tributions to health. The All of Us Research Program 
[139] is increasingly integrating environmental exposure 
data with genomic, clinical, and demographic informa-
tion from its diverse cohort of participants. By linking 
geospatial data with exposure estimates from tools like 
the Environmental Justice Index, the program aims to 

examine how environmental factors influence disease 
susceptibility. Similarly, the European Human Expo-
some Network (EHEN), the world’s largest network of 
exposome-focused projects, is advancing research on 
the health impacts of air pollution, noise, chemicals, and 
urbanization [140]. Together, these efforts are equipping 
researchers with unparalleled data resources to elucidate 
the complex interplay between genetic and environmen-
tal factors in NCDs (Fig. 3).

Electronic health records (EHRs)
EHRs are digital versions of patients’ medical histories, 
encompassing a broad spectrum of data, including demo-
graphics, medical histories, vital signs, laboratory test 
results, radiology images, diagnoses, treatment proce-
dures, and medications [37]. Longitudinal data available 
in practice-based EHRs, such as those from chronic dis-
ease management clinics, enable researchers to charac-
terize genetic factors with small but reproducible effects 
on drug outcomes. For instance, the electronic Medical 
Records and Genomics (eMERGE) network, supported 

Fig. 2  The Exposome and Multi-Omic Interactions for GxE Interaction Analyses in the Context of NCDs. The exposome encompasses 
the cumulative impact of environmental influences, including external factors (e.g., urban and built environments, air and water quality, soil 
contaminants such as heavy metals and persistent organic pollutants), lifestyle factors (e.g., physical activity, diet, smoking, alcohol use, and sleep 
patterns), psychosocial factors, and social and economic determinants (e.g., socio-economic status, access to resources). It also includes occupation 
and residential exposures (e.g., noise pollution and indoor air quality), as well as chemical and physical agents. These diverse influences interact 
with multiple biological layers—genome, epigenome, transcriptome, proteome, and metabolome—triggering complex, nonlinear responses. 
These interactions drive the onset, progression, and development of NCDs, including cardiovascular diseases, diabetes, respiratory illnesses, 
and cancers. Integrating the exposome into multi-omic studies is essential to unraveling these dynamics and advancing precision medicine 
approaches for chronic disease prevention and management. NCD—non-communicable diseases. Schematic plot created using BioRender 
(https://​BioRe​nder.​com)

https://BioRender.com


Page 10 of 27Alemu et al. Human Genomics            (2025) 19:8 

by EHRs, presents a novel opportunity to coordinate such 
investigative efforts across multiple institutions, facilitat-
ing the dissection of GxE interactions.

With advancements in healthcare technology, EHRs 
have expanded to include Personal Health Records 
(PHRs), which capture out-of-clinic data such as daily 
behaviors and physiological measurements collected by 
smart wearable devices. In the realm of precision medi-
cine, EHRs serve as crucial repositories that connect 
detailed clinical data with genetic profiles from multi-
omics studies. This integration offers a holistic view of 
a patient’s health landscape, combining structured data 
like lab results and diagnosis codes with unstructured 
data, such as free-text clinical notes. Although rich with 
information, EHRs present challenges in data heteroge-
neity, quality, and management, especially given their 
mix of unstructured and structured formats [37]. These 
challenges complicate the extraction and analysis of 
data but are essential to address for leveraging EHRs in 

enhancing our understanding of NCDs through multi-
omics integration.

Advances in multi‑omics integration techniques
The field of multi-omics integration has rapidly evolved 
to enhance our understanding of the GxE interactions 
that underlie NCDs and other complex diseases [32]. 
Individual omics approaches, such as GWAS, have suc-
cessfully identified numerous SNPs associated with 
various NCDs [14–[16, 141]. However, the challenge of 
uncovering the functional roles of these SNPs, especially 
those located in non-coding regions, necessitates the 
integration of genomic data with transcriptomic, prot-
eomic, metabolomic, epigenomic, and other omics data-
sets [32]. This comprehensive integration is crucial for 
mapping the flow of genomic information and elucidat-
ing the interactive networks essential for the onset and 
progression of NCDs.

Fig. 3  Notable examples of how genetic and environmental factors interact to influence the risk of developing NCDs. This Sankey diagram 
illustrates examples of gene-environment interactions in non-communicable diseases (NCDs) identified through genome-wide gene-environment 
interaction and Mendelian randomization studies; it is not an exhaustive list of GxE interaction studies in NCDs. Genes (left vertical lines) are 
connected through environmental exposures (middle vertical lines) to NCDs (right vertical lines); green lines represent interactions that reduce 
NCD risk, while light purple lines indicate increased risk. Studies using candidate-gene approaches were excluded due to inherent limitations such 
as high risk of false positives, lower replication rates, selection bias, and limited genetic coverage. A full list of the SNPs (rsID and PMID) implicated 
in the GxE interactions and a brief description of each GxE interaction are shown in Table S1
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New advances in analytical methods and software have 
significantly improved our ability to integrate data across 
multiple omics layers, offering a deeper understanding 
of how genetic variations interact with environmental 
factors to influence biological pathways and disease out-
comes [41, 44, 60, 81]. By synthesizing data from various 
domains, multi-omics approaches provide powerful tools 
for elucidating the intricate dynamics of GxE interactions 
in NCD research, paving the way for targeted interven-
tions and personalized medicine. These integration tech-
niques utilize approaches that often fall under two broad 
categories: a suite of post-GWAS analyses and machine 
learning-based methods [35]. Post-GWAS analysis 
enhances the interpretation of GWAS results by incorpo-
rating additional omics data, enriching our understand-
ing of how identified genetic variants influence disease 
phenotypes. Conversely, machine learning methods 
utilize algorithms to model complex interactions across 
different biological layers, offering robust tools for deci-
phering the intricate dynamics of GxE interactions and 
advancing NCD research.

Post‑GWAS multi‑omics integration approaches
Enrichment‑based methods
Enrichment-based methods provide a powerful way 
to integrate GWAS data with additional omics layers, 
thereby enhancing the understanding of complex GxE 
interactions that underpin NCDs [24]. These approaches 
utilize overlap, correlation, or association analysis tech-
niques to identify quantitative trait loci (QTLs) that 
are significantly associated with molecular features 
such as gene expression (eQTLs), methylation intensity 
(meQTLs), and protein levels (pQTLs) [142]. For exam-
ple, the GTEx [88], ENCODE [87], and Roadmap Epig-
enomics [143] projects have systematically cataloged 
associations between SNPs and various molecular fea-
tures, creating valuable research resources. Integration of 
GWAS significant variants and QTLs is achieved through 
overlapping or positional mapping with functional anno-
tations, confirmed by statistical tests to ensure enrich-
ment is significant and not due to random chance.

For instance, a study [144] on atrial fibrillation uti-
lized an integrative multi-omics approach combining 
genomics, transcriptomics, and proteomics from human 
atrial tissues. This cross-sectional study identified the 
widespread effects of genetic variants on both mRNA 
and protein expression, pinpointing transcription fac-
tor NKX2-5 as a crucial link between a GWAS SNP 
and atrial fibrillation [144]. Similarly, in schizophrenia, 
enrichment-based methods revealed that risk loci were 
associated with meQTLs in fetal brain tissue (most nota-
ble associations include, rs2535627-cg11645453 and 
rs4648845-cg02275930), suggesting that altered DNA 

methylation may play a role in the disease’s pathogenesis 
[145]. These and numerous other examples illustrate how 
enrichment methods can reveal the cellular origins and 
molecular networks of disease mechanisms.

However, these enrichment estimates can be biased by 
factors like linkage disequilibrium and the presence of 
multiple functional variants [146]. Advanced statistical 
methods, such as hierarchical Bayesian modeling [147] 
and permutation tests [146], are employed to mitigate 
these biases. These strategies not only aid the functional 
annotation of genetic data but also the discovery of novel 
biomarkers, offering insights into the tissues and mecha-
nistic pathways involved in NCDs.

Statistical fine‑mapping methods
Statistical fine-mapping methods crucially enhance the 
integration of GWAS with various quantitative trait loci 
(QTLs), aiding in identifying causal variants that may 
influence NCDs and other complex conditions [148]. 
These approaches, such as colocalization and Mende-
lian randomization (MR), are pivotal in determining the 
specific genetic variants that could contribute to both 
observed molecular traits and disease phenotypes. Colo-
calization analysis, often conducted using Bayesian statis-
tical methods [149, 150] among others, evaluates whether 
a genetic variant (s) can be linked to both a GWAS trait 
and a molecular QTL. This can highlight potential causal 
genes and pathways implicated in diseases, exemplified 
by research in Alzheimer’s disease that linked genetic risk 
variants with eQTLs affecting novel and known genes 
[151].

Mendelian randomization uses genetic variants as 
instrumental variables to explore causal relationships 
between modifiable molecular traits and disease out-
comes, functioning under the strong assumption that the 
variant influences the disease solely through its effect on 
an intermediary molecular trait—a premise that is chal-
lenging to validate [152–[154]. For example, a study on 
depression linked genetically regulated brain protein 
levels to the disease, suggesting causality through MR 
analysis [155]. Furthermore, the comprehensive review 
by Markozannes et al. (2022) on cancer risk used MR to 
validate causal associations, such as the effects of BMI on 
kidney and endometrial cancers and circulating sex hor-
mones on breast cancer [156]. These robust associations 
highlight the utility of MR in confirming causal pathways, 
providing a basis for targeted preventive strategies and 
therapies. Both colocalization and MR provide insights 
into potential causal mechanisms, with significant colo-
calization often implying a causal pathway that might 
be validated through MR. These methods not only pin-
point underlying genetic interactions but also guide the 
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development of targeted therapies and preventive meas-
ures across a spectrum of complex diseases.

Recent methodological advances in multi-ancestry 
fine-mapping strategies have significantly enhanced the 
ability to identify causal genes, offering insights beyond 
those provided by single-ancestry approaches [157, 158]. 
MA-FOCUS (multi-ancestry fine-mapping of causal gene 
sets), for example, integrates GWAS, eQTL, and LD data 
from multiple ancestries without assuming shared eQTL 
architecture [158]. It focuses on consistency in causal 
genes across populations, improving accuracy in identi-
fying disease-relevant genes for traits like hematopoietic 
and cardiovascular diseases. Similarly, SuSiEx, building 
on the single-population framework of Sum of Single 
Effects (SuSiE), offers a powerful cross-population fine-
mapping tool. It integrates data across ancestries, models 
population-specific allele frequencies and LD patterns, 
and handles multiple causal variants within genomic 
regions using GWAS summary statistics [157]. In evalu-
ations involving traits from the UK Biobank and Taiwan 
Biobank, and a schizophrenia GWAS across East Asian 
and European ancestries, SuSiEx fine-mapped more 
association signals, produced smaller credible sets, and 
achieved higher posterior inclusion probability for causal 
variants, even capturing population-specific causal vari-
ants [157]. Both MA-FOCUS and SuSiEx highlight the 
critical importance of including genetic data from diverse 
ancestries to improve the resolution of genetic studies 
and to uncover more precise therapeutic targets.

Imputation‑based methods
Imputation-based methods are a powerful tool for inte-
grating genomic and multi-omics data, utilizing extensive 
datasets from sources such as GTEx [88] and ENCODE 
[87]. These methods depend on a reference panel built 
from robust genetic prediction models derived from 
genotype data and molecular measurements (e.g., gene 
or protein levels) of healthy individuals [35]. These mod-
els are crafted using statistical techniques, including 
LASSO, ridge regression, and elastic net [35]. Through 
this approach, imputation-based methods impute molec-
ular features within GWAS datasets, enabling the iden-
tification of associations between genetically predicted 
molecular features and various NCDs. Key findings from 
this method often reveal molecular features that are dif-
ferentially expressed between cases and controls, thus 
highlighting potential pathways of disease manifestation. 
Transcriptome-wide association studies (TWAS) are a 
common application, successfully identifying molecular 
features linked to various traits and conditions [159].

Beyond gene expression, imputation-based integration 
has been adapted to explore other molecular features, 
such as DNA methylation and protein levels, though 

these remain less commonly applied compared to TWAS 
[159]. Furthermore, multi-omics integration approaches 
often extend beyond the use of GWAS data alone, 
employing previously described enrichment-based meth-
ods to merge findings from different omic layers—such 
as transcriptomics and epigenomics—through overlap 
and correlation analyses. These integrated analyses pro-
vide deeper insight into the complex interactions during 
the pathogenesis of NCDs. For instance, in one integra-
tive study, researchers analyzed the relationships among 
intestinal microbiota, serum metabolome, and inflamma-
tory cytokines in groups with and without schizophrenia 
[160]. Utilizing weighted gene co-expression network 
analysis [161], they identified significant co-abundance 
clusters of metabolites and gut bacteria, which correlated 
with cytokine levels. This suggests that specific bacteria 
could influence inflammatory responses through meta-
bolic modulation [160]. Such integrative studies under-
score the potential of using multi-omics data to uncover 
biological networks involved in NCDs, particularly high-
lighting pathways such as the gut-brain and gut-immune 
axes, which are crucial for understanding complex dis-
eases (Additional file 1).

AI/machine‑learning‑based method
Machine learning (ML) methods are increasingly used 
to understand the complex GxE interactions in various 
NCDs [28, 32, 162, 163]. These methods adeptly handle 
the integration of noisy, high-dimensional multi-omic 
datasets, essential for elucidating the multifaceted bio-
logical processes underlying NCDs [162, 163]. Several 
integration strategies have been developed, each tailored 
to optimize the handling of these complex datasets in 
different scenarios [37]. Early integration, for example, 
concatenates datasets sample-wise, creating a compre-
hensive input matrix for ML models [164, 165]. However, 
the sheer size and complexity of such integrated data 
can be challenging for many ML algorithms, especially 
with smaller sample sizes. To mitigate these challenges, 
other strategies such as mixed integration [166]—which 
reduces dataset complexity individually—and intermedi-
ate integration—which reduces complexity jointly—are 
utilized [167–[169]. Late integration, conversely, analyzes 
each omics dataset independently before aggregating the 
outputs for a final decision [170]. In contrast, hierarchical 
integration systematically incorporates known biological 
regulatory frameworks into the analysis, reflecting the 
sequences of molecular interactions [171].

The versatility of ML methods facilitates a broad spec-
trum of applications in multi-omics data integration for 
NCDs, from diagnostic classification to prognosis pre-
diction and evaluating treatment responses. The forth-
coming sections will explore these applications in detail, 
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presenting examples of specific ML frameworks that 
have shown promise in enhancing our understanding of 
many NCDs and other complex diseases. By leveraging 
these advanced ML approaches, researchers can pinpoint 
potential biomarkers, unravel disease mechanisms, and 
enhance the personalization of healthcare—key com-
ponents in advancing the field of precision medicine for 
chronic diseases. In Additional file  2: Table  S2, we pro-
vide a non-exhaustive list of multi-omics integration and 
GxE interaction analyses approaches.

Diagnostic classification
Diagnostic classification through ML involves accurately 
grouping patients into predefined classes representing 
specific disease diagnoses, a process crucial for manag-
ing NCDs [162]. In cardiovascular disease (CVD), ML 
classifiers have been utilized to predict CVD and related 
risk factors from omics data, illustrating the application’s 
potential. A study by Drouard et  al. (2024) compared 
various ML strategies using blood-derived metabo-
lomics, epigenetics, and transcriptomics data to predict 
CVD risk factors [172]. The findings revealed that multi-
omics predictions generally outperformed single-omics 
predictions, particularly in distinguishing individuals 
with extreme levels of CVD risk factors. Techniques like 
semi-supervised autoencoders, which refine feature rep-
resentation before classification, demonstrated improved 
predictive accuracy over unsupervised methods, high-
lighting the capabilities of ML to enhance diagnostic pre-
cision in complex disease settings [172].

In the realm of cancer diagnostics, ML has shown 
significant promise. For instance, a study by Khadirnai-
kar et al. (2023) on non-small cell lung cancer (NSCLC) 
employed ML to identify novel subtypes, enhancing 
prognostic accuracy and treatment personalization [173]. 
By applying consensus K-means clustering to multi-
omics data, the study identified five distinct NSCLC 
clusters with varying survival outcomes and genetic char-
acteristics, demonstrating the superior performance of 
multi-omics over single-omics models. Similarly, a novel 
approach by Abassi et al. (2024) utilized a combination of 
ML and deep learning (DL) techniques to improve diag-
nostic accuracy for leukemia [174]. Employing various 
ML algorithms and deep learning networks like recur-
rent neural networks (RNNs), they achieved up to 98% 
accuracy in predicting leukemia from multi-omics data. 
This approach not only emphasizes the potential of inte-
grating various omics data for cancer diagnostics but also 
showcases the efficiency of ML and DL in refining diag-
nostic classifications across different cancer types (Addi-
tional file 3).

Similarly, in psychiatric disorders, which share 
overlapping genetic, environmental risk factors, and 

symptomatology, ML tools are invaluable for refining 
diagnosis. Xie et  al. (2021) demonstrated this by using 
gene expression and DNA methylation data to construct 
models that effectively distinguished patients with major 
depressive disorder (MDD) from healthy controls [175, 
176]. Their approach identified genes that were either 
upregulated and hypomethylated or downregulated and 
hypermethylated in MDD patients. Although the gene 
expression classifier exhibited superior predictive power 
compared to the DNA methylation classifier, both mod-
els underscore the potential of ML in enhancing diagnos-
tic accuracy.

Clinical outcome (Risk) prediction
Risk prediction is a vital ML application in the multi-
omics analysis of NCDs [35]. This approach leverages 
ML to identify and prioritize molecular features that may 
forecast an increased risk of diseases. Typically, these 
features are unearthed through detailed single-omics 
analyses or ML-based feature selection within advanced 
integration strategies. Once identified, these molecu-
lar characteristics inform the development of statistical 
models designed to predict individual disease risks.

A notable method employed in risk prediction is the 
generation of polygenic risk scores (PGS), which calcu-
late an individual’s disease susceptibility based on quan-
titative trait loci (QTLs) and other regulatory genetic 
variants [24, 58]. These scores sum up an individual’s 
risk alleles, each weighted by its effect size derived from 
GWAS. Techniques such as penalized regression—
LASSO, elastic net, ridge regression—and Bayesian 
methods refine these risk scores, enhancing their predic-
tive accuracy. An innovative adaptation in this domain 
involves integrating PGS with other omics data, which 
allows for a more nuanced interpretation of genetic con-
tributions to disease risk [48, 58].

For instance, in a study by Wang et al. (2022), research-
ers explored the integration of multi-omics data for 
predicting clinical outcomes in neuroblastoma, a com-
plex cancer [177]. They employed network-based meth-
ods, constructing Patient Similarity Networks (PSN) by 
assessing distances among patients using omics-derived 
features. Two distinct integration strategies were tested: 
network-level fusion, using the Similarity Network Fusion 
algorithm to merge PSNs across various omics types, and 
feature-level fusion, combining network features from 
individual PSNs [177]. Their findings highlighted that 
network-level fusion provided superior performance in 
integrating diverse omics data, demonstrating the poten-
tial of ML to enhance outcome predictions in NCDs 
through multi-omics integration techniques. Despite 
these advances, the clinical adoption of such models 
remains modest, underscoring the ongoing challenges in 
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model validation and generalizability within healthcare 
settings.

Treatment response prediction
Predicting treatment responses is another critical appli-
cation of ML in the context of multi-omics for NCDs [35]. 
This ML application spans various treatment-response 
assessment regimes, including pharmacotherapy, psycho-
therapy, and more, aiming to forecast outcomes such as 
prognosis, relapse, or therapeutic efficacy [178, 179]. Par-
ticularly in chronic diseases where treatment paths can 
vary significantly among individuals, leveraging multi-
omics data can markedly enhance the precision of these 
predictions.

In cancer, where genetic heterogeneity strongly influ-
ences treatment outcomes, ML models have shown 
promise in predicting responses to anticancer drugs. A 
study by Wang et  al. (2022) illustrates this with a deep 
neural network that integrates multi-omics data—includ-
ing gene expressions, copy number variations, gene 
mutations, protein expressions, and metabolomics—
from cancer cell lines [177]. The model features inno-
vative components such as a graph embedding layer 
to incorporate interactome data and an attention layer 
to prioritize relevant omics features. This approach 
achieved an impressive R2 value of 0.90, outperforming 
standard neural networks in predicting drug responses 
using data from the Cancer Cell Line Encyclopedia 
(CCLE) and the Genomics of Drug Sensitivity in Cancer 
(GDSC). This example underscores the power of ML in 
harnessing multi-omics data to enhance the personaliza-
tion of cancer treatments.

Another study by Joyce et  al. (2021) explored the 
predictive power of combining genomics and plasma 
metabolomics to determine the effectiveness of combi-
nation pharmacotherapy in treating major depressive 
disorder (MDD) [180]. They developed two models: one 
using only metabolomics and another incorporating 
both metabolomics and genomics. The latter, a multi-
omics approach, utilized penalized linear regression and 
XGBoost algorithms, demonstrating superior predictive 
performance as evidenced by a higher area under the 
curve (AUC) compared to the metabolomics-only model. 
This study underscores the added value of integrating 
multiple types of omics data to enhance the accuracy of 
predicting treatment responses.

Estimating GxE interactions
Unraveling gene-environment (GxE) interactions is cru-
cial for understanding the complex etiology of NCDs. 
However, analytical tools for GxE interaction analy-
sis remain limited due to challenges posed by high data 
dimensionality, significant noise, and heterogeneity in 

genetic and environmental factors across populations, 
which can obscure true interactions and hinder repli-
cability. Traditional GxE interaction analyses often rely 
on regression techniques [181–[184], linking response 
variables to main genetic and environmental effects and 
their interactions. These methods face limitations such as 
stringent requirements to maintain a "main effects, inter-
actions" hierarchy [183]. This hierarchy demands that if 
an interaction effect is identified, its corresponding main 
effects must also be considered in the model, which com-
plicates the analysis by imposing additional constraints 
on variable selection [185, 186]. Moreover, high dimen-
sionality demands multiple comparison adjustments, 
increasing the risk of Type II errors (failing to detect true 
effects), and many studies lack sufficient power due to 
small effect sizes and limited sample sizes [187].

The emergence of large-scale biobanks and observa-
tional studies like the UK Biobank [188], the All of Us 
Research Program [139], FinnGen [189], and initiatives 
supported by the Barcelona Institute for Global Health 
(ISGlobal) are helping address sample size limitations 
by providing extensive genetic and environmental data 
across diverse populations. Leveraging these rich data-
sets, researchers have turned to machine learning (ML) 
and artificial intelligence (AI) approaches to enhance 
GxE interaction analysis [190]. For instance, Wu et  al. 
(2023) recently developed a novel methodology that lev-
erages deep learning to enhance GxE interaction analy-
sis [191]. This approach integrates deep neural networks 
with penalization strategies to simultaneously estimate 
and select significant GxE interactions and correspond-
ing main effects while respecting the required hierarchi-
cal structure. Demonstrations through simulation studies 
and applications in NCD contexts, such as lung adeno-
carcinoma and skin cutaneous melanoma, show that this 
method not only manages the complexity of the data but 
also surpasses traditional regression methods in predic-
tive accuracy and feature selection [191].

Madhukar et  al. (2019) also introduced BANDIT, a 
Bayesian machine-learning approach for drug target 
identification using diverse data types [192]. BANDIT 
integrates over 20 million data points from six distinct 
data types – including drug efficacies, transcriptional 
responses, drug structures, adverse effects, bioas-
say results, and known targets – to predict drug-target 
interactions. Benchmarking showed approximately 90 
percent accuracy in correctly identifying known drug 
targets across over 2,000 small molecules. Applied to 
compounds without known targets, BANDIT generated 
novel molecule-target predictions that were experimen-
tally validated, including identifying new microtubule 
inhibitors effective against resistant cancer cells [192]. 
Although primarily focused on drug discovery, BANDIT 
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exemplifies how integrating heterogeneous omics data 
through machine learning can elucidate complex biologi-
cal interactions, including GxE interactions relevant to 
NCDs.

Similarly, other ML-based methods have shown prom-
ise in addressing the complexities of GxE interactions 
[193]. Zou et  al. (2010) introduced a nonparametric 
Bayesian approach for mapping quantitative trait loci 
(QTL) that captures both main effects and higher-order 
interactions, including gene-environment interactions, 
without requiring explicit specification of interaction 
terms [194]. This method employs a Gaussian process 
prior combined with variable selection to identify impor-
tant genetic and environmental factors. By modeling all 
potential interactions in a single framework, it avoids the 
computational and multiple-testing challenges associated 
with parametric approaches. Applied to the polygenic 
mouse model of obesity, the method identified key quan-
titative trait loci (QTLs) influencing fat pad weight and 
highlighted how nonparametric Bayesian variable selec-
tion could improve the detection of GxE interactions in 
complex traits.

Spanbauer et  al. (2020) employed a non-paramet-
ric machine learning approach using Bayesian addi-
tive regression trees with mixed models (mixedBART) 
for precision medicine. This method adeptly identifies 
patient characteristics associated with treatment effect 
heterogeneity in clinical trials [195]. In a study focusing 
on type II diabetes mellitus among African-American 
patients, mixedBART predicted individualized treat-
ment effects based on demographic and health measures. 
While additional analyses showed insufficient evidence 
for treatment effects, mixedBART facilitated the multi- 
exploration of treatment heterogeneity, underscoring its 
potential in GxE interaction studies [195].

In addition, the advent of multimodal medical large 
language models (LLMs) offers promising avenues for 
future GxE interaction studies in NCDs. Building on 
established medical LLMs [196, 197], several multimodal 
models such as LLaVA-Med (Large Language and Vision 
Assistant for BioMedicine) have been proposed [198]. 
These models are designed to process medical images 
and generate text-based interpretations, demonstrating 
medical image understanding and diagnosis capabili-
ties. While current multimodal LLMs primarily handle 
modalities like text and imaging data, there is growing 
interest in extending these models to incorporate molec-
ular-level omics data, including genomics. For instance, 
preliminary efforts like MedGPT have explored analyz-
ing genomic data using LLMs, although they remain at a 
proof-of-concept stage with preliminary results [199]. As 
these models evolve and integrate more diverse datasets, 
they have the potential to enhance our ability to interpret 

complex biological interactions, including GxE interac-
tions relevant to NCDs. However, significant challenges 
remain, and more research is needed to fully realize the 
integration of multimodal omics data in LLMs.

In summary, these advancements illustrate the grow-
ing role of ML/AI tools in addressing the challenges of 
GxE interaction analysis in NCDs and other complex 
diseases. By harnessing large and diverse datasets and 
employing sophisticated analytical methods, research-
ers can better understand the complex interplay between 
multi-omic factors and the exposome. However, applying 
AI/ML methods in this context also presents challenges. 
Bias remains a significant concern, as algorithms trained 
on datasets that underrepresent certain demographic 
groups can yield skewed predictions, potentially exac-
erbating existing health disparities among populations 
affected by NCDs [200]. The “black box” nature of many 
AI/ML models, particularly deep learning approaches, 
poses another hurdle, as the lack of interpretability may 
undermine clinical decision-making and trust, especially 
when transparent reasoning is crucial for evaluating risk 
factors or treatment options [201]. Furthermore, the use 
of sensitive patient data in NCD research heightens the 
risk of privacy breaches, raising complex ethical and legal 
challenges in data governance [202]. Overcoming these 
challenges requires diverse and representative training 
datasets, the development of interpretable AI models 
tailored to NCD applications, and robust privacy pro-
tections to ensure ethical and equitable use of AI/ML in 
advancing GxE research and clinical practice. Together, 
these efforts not only enhance our understanding of dis-
ease mechanisms but also contribute to the development 
of personalized interventions and treatments (Fig. 4).

Current challenges and opportunities
Diversity of omics and multi‑omics datasets
Despite efforts to diversify genomic datasets, the vast 
majority of GWAS, about 85% as of 2023, predominantly 
feature individuals of European genetic ancestry [203]. 
Progress toward including under-represented popula-
tions has been slow, with the share of studies involv-
ing these groups either stagnating or even declining in 
recent years [48]. Although there has been a modest rise 
in the representation of Asian ancestries, African, Latin 
American, and Indigenous populations remain markedly 
underrepresented [66]. This imbalance is compounded 
by the over-reliance on easily accessible and homogene-
ous resources like the UK Biobank, which primarily com-
prises individuals of European ancestry, whereas other 
ancestry groups often have limited data repositories 
available [66]. Figure 5 presents the global distribution of 
total GWAS sample sizes by country, underscoring sig-
nificant regional disparities.



Page 16 of 27Alemu et al. Human Genomics            (2025) 19:8 

This lack of diversity leads to a substantial problem: 
PGSs derived from predominantly European datasets 
show dramatically reduced predictive accuracy when 
applied to non-European populations [48, 49]. For 

instance, Martin et al. (2019) reported a decline in PGS 
accuracy of about 37%, 50%, and 78% for individuals of 
South Asian, East Asian, and African ancestries, respec-
tively [48]. Further studies, such as those by Privé et  al. 

Fig. 4  Schematic Overview of AI/ML-based Multi-Omics Data Integration Workflow. This schematic illustrates a simplified workflow for multi-omics 
data integration, highlighting key steps in processing, analyzing, and translating multi-omics datasets. The process begins with omics layers (e.g., 
genomics, transcriptomics, proteomics, metabolomics), integrated using approaches like early integration (merging raw data), mixed integration 
(combining intermediate features), and late integration (aggregating model outputs). These datasets are analyzed using unsupervised learning 
methods, including Principal Component Analysis (PCA), t-Distributed Stochastic Neighbor Embedding (t-SNE), clustering, Non-Negative Matrix 
Factorization (NMF), Canonical Correlation Analysis (CCA), autoencoders, and Latent Dirichlet Allocation (LDA), as well as supervised methods 
like regression, Support Vector Machines (SVMs), Random Forests, Neural Networks, k-Nearest Neighbors (k-NN), Elastic Net, and deep learning. 
Model performance is evaluated using metrics such as F-measure, Area Under the Receiver Operating Characteristic Curve (AUROC), Cohen’s Kappa, 
and error measures like Mean Squared Error (MSE), Mean Absolute Error (MAE), and Root Mean Squared Error (RMSE). Validation ensures robustness 
and biological relevance through larger cohorts, model organisms, functional annotation, and perturbation analyses. Finally, insights are translated 
into diagnostic classification, clinical outcome prediction, treatment response prediction, and gene-environment (GxE) interaction analysis. This 
schematic is not exhaustive but provides a simplified guide to navigate the manuscript’s discussion on multi-omics data integration

Fig. 5  Global Distribution of Total GWAS Sample Sizes by Country. This map illustrates the geographic distribution of cumulative participants 
in genome-wide association studies (GWAS) across various countries for years where data are available, highlighting global disparities in genetic 
research participation. Data were sourced from Mills, M.C., and Rahal, C. (2020) in their study "The GWAS Diversity Monitor Tracks Diversity by Disease 
in real-time," published in Nature Genetics, 52, pp. 242–243, https://​doi.​org/​10.​1038/​s41588-​020-​0580-y. The Leverhulme Centre for Demographic 
Science maintains the data

https://doi.org/10.1038/s41588-020-0580-y
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(2021) and Ding et al. (2023), confirm that PGS accuracy 
not only diminishes across different ancestries but also 
varies significantly within them depending on the genetic 
distance from the European training populations [49, 
204]. The limited generalizability of these genetic insights 
could potentially exacerbate health disparities, under-
scoring the urgent need to broaden the genetic diversity 
in omics research to ensure that genomic advancements 
benefit all populations equitably [48, 67].

Furthermore, increasing the diversity of genomic 
data not only mitigates disparities but also significantly 
enhances the fine-mapping of GWAS signals and the 
identification of target genes [67]. This is crucial for 
uncovering the genetic mechanisms influencing the 
development of NCDs and other complex conditions. 
Underrepresented groups, such as those of African and 
South Asian ancestries, exhibit higher genetic diver-
sity, which translates into substantial gains in genomic 
research [205, 206]. Studies incorporating these popu-
lations have unearthed population-enriched clinically 
important variants that were previously undiscovered in 
predominantly European datasets. For example, research 
into African genetic ancestry has led to critical insights, 
including the link between APOL1 variants and chronic 
kidney disease [207], the identification of G6PD variants 
that refine diabetes diagnostics [208], and loss of function 
variants in PCSK9 that contribute to lower low-density 
lipoprotein cholesterol levels—this latter discovery has 
spurred the development of PCSK9 inhibitor drugs [209]. 
These findings underscore the value of including diverse 
genetic backgrounds in research to achieve a comprehen-
sive understanding of genetic factors across all popula-
tions, enhancing the overall impact of genomic studies 
on global health.

The lack of genetic diversity is a pervasive issue across 
various omics datasets, not just genomics [35, 91, 142, 
159]. For instance, bulk and single-cell transcriptomic 
analyses are beginning to uncover significant hetero-
geneity in gene expression across different cell types 
and even within the same type. This diversity is espe-
cially pronounced across different genetic ancestries, 
shaped by distinct environmental and genetic interac-
tions. Major research efforts, such as single-cell con-
sortia including KPMP, LungMAP, HTCA, GTEx [88], 
HuBMAP, Azimuth, HCA, and the Allen Brain Atlas, 
have predominantly focused on populations of European 
genetic ancestry, resulting in the underrepresentation 
of other groups. For example, of the 4,723 samples ana-
lyzed across these consortia, the majority are from indi-
viduals of European descent, starkly contrasted with the 
minimal representation from African, Hispanic, and East 
Asian ancestries. Addressing this imbalance is critical for 
enhancing our understanding of context-specific cellular 

mechanisms and improving the detection and treatment 
of diseases that vary regionally due to factors like genetic 
drift and migration. This understanding is particularly 
vital in pharmacogenomics, where knowing context-spe-
cific gene regulation can significantly advance personal-
ized medicine. In a significant step toward addressing this 
imbalance, the Chan Zuckerberg Initiative has recently 
funded the Ancestry Networks for the Human Cell Atlas 
(HCA) with a $28 million grant, supporting the inclusion 
of ancestrally diverse tissue samples to ensure a broader 
representation and deeper insights into the genetic 
underpinnings of health and disease across populations.

Similarly, the representation of genetic diversity in 
epigenomic data is markedly limited [210], as demon-
strated by a study by Breeze et  al. (2022). This study 
revealed that among the 5,048 epigenetic experiments 
from the US-based ENCODE data and the Interna-
tional Human Epigenome Consortium (IHEC), 87.1% 
(n = 4,397) predominantly featured samples of European 
genetic ancestry, with other ancestries severely underrep-
resented. Such disparities underscore a significant bias in 
the samples analyzed, with only a fraction representing 
African, Asian, and other ancestries. This lack of diver-
sity impedes our ability to fully understand and interpret 
disease-associated genomic regions across populations. 
Epigenomic markers such as promoters, enhancers, and 
repressors are crucial for annotating non-coding regions 
identified by GWAS, which often have unclear functional 
implications. Broadening the scope of epigenomic data 
to include diverse populations could enhance the inter-
pretation of GWAS loci, offering vital insights into the 
regulatory mechanisms affecting diseases that dispropor-
tionately impact non-European populations, like prostate 
cancer, hypertension, and chronic kidney disease.

Measuring exposomes
Measuring exposomes in multi-omics research on NCDs 
involves significant challenges due to the complexity 
and diversity of environmental exposures. Exposomes 
encompass a range of external factors, like pollution and 
radiation, alongside internal factors, such as microbiome 
interactions and metabolic processes. Technologies like 
mass spectrometry (MS) and geographic information 
systems (GIS) are essential for quantifying these expo-
sures. MS, particularly untargeted MS, excels in detecting 
a broad spectrum of small molecules in biological sam-
ples, providing a comprehensive snapshot of chemical 
exposures. However, the vast amount of data generated 
requires advanced  bioinformatics for accurate analysis, 
and detection sensitivity varies significantly among dif-
ferent chemical classes.

GIS tools assess environmental exposure by integrat-
ing diverse data sources to model spatial and temporal 
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distribution patterns of factors like air and water qual-
ity. This modeling is crucial for evaluating health risks 
linked to environmental factors. Additionally, wearable 
sensor technologies revolutionize exposure monitoring 
by providing real-time, individual exposure data to ele-
ments such as air quality and UV radiation, offering 
granular insights into daily exposure patterns. Despite 
these advancements, the dynamic nature of environ-
mental exposures and the heterogeneity in measurement 
techniques pose substantial challenges. These include 
the need for standardized data collection methods and 
the development of structured data sharing protocols to 
facilitate comparisons and enhance the accuracy of expo-
some research in understanding NCDs.

Establishing and maintaining biobanks
Establishing and maintaining biobanks is a critical yet 
challenging endeavor in omics and multi-omics research, 
particularly in low and middle-income countries (LMICs) 
[45, 47, 66, 69]. While most biobanks are found in high-
income countries, equipped with advanced infrastructure 
and technical capacity, LMICs face substantial barriers 
such as inadequate funding, limited institutional capac-
ity, and a shortage of skilled professionals. This dispar-
ity is especially pronounced in Africa and South Asia, 
which are severely underrepresented in genomic research 
[48, 66]. Most genomic studies in LMICs rely on fund-
ing from high-income countries through collaborative 
efforts, often resulting in research agendas set by external 
priorities rather than local needs [66].

Significant and sustained investment in biobanking 
infrastructure in under-represented regions is crucial to 
address the lack of diversity in omics research. Initiatives 
like the China Kadoorie Biobank and the South African 
Human Genome Project provide hopeful examples of 
how national governments are recognizing the value of 
omics studies [66]. In addition, further improvement in 
this field could be achieved by global consortia directing 
technical and financial resources to build local biobank-
ing capacities in LMICs. This approach not only helps 
in establishing the necessary infrastructure for sample 
processing, genotyping, sequencing, and computational 
analysis, but also facilitates equitable data, ultimately 
benefiting the global scientific community. For instance, 
the Africa Wits-INDEPTH Partnership for Genomic 
Research (AWI-Gen) exemplifies a strategic regional 
collaboration funded by the NIH [66]. This project has 
established a cross-sectional population cohort of about 
12,000 adults across four African countries, leverag-
ing existing Health and Demographic Surveillance Sys-
tem centers and community engagement to span a wide 
representation of social and genetic variability [67, 211]. 
Similarly, initiatives such as the H3Africa, H3Africa 

Bioinformatics Network(H3AfricaBioNet), and the Data 
Science for Health Discovery and Innovation in Africa, 
strategic funding commitments by the NIH, exemplify 
efforts to bolster genetic research capacity in Africa [212, 
213]. However, it is important to note that future funding 
commitments in genomics will benefit from expansion to 
broader continental regions to address health problems 
and capacity-building needs of countries with no pre-
existing omics research infrastructure.

Another significant hurdle is the lack of expertise for 
addressing the ethical, legal, and social implications 
(ELSIs) of multi-omics research, which hinders the con-
duct of research and efficient sharing of data [47]. To 
address this, it is essential to create national and local 
opportunities for advanced training, foster continuous 
professional development, and develop comprehensive 
ELSI guidelines that can be integrated into study designs. 
These measures will ensure that multi-omics research 
is conducted responsibly and its benefits are equitably 
shared, maintaining the integrity and relevance of the 
research. Additionally, promoting workforce diversity in 
omics research is crucial for building trust and fostering 
engagement among underrepresented groups. Diverse 
research teams are more likely to focus on health issues 
pertinent to their communities, which in turn encour-
ages broader participation and consent in biobank stud-
ies. This not only strengthens the relationship between 
researchers and participants but also enhances the 
quality of research data, making genomic studies more 
impactful and relevant across populations [67].

Multi‑omics data and integration methods
Integrating multi-omics data to unravel complex GxE 
interactions in NCDs is complicated by diverse data for-
mats and significant preprocessing requirements [35, 142, 
214, 215]. The lack of standardized methods for preproc-
essing and integrating data from various omics platforms 
often compromises the effectiveness of analyses [41, 216]. 
Additionally, the integration process is challenged by the 
"curse of dimensionality." This term describes issues that 
arise in high-dimensional datasets, where the volume 
of variables far exceeds the number of samples, leading 
to data sparsity and inconsistency across samples [217]. 
This makes it difficult to draw reliable conclusions from 
the data, emphasizing the need for robust analytical tools 
and methods that can handle and integrate vast and var-
ied omics data effectively.

On the other hand, tissue and cell-type heterogene-
ity present another significant challenge in multi-omics 
integration, particularly relevant to studying complex 
diseases [218]. Different cell types within a single tissue 
sample can exhibit unique omics profiles, influenced by 
the tissue’s specific section or the physiological condition 
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of an individual [218]. These variations can skew bio-
marker levels and lead to misleading associations that 
reflect cellular differences rather than the disease itself. 
Although statistical methods have been developed to 
adjust for cell-type heterogeneity, they may not fully 
account for the true biological variations or might even 
over-correct them. Ideally, single-cell omics would pro-
vide a clearer picture by isolating the profiles of each cell 
type, but this approach is often impractical due to high 
costs and material requirements [37, 178]. The chal-
lenges of sample heterogeneity and technical artifacts, 
such as batch effects during sequencing, underscore the 
complexity of data preprocessing in multi-omics stud-
ies. Ensuring consistent data processing and leveraging 
appropriate statistical controls are crucial for mitigating 
these issues and enhancing the reliability of multi-omics 
analyses.

Furthermore, while NGS technologies have made 
sequencing faster and more affordable, they have also 
introduced challenges such as increased costs for partici-
pant recruitment and sample processing, and complexi-
ties in data management and storage [178, 218]. Privacy 
concerns frequently limit data sharing between institu-
tions, sometimes leading to the withdrawal of large data-
sets from public access due to potential identification 
risks [215, 218]. Moreover, proprietary standards for bio-
medical devices and health IT systems hinder seamless 
data integration across different sources [35]. Addressing 
these issues requires comprehensive efforts to harmo-
nize data across various healthcare providers and omics 
modalities, necessitating a collaborative approach from 
all stakeholders in healthcare and research to enhance 
real-world evidence-based practices and improve health-
care outcomes.

Another multi-omics integration challenge, particularly 
when applying enrichment-based methods to uncover 
gene-environment interactions in NCDs, is the poten-
tial bias introduced by linkage disequilibrium, colocali-
zation of multiple functional variants, and unaccounted 
confounders [219]. Fine-mapping and imputation-based 
methods, which are crucial for developing biomarkers 
and understanding molecular mechanisms, depend heav-
ily on the accuracy of population-specific linkage dis-
equilibrium matrices [220]. These methods also rely on 
robust genetic reference models for molecular features 
such as gene expression or methylation, which are dif-
ficult to obtain for features other than gene expression 
[220]. The variability of QTL architecture across different 
tissues further complicates these analyses, necessitating 
careful consideration of tissue relevance to the disease 
mechanisms under study [220]. Researchers must ensure 
they are well-versed in the biological assumptions, sta-
tistical constraints, and computational demands of the 

integration tools they choose to employ to enhance the 
reliability and applicability of their findings in NCD 
research.

Validation of GxE interactions and translational applications
Validating GxE interactions identified in human research 
and translating them into actionable insights remains 
a critical challenge. Translational studies using model 
organisms bridge observational findings with mecha-
nistic understanding, allowing researchers to explore 
how genetic and environmental factors interplay in the 
development of NCDs [133]. Model organisms such as 
mice [221], rats [222], Drosophila melanogaster [223], 
and Caenorhabditis elegans [224] offer controlled envi-
ronments where genetic and environmental variables 
can be precisely manipulated. This control facilitates the 
dissection of complex biological processes that are chal-
lenging to study directly in humans due to ethical and 
practical constraints. Moreover, hypotheses generated 
from these studies can be tested using human genetic 
data, improving detection power and enabling a more 
detailed analysis of subpopulations to understand GxE 
interactions better. Incorporating functional annotations 
from resources such as ENCODE, GTEx, and Roadmap 
Epigenomics further enhances this process by prioritiz-
ing candidate variants and regulatory regions for GxE 
studies, particularly those in non-coding regions often 
affected by environmental exposures [225].

For example, genetically diverse rodent models like 
the Collaborative Cross [226] and Diversity Outbred 
lines [227], which have high sequence homology with 
humans, have been instrumental in identifying QTLs and 
candidate genes involved in GxE interactions relevant to 
human NCDs. A notable case involves mutations in the 
tumor suppressor gene BAP1, which have been linked 
with increased susceptibility to mesothelioma follow-
ing asbestos exposure [228]. Exploring how BAP1 muta-
tions interact with asbestos exposure could elucidate key 
molecular pathways in carcinogenesis, with the potential 
to inform targeted screening, prevention strategies, and 
therapies tailored to the underlying mechanisms. Simi-
larly, studies in Drosophila and C. elegans have facilitated 
high-throughput screening of genetic variants and envi-
ronmental exposures, uncovering genetic pathways that 
modulate responses to environmental stressors and offer-
ing translational insights about human health [229, 230].

However, the translation of findings from model sys-
tems to human populations is not without challenges. 
While model organisms provide controlled environ-
ments, they cannot fully replicate the genetic complex-
ity, environmental diversity, or numerous confounding 
factors that influence human health. For instance, gene 
synteny between humans and model organisms often 
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diverges, particularly for non-coding and regulatory 
regions, limiting the applicability of some findings. Stud-
ies such as Seok et  al. (2013) have demonstrated that 
genomic responses in mouse models often poorly mimic 
human inflammatory diseases, reflecting the inherent 
differences in gene regulatory networks and physiologi-
cal responses. Furthermore, humans are exposed to a 
far more diverse range of environmental factors—such 
as diet, pollution, and stress—than those typically repli-
cated in model organism studies, which limits the gener-
alizability of findings [231, 232] (Table 1).

Functional annotations and perturbation studies, con-
ducted in both in vitro and in vivo settings, hold prom-
ise for unraveling the complexities of GxE interactions 
in NCDs and other complex diseases [233]. Functional 
annotations derived from large-scale projects, such as 
ENCODE and GTEx, systematically map regulatory ele-
ments and link genetic variants to potential functional 
effects, guiding the identification of candidate variants 
and regulatory regions [88, 234, 235]. Perturbation stud-
ies, including CRISPR-Cas9-based approaches, enable 
direct testing of causal hypotheses [236]. For example, 
CRISPR interference (CRISPRi) and activation (CRIS-
PRa) screens in human induced pluripotent stem cell 
(hiPSC)-derived neurons have identified essential genes 
for neuronal survival under chronic oxidative stress–a 
key environmental factor relevant to neurodegenera-
tive diseases–revealing critical mediators like GPX4 and 
other selenoprotein synthesis genes [237].

Translational applications of GxE analysis have direct 
implications for personalized medicine and public health 
interventions [238]. In precision environmental health, 
identifying how specific genetic variations influence sus-
ceptibility to environmental exposures enables the devel-
opment of tailored interventions. For instance, genetic 
variation in CYP2D6 may influence susceptibility to Par-
kinson’s disease through pesticide exposure, with poor 
metabolizers potentially at greater risk [239]. These find-
ings could inform strategies to reduce exposure in vul-
nerable populations, though further research is needed 
for confirmation. The ALDH2*2 variant, common in cer-
tain populations, impairs acetaldehyde metabolism and 
may increase the risk of esophageal cancer with alcohol 
intake, suggesting the potential for personalized dietary 
recommendations and targeted prevention strategies in 
affected populations [240].

In pharmacogenomics, GxE interactions can guide per-
sonalized medication regimens to optimize efficacy and 
minimize adverse effects. Personalized warfarin dosing 
based on variations in genes like VKOR1 and CYP2C9 has 
been shown to improve therapeutic outcomes and reduce 
the risk of bleeding complications [241]. Variants in the 
TPMT gene necessitate dose adjustments of thiopurine 

drugs to prevent toxicity in treating conditions like leu-
kemia and autoimmune diseases [242]. CYP2D6 gene 
variants inform the selection and dosing of antidepres-
sants, enhancing treatment response and reducing side 
effects [242]. In oncology, identifying BRCA1/2 muta-
tions allows for the use of Poly(ADP-ribose) polymerase 
(PARP) inhibitors in targeted cancer therapy, while HER2 
expression guides the use of trastuzumab in breast can-
cer treatment, exemplifying how GxE insights contribute 
to precision medicine [243]. Approaches that integrate 
biological pathways and regulatory annotations can fur-
ther enhance the discovery and application of such GxE 
findings.

These translational applications underscore the impor-
tance of validating GxE interactions through model 
organisms and advanced experimental systems. How-
ever, significant challenges persist. Limited experimen-
tal validation of GxE findings in model organisms and 
translational settings undermines confidence in the bio-
logical mechanisms underlying these interactions, slow-
ing their application to precision medicine and public 
health interventions [244]. High costs and the technical 
complexity of integrating environmental monitoring data 
with omics insights further impede progress. Addition-
ally, the lack of standardized protocols for validating GxE 
findings, combined with the scarcity of diverse model 
systems, restricts the development of tailored therapies 
and prevention strategies [233, 244]. These issues col-
lectively limit the potential of GxE research to address 
global health disparities effectively, particularly in low-
resource settings where both environmental and omics 
data are underrepresented.

Summary and concluding remarks
This scoping review highlighted that NCDs, such as car-
diovascular diseases, cancers, chronic  respiratory dis-
eases, and diabetes, result from the complex interaction 
of gene and environmental factors, such as diet, physi-
cal inactivity, and tobacco use. To unravel the complex-
ity of GxE interactions and gain an understanding of the 
multiple factors underlying many NCDs, a multi-omics 
approach is indeed essential. By employing multi-omics 
and data integration techniques, it can be possible to fully 
understand how the interaction of genetic and environ-
mental factors influences NCD development, progres-
sion, and treatment response. This involves exploring a 
range of omics disciplines—genomics, transcriptomics, 
epigenomics, proteomics, and exposomics and under-
standing how they individually and collectively influence 
the risk to NCDs.

Despite the transformative potential of global multi-
omics research in advancing precision medicine, there 
are significant challenges and opportunities related 
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to its practical translational applications. Our review 
highlighted that the genome can not be viewed as a 
static entity, as both genetic and environmental factors 
dynamically influence disease onset and progression. 
We provide several examples of how different modali-
ties complement genomic data by revealing dynamic 
changes in gene expression, pathways, and networks due 
to environmental exposures. Thus, comprehensive omics 
integration is essential for identifying novel biomarkers 
and therapeutic targets and enhancing diagnostic, prog-
nostic, and treatment strategies. Integrative analyses ide-
ally would involve multiple omics data from the same 
individuals, although practical challenges such as cost 
and tissue accessibility may often limit this ideal. Interna-
tional consortia and national biobanks have been estab-
lished to address these challenges, collecting detailed 
phenotypic and, increasingly, omics biomarker data to 
fill major gaps in NCD research. Moreover, we under-
scored a pervasive issue of limited diversity across omics 
and multi-omics datasets, affecting the transferability 
of research findings and tools across different genetic 
ancestries. Currently, most genomic and omics studies 
predominantly feature individuals of European descent, 
significantly underrepresenting African, Latin Ameri-
can, and Indigenous populations. This underrepresenta-
tion compromises the predictive accuracy of polygenic 
scores and other genomic tools when applied to non-
European groups. Furthermore, including diverse genetic 
ancestries is crucial not only for enhancing the precision 
of GWAS signal mapping but also for discovering clini-
cally relevant genetic variants that remain unidentified 
in predominantly European datasets. For example, stud-
ies involving African ancestry have led to key discover-
ies in chronic kidney disease and diabetes management. 
Addressing this lack of diversity is essential not only to 
improve the scientific robustness of omics research but 
also to mitigate health disparities, ensuring that the ben-
efits of genomic advances reach all populations equitably.

To address fairness in multi-omics for equitable health 
advancements, concerted efforts should focus on increas-
ing the diversity of both omics and multi-omics datasets. 
Future research should also aim to develop equity-cen-
tered genomics medicine advanced computational meth-
ods and tools that efficiently integrate various omics 
datasets. These tools must generate biomarkers or risk 
predictors that are broadly transferable across genetic 
ancestries, with a particular emphasis on accounting for 
known confounders such as gene-environment correla-
tions, including population stratification and assorta-
tive mating. By doing so, we can improve the scientific 
robustness of omics research and ensure that the bene-
fits of genomic advances reach all populations equitably, 
thereby helping to mitigate health disparities globally.

Lastly, our exploration of multi-omics integration 
methods has illuminated the intricate challenges of com-
bining diverse datasets to decode complex GxE interac-
tions in NCDs. The heterogeneity of tissue and cell types 
significantly compounds these challenges, with variations 
in omics profiles within a single tissue potentially mis-
leading biomarker identification. Statistical adjustments 
for cell-type heterogeneity aim to correct these varia-
tions, yet there is a risk of over-correction, obscuring 
genuine biological differences. High costs and logistical 
constraints often thwart the ideal solution of employing 
single-cell omics to circumvent these issues. Moreover, 
while advancements like NGS have reduced costs and 
increased the speed of data acquisition, they introduce 
new difficulties in data management, participant recruit-
ment, and inter-institutional data sharing due to privacy 
concerns. This requires a coordinated effort to harmonize 
multi-omics data across different healthcare settings, 
requiring a collaborative approach among all stakehold-
ers to leverage real-world evidence for improving health 
outcomes effectively.
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