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Abstract

Non-communicable diseases (NCDs) such as cardiovascular diseases, chronic respiratory diseases, cancers, diabe-
tes, and mental health disorders pose a significant global health challenge, accounting for the majority of fatalities
and disability-adjusted life years worldwide. These diseases arise from the complex interactions between genetic,
behavioral, and environmental factors, necessitating a thorough understanding of these dynamics to identify effec-
tive diagnostic strategies and interventions. Although recent advances in multi-omics technologies have greatly
enhanced our ability to explore these interactions, several challenges remain. These challenges include the inherent
complexity and heterogeneity of multi-omic datasets, limitations in analytical approaches, and severe underrepre-
sentation of non-European genetic ancestries in most omics datasets, which restricts the generalizability of findings
and exacerbates health disparities. This scoping review evaluates the global landscape of multi-omics data related

to NCDs from 2000 to 2024, focusing on recent advancements in multi-omics data integration, translational applica-
tions, and equity considerations. We highlight the need for standardized protocols, harmonized data-sharing policies,
and advanced approaches such as artificial intelligence/machine learning to integrate multi-omics data and study
gene-environment interactions. We also explore challenges and opportunities in translating insights from gene-
environment (GxE) research into precision medicine strategies. We underscore the potential of global multi-omics
research in advancing our understanding of NCDs and enhancing patient outcomes across diverse and underserved
populations, emphasizing the need for equity and fairness-centered research and strategic investments to build local
capacities in underrepresented populations and regions.
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Introduction

Non-communicable diseases (NCDs), such as cardio-
vascular diseases, cancers, chronic respiratory diseases,
diabetes, mental health disorders, and other complex
diseases, pose a significant and growing global health
challenge [1]. Annually, NCDs account for 41 million
deaths, constituting 60% of Disability Adjusted Life Years
(DALYs), 81% of Years Lived with Disability (YLDs), and
74% of all global fatalities [2, 21], making them the pri-
mary cause of disease burden and death worldwide [1].
For example, cardiovascular diseases alone claim 17.9
million lives each year, followed by cancers (9.3 million),
chronic respiratory diseases (4.1 million), and diabetes-
related conditions (2.0 million), together accounting for
over 80% of all premature NCD deaths [2]. Economi-
cally, the cumulative global burden of NCDs from 2010
to 2030 is estimated to exceed USD 47 trillion—a figure
that represents 75% of the global GDP in 2010 [3]. This
rise in NCDs can largely be attributed to rapid unplanned
urbanization, the globalization of unhealthy lifestyles,
and an aging population [2, 4].

NCDs affect individuals across all demographics and
countries, with a disproportionately severe impact on
low- and middle-income countries, where over three-
quarters of global NCD-related deaths, approximately
31.4 million, occur annually [5]. These diseases arise from
complex interactions between genetic and environmen-
tal— including physical inactivity, unhealthy diets, obe-
sity, and the use of tobacco or alcohol [6, 7]. Although
NCDs typically manifest in adulthood, their roots are
often traced back to behaviors and conditions established
during childhood and adolescence [8, 9]. The burden of
NCDs alongside existing infectious diseases poses sig-
nificant economic stability and development challenges,
exacerbating poverty and straining health systems,
reducing resilience to emergencies such as infectious dis-
ease outbreaks and natural disasters [1, 3]. Furthermore,
the high burden of NCDs is a major obstacle to progress
towards the 2030 Agenda for Sustainable Development,
specifically the target to reduce premature mortality
from the four principal NCDs (cancers, cardiovascular
diseases, chronic respiratory diseases, and diabetes) by
one-third by 2030 [2, 3, 10].

Family- and population-based studies have revealed
that most NCDs possess substantial genetic components,
with diseases such as coronary artery disease (CAD) [11]
and autism spectrum disorder (ASD) [12] demonstrat-
ing high heritability, estimated at approximately 50% and
80%, respectively. Most NCDs are predominantly poly-
genic, involving numerous genetic variants that each con-
tribute subtly to overall disease risk [13—[15]. Advances
in omics technologies, particularly genome-wide associa-
tion studies (GWAS), have successfully identified many
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genetic variants linked to NCDs [15-[18]. However, our
understanding of the genetic etiology of NCDs remains
incomplete [8, 9, 96]. There are several challenges,
including the ‘missing heritability problem, where known
genetic variants associated with a disease/trait account
for only a small fraction of the expected heritability
[19-[23]. Additionally, pinpointing the true causal vari-
ants that contribute to disease mechanisms has proven
difficult due to the complex linkage disequilibrium (LD)
structure of GWAS nominated variants, which limits
thier clinical utility [24—[26]. Recent advances in whole
genome sequencing (WGS) studies have begun to eluci-
date the role of rare genetic variants in NCDs, while also
offering additional insights into the contribution of com-
mon variants through improved resolution and compre-
hensive genomic coverage. Despite these insights, rare
variants do not fully explain the missing heritability in
NCDs, underscoring their complexity and multi-factorial
nature [27]. A key factor that may explain this missing
heritability is the complex interplay between genetic vari-
ants and environmental factors—often called gene-envi-
ronment (GxE) interactions [21, 21—[30]. In this context,
an ‘environment’ could be any endogenous or exogenous
non-genetic factor that influences the risk of developing
NCDs [31].

To fully understand the complex GXE interactions that
underpin the biological basis of NCDs, it is essential to
integrate information across multiple levels [32-[36].
This integration encompasses molecular profiles from the
genome, epigenome, transcriptome, proteome, metabo-
lome, lipidome, and microbiome—collectively referred
to as multi-omics—along with environmental exposures
known as the exposome. Rapid advancements in compu-
tational methodology have made the integration of multi-
omics including high-throughput sequencing, mass
spectrometry, smart wearable devices, and expanded
electronic health records (EHRs) data increasingly feasi-
ble [33, 37, 38]. Such omics integration generates com-
prehensive data at an unprecedented speed and scale,
enhancing our understanding of disease mechanisms and
revolutionizing precision medicine [37, 39, 40] by ena-
bling targeted prevention, precise diagnostics, personal-
ized treatments, and accurate prognosis [37].

The multi-omics approach requires innovative inte-
gration methods that combine information from diverse
omics data sources [35, 41, 42]. These methods facili-
tate the assessment of information flow from one omics
layer to another and help elucidate the intricate interplay
between various molecular profiles. Recently, advances
in statistical modeling and machine learning have ena-
bled more effective integration of omics data, which is
crucial for tackling the complexity of NCDs [37, 38, 43,
44]. Despite this potential, several significant challenges
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remain. A primary obstacle is deciding which omics layer
to prioritize in multi-omics studies [37]. While many
researchers adopt a genome-first approach, the optimal
strategy may vary depending on the specific disease and
available data. Another challenge is the lack of genetic
diversity in most multi-omics datasets, as most of these
datasets have predominantly been based on samples
of European genetic ancestry [45-[48]. Studies have
shown that results derived from predominantly Euro-
pean datasets often do not translate well to individuals of
non-European ancestry, potentially exacerbating health
disparities by limiting research benefits to certain groups
[48, 49]. Furthermore, the heterogeneity and massive
scale of multi-omics datasets pose substantial challenges
in data integration, requiring significant computational
resources, skills, and advanced analytical techniques [50].

In this scoping review, we examine the multi-omics lit-
erature comprehensively, specifically focusing on NCDs
and omics (multi-omics) diversity. Our primary goal is to
assess the current landscape of global multi-omics data
as it relates to NCDs, summarizing key advances in data
integration techniques that enable a deeper understand-
ing of the intricate GxE interactions at play. We will delve
into the significant role of multi-omics research in elu-
cidating the complex pathways influencing the develop-
ment, progression, and response to treatment in NCDs.
Next, we illustrate practical translational applications and
point out critical limitations currently facing the field.
Additionally, we discuss the transformative potential of
global multi-omics research initiatives in advancing pre-
cision medicine, specifically in tailoring prevention, diag-
nosis, and treatment strategies to individual genetic and
environmental profiles. Lastly, we propose directions to
address existing challenges of multi-omics research to
enhance our understanding of the biological mechanisms
of NCDs and development of effective interventions.

Omics technologies for unraveling GxE interactions
in NCDs

Research has consistently demonstrated that the risk of
developing most NCDs and the effectiveness of treat-
ments are influenced by both the independent effects of
an individual’s genetic makeup and various environmen-
tal exposures, as well as by the potential synergistic or
antagonistic interactions between these two factors [13,
14, 36, 51]. One type of GxE interaction occurs when an
individual’s genotype modulates the effect of environ-
mental exposure on disease risk. For example, certain
genetic variants may alter the risk of developing Parkin-
son’s disease in individuals exposed to organophosphate
pesticides [52, 53]. Conversely, another form of GxE
interaction happens when the influence of a genotype
on disease risk changes with different environmental
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exposures [28]. A notable case is how the impact of the
FTO gene on body mass index (BMI) can significantly
vary depending on lifestyle factors such as physical
activity, diet, alcohol consumption, and sleep duration
[54]. These examples underscore the dynamic interplay
between our largely static genetic code and the respon-
sive molecular layers of the genome and epigenome.
These layers dynamically respond to environmental
changes, affecting gene expression and cellular functions,
representing key mechanisms through which GxE inter-
actions manifest.

Omics technologies— powered by advances in high-
throughput sequencing technologies such as next-gener-
ation sequencing (NGS) and rapidly expanding electronic
data (exosomes), enable a comprehensive analysis of vari-
ous biological systems [55]. Each technology focuses on
a different aspect: genomics and epigenomics explore
genetic and epigenetic variations; transcriptomics exam-
ines gene expression dynamics; proteomics investi-
gates protein functions and interactions; metabolomics
assesses metabolic responses; exposomics evaluates life-
long environmental exposures. While each technology
excels at quantifying specific types of biomolecules, the
complete picture of disease mechanisms often involves
intricate molecular machinery such as transcriptional
and translational regulation, RNA and peptide degra-
dation, posttranslational modifications, and molecular
transport [55, 56]. Thus, focusing solely on one type of
omics data can overlook critical interactions between
these processes.

Genomics

Genomics, the most established omics technologies,
has profoundly enhanced our understanding of NCDs
through extensive profiling of genetic variants such as
SNPs, insertions-deletions, and structural variants [16,
24, 25, 16—[59]. Pioneering advancements in NGS tech-
nologies have been crucial, providing extensive genome-
wide coverage that is faster and more cost-effective
than ever before [60]. Significant and fast reduction
in sequencing costs has spurred substantial growth in
genomic and multi-omics research, making large-scale
studies more feasible and affordable (Fig. 1). So far, over
6000 GWASs have been conducted for more than 3000
traits, yielding thousands of associated genetic variants
[58, 59]. This represents a substantial advance over the
pre-GWAS era when only a handful of genetic associa-
tions were robustly identified [58]. For instance, a GWAS
of Crohn’s disease implicated the IL-12/IL-23 pathway
in the development of the disease, which subsequently
informed clinical trials of drugs that targeted these path-
ways [61]. Furthermore, polygenic scores (PGSs) that
aggregate genetic risk information across the genome are
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Fig. 1 Log-Transformed Trends in PubMed Citation Frequencies and Sequencing Costs (2000-2024). This figure illustrates trends in sequencing

nu,

costs and PubMed citation frequencies for key terms (“multi-omics,

personalized/precision medicine,’and “gene-environment (GxE) interactions”)

from 2000 to 2024. Citation data were derived using a Python-based web scraping approach that sends HTTP requests to PubMed and parses
the HTML response using the BeautifulSoup library. For each year, search queries targeted keywords in the title/abstract, filtering results

by publication year to extract the annual citation count. Sequencing cost data were sourced from the National Human Genome Research
Institute’s (NHGRI) Genome Sequencing Program (GSP) database (Wetterstrand KA, www.genome.gov/sequencingcostsdata; accessed June 17,
2024). Both the citation frequencies and sequencing costs are log-transformed for improved visibility of trends across a wide range of values. The
y-axis for citations represents log10-transformed counts, where each unit increase corresponds to a tenfold increase in the number of citations.
Similarly, the y-axis for sequencing costs reflects log10-transformed values, where each unit decrease corresponds to a tenfold reduction

in the cost per megabase of sequencing. This transformation ensures that both very small and very large values are clearly represented, allowing
for meaningful interpretation of exponential changes over time. The visualization emphasizes the rapid advancements in sequencing technology
and the concurrent growth in research interest in multi-omics, personalized medicine, and GxE interactions

increasingly used to predict an individual’s risk of devel-
oping NCDs and other diseases [61]. A recent clinical
study demonstrated the effectiveness of PGS-based risk
assessments for 10 NCDs, including coronary artery dis-
ease, atrial fibrillation, type 2 diabetes, chronic kidney
disease, and breast cancer. Notably, this study returned
genome-informed risk assessment results to patients,
marking a significant milestone in clinical genetics [62].
Additionally, in psychiatric genomics, PGSs have shown
promise in predicting treatment outcomes for mental

health disorders, including treatment response, resist-
ance, side effects, and hospitalization rates [63—[65].
Although GWASs have successfully identified repli-
cable genetic variants associated with many NCDs and
other traits, there are significant methodological and
ethical challenges that must be addressed before these
findings can be fully translated into preventive and
clinical treatments. One major limitation is the poor
transferability of findings across different genetic ances-
tries [48, 49]. This discrepancy largely stems from the
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underrepresentation of non-European ancestry in GWAS
cohorts (only 14%) [48, 66]. This lack of diversity not only
impedes the clinical application of PGSs but also exacer-
bates health disparities, because the benefits of ancestry-
biased genetic research cannot equitably be distributed
across populations [46, 47, 46—[69]. A critical aspect
often overlooked is that Africa harbors the greatest
human genetic diversity in the world, which offers unique
opportunities for understanding genetic susceptibility to
NCDs and other complex traits [70—[72]. The African
Genome Variation Project (AGVP), for example, uncov-
ered over 8 million novel variants, with a substantial pro-
portion identified in Ethiopian and Zulu populations [73].
Moreover, African populations possess shorter haplotype
blocks and complex population substructures, which
allow for more precise fine mapping of disease suscep-
tibility alleles [70, 71, 74]. This diversity, combined with
the unique genetic adaptations in response to diverse
climates, diets, and infectious diseases, underscores the
necessity of expanding large-scale sequencing efforts in
African populations. Incorporating these genomes will
not only advance our understanding of NCDs but also
ensure that the benefits of genomic medicine are equita-
bly distributed across all populations [72].

Despite the slow progress, there are promising global
efforts aimed at tackling the significant lack of diversity
in genomic research. The Human Heredity and Health in
Africa (H3Africa) initiative, the largest genomic research
consortium in Africa, is spearheading this effort with a
10-year project aimed at studying the genetic basis of dis-
ease among African populations and establishing sustain-
able genomics research across the continent [66]. This
initiative includes the creation of three biorepositories in
Uganda, South Africa, and Nigeria, and the development
of the Pan African Bioinformatics Network (H3ABioNet),
supporting advances in handling biological data [66]. In
Latin America, the Latin American Genomics Consor-
tium is harmonizing data from existing cohorts and plan-
ning new recruitments to build a substantial biobank,
addressing the underrepresentation of admixed popula-
tions [66]. In the United States, the All of Us Research
Program aims to mirror the country’s diversity by collect-
ing data from over one million participants, half of whom
are of non-European genetic ancestry. This program has
identified over 275 million previously unreported genetic
variants, with 77% of its participants coming from his-
torically underrepresented communities in biomedical
research [75]. Despite these encouraging efforts, the pro-
gress is far from sufficient. There is a substantial disparity
within continents, particularly in Africa, Latin America,
South Asia, and West Asia, where only a few countries
have well-established biobanks [66]. This highlights
the ongoing need for more comprehensive initiatives to
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ensure that genetic research benefits all global popula-
tions equitably.

Another limitation of standard population-based
GWAS is the bias arising from population stratification
and assortative mating, which can distort the estimated
effects of variants on phenotypes [76—[79]. Standard-
GWAS results are influenced by several factors, includ-
ing the direct effects of alleles carried by an individual
on their phenotype; the indirect effects of alleles carried
by relative(s) through environmental influences (genetic
nurture); and confounding due to population stratifica-
tion and assortative mating. Although methods such as
principal-component (PC) analysis and linear mixed
models (LMMs) are used to adjust for population strati-
fication, residual confounding often persists in GWAS
summary statistics [78—[80]. These biases are particu-
larly pronounced in polygenic scores (PGSs), which
aggregate genetic risk information from thousands of
variants [78]. Additionally, such biases can also impact
post-GWAS analyses, including biological annotation,
heritability estimation, genetic correlations, Mendelian
Randomization (MR), and GxE interaction [78]. While
family-based GWASs typically have lower power than
population-based GWASs due to smaller sample sizes,
they have been shown to mitigate biases from population
stratification effectively [78, 80]. A recent within-fam-
ily GWAS, conducted on a large sample of siblings, has
demonstrated that within-family association estimates
are significantly attenuated compared to standard GWAS
estimates for traits such as depressive symptoms, height,
and smoking [78]. The increasing availability of family-
based data offers great potential for disentangling direct
and indirect genetic effects affecting NCDs, thereby aid-
ing in unraveling complex GxE interactions.

Transcriptomics

Transcriptomics, through RNA sequencing (RNA-seq)
technologies, has become instrumental in elucidating
cellular pathways critical to the pathophysiology of many
NCDs [81]. By analyzing all RNA transcripts, including
coding and non-coding types, RNA-seq provides com-
prehensive insights into mRNA abundance, alternative
splicing, nucleotide variations, and structural alterations
[81, 82]. By revealing how gene expression is regulated
and altered under various conditions, transcriptomics
plays a pivotal role in bridging genotypic variations with
phenotypic manifestations.

For instance, a study by Romanoski et al. (2010) inte-
grated transcriptomics and genomics to examine human
aortic endothelial cells’ response to oxidized phospho-
lipids, a key factor in atherosclerosis—a major cause of
heart disease [83]. They treated cells with oxidized phos-
pholipids, known to induce vascular inflammation, and
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simultaneously performed analysis to identify expression
quantitative trait loci (eQTLs) influencing gene expres-
sion changes. This approach revealed that approximately
one-third of the highly regulated transcripts exhibited
gene-environment (GxE) interactions, often influenced
by distal, trans-acting effects. Some notable interactions
were further validated through small interfering RNA
(siRNA) knockdown experiments, confirming the sig-
nificant role of specific genetic loci in modulating gene
expression responses to environmental stimuli [83]. This
and other related studies [84—[86] illustrate how integrat-
ing genomic and transcriptomic data can uncover com-
plex GxE interactions, enhancing our understanding of
the genetic and environmental underpinnings of cardio-
vascular diseases and other NCDs.

Building on the capabilities of RNA sequencing tech-
nologies, the surge in transcriptomic data has prompted
the establishment of comprehensive consortia tasked
with managing, curating, and distributing these resources
to the broader scientific community. Among the most
noteworthy is The Cancer Genome Atlas (TCGA), which
provides a rich repository of cancer-related transcrip-
tomic data. Similarly, the Allen Human Brain Atlas offers
specialized RNAseq databases focusing on brain diseases,
encompassing studies on aging, dementia, and traumatic
brain injury. Additionally, repositories such as the Gene
Expression Omnibus (GEO), Encyclopedia of DNA Ele-
ments (ENCODE) [87], and the Genotype-Tissue Expres-
sion (GTEx [88]) Project significantly contribute to the
availability of transcriptomic data across various tissues
and conditions. By providing access to extensive tran-
scriptomic data, these consortia support the ongoing
exploration of how gene expression is intricately regu-
lated and modified, thus continuing to bridge genotypic
variations with phenotypic manifestations in complex
disease research.

Epigenomics

Epigenomics, which examines the full spectrum of epi-
genetic modifications such as DNA methylation and
histone modification, plays a crucial role in under-
standing how environmental factors and genetic pre-
dispositions interact to influence the development
of diseases [89]. These modifications regulate gene
expression without altering the DNA sequence and are
involved in critical processes like cellular differentiation
and tumorigenesis [89, 90]. The epigenome’s respon-
siveness to various environmental exposures—such as
metals, air pollution, electromagnetic radiation—and
lifestyle factors like diet, smoking, and physical activ-
ity, as well as the natural aging process, underscores its
dynamic nature [89, 91]. For example, chronic exposure
to arsenic and lead is associated with DNA methylation
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changes that heighten the risk of various cancers [92,
93]. Similarly, prenatal dietary factors like folate intake
can alter the epigenome, influencing fetal development
and disease susceptibility later in life [94—-[96]. Addi-
tionally, medications such as sodium valproate (VPA),
used for treating epilepsy and bipolar disorder, dem-
onstrate the complexity of interactions between phar-
macological treatments and epigenetic regulation by
affecting gene expression through their histone deacet-
ylase (HDAC) inhibitor properties [97, 98].

Epigenomics can provide a molecular framework
to understand how GxE effects manifest in NCDs.
Through studying epigenetic modifications, research-
ers can discover novel genes and pathways influenced
by genetic factors and environmental exposures. The
epigenome is partly regulated by the genome, with
genetic variation influencing the establishment of DNA
methylation marks [99-[102], while also being highly
responsive to environmental factors [103—[105]. This
dual regulation highlights the complexity of gene-envi-
ronment interactions. For instance, the expression of
certain NCD risk variants may depend on specific DNA
methylation states, which environmental factors can
alter. Alternatively, genetic variations might predispose
certain epigenomic profiles to respond differently to
environmental exposures, thus influencing disease risk
[94]. Recent studies, such as those by Teh et al. (2014),
have shown that a significant proportion of variably
methylated regions, areas where methylation levels
vary substantially among individuals, can be attributed
to GxE interactions, revealing the intricate molecular
mechanisms at play [106].

Advances in next-generation sequencing technolo-
gies have significantly enhanced the precision and scope
of epigenic profiling [94]. While techniques like bisulfite
conversion have been widely used to map methylation,
they come with challenges, such as incomplete conver-
sion and DNA degradation. The advent of long-read
sequencing technologies, such as PacBio’s HiFi sequenc-
ing, has addressed some of these limitations. HiFi
sequencing can directly detect 5mC methylation with-
out the need for bisulfite conversion, offering both high
accuracy and the ability to resolve methylation profiles
alongside phased haplotyping in a single run [107]. This
capability significantly improves our understanding of
epigenetic modifications linked to genetic variants and
environmental factors. On the other hand, major collab-
orative efforts like the NIH Roadmap Epigenomics pro-
ject, the International Human Epigenome Consortium
(IHEC), and ENCODE project have provided compre-
hensive maps of the human epigenome. By linking epi-
genetic changes to functional outcomes, these consortia
enhance our understanding of the complex interactions
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that define health and disease, paving the way for
advances in precision medicine.

Proteomics

Proteomics explores the entire array of proteins pro-
duced or modified by an organism, offering crucial
insights into the development and progression of NCDs.
The proteome is highly dynamic, exhibiting considerable
variability due to processes like alternative splicing, pro-
tein modifications, and the complex assembly of proteins
into signaling networks [108]. These processes, regulated
spatially and temporally, allow proteomics to measure
critical changes in amino acid mutations, peptide iso-
forms, and posttranslational modifications (PTMs) [109,
110]. PTMs like phosphorylation, acetylation, and glyco-
sylation are especially significant, as their dysregulation
is often implicated in cancer, cardiovascular diseases,
and neurodegenerative disorders [109, 110]. Proteomic
profiles also capture responses to environmental stimuli,
such as diet [111], chemical exposure [112], and smoking
[113], highlighting their value in understanding complex
gene-environment or proteome-environment interac-
tions and refining the selection of target genes for further
investigation [32].

A hallmark example of proteomics integration with
genomic and phenotypic data is the UK Biobank Pharma
Proteomics Project (UKB-PPP), a public—private partner-
ship that profiled over 2,900 proteins in plasma samples
from over 54,000 participants [114]. This initiative identi-
fied over 14,000 protein quantitative trait loci (pQTLs),
with 81% being novel. By comparing results from dif-
ferent platforms like Olink and SomaScan and across
diverse ancestries, the project underscored the power
of multi-level data integration in revealing protein-level
differences that influence disease studies, enhancing
our understanding of genomic associations and disease
mechanisms across populations [114]. Among the most
notable associations with NCDs include a strong link
between natriuretic peptide B (BNP) and heart failure
and inflammatory bowel disease (IBD) associated with
higher plasma levels of prostaglandin-H2 D-isomerase
[114]. While most analyses focused on participants
of European genetic ancestry (n=34,557), ancestry-
specific pQTL studies in African (n=934), Central/
South Asian (n=920), and other non-European groups
revealed unique variants, many of which were absent or
rare in Europeans [115]. These findings underscore the
importance of expanding proteomic studies to diverse
ancestries to capture population-specific genetic and pro-
teomic interactions, addressing disparities in disease risk
and treatment. Another UK Biobank study identified over
5,000 associations between rare protein-coding variants
and plasma protein abundances, significantly expanding
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our understanding of how rare variations influence pro-
teomic profiles and highlighting their potential in identi-
fying new therapeutic targets and biomarkers [116].

Despite its promise, proteomics faces challenges in
scalability, cost and analytical complexity. High-through-
put platforms such as mass spectrometry (MS) and
proximity extension assays (PEA) enable precise pro-
tein profiling from minimal amounts of biological sam-
ples, but they remain costly, limiting their application in
large-scale studies [117, 118]. The high dynamic range of
protein expression and complexity of many PTMs and
sequence variations pose further technical hurdles [109,
110]. Addressing these challenges is crucial for fully lev-
eraging the potential of proteomics for novel biomarker
discovery, targeted drug development, and understand-
ing NCD mechanisms.

Public—private collaborations like the UKB-PPP high-
light the transformative potential of proteomics to bridge
the gap between genetics and phenotypes in multi-omics
research. By integrating proteomics into population-scale
biobanks, researchers can enhance causal gene identifica-
tion, refine patient stratification, and accelerate therapeu-
tic discovery. However, ensuring equitable applications
requires broadening the representation of underrepre-
sented populations and addressing cost barriers. These
advancements will enable proteomics to significantly
contribute to precision medicine and effective manage-
ment of NCDs globally.

Metabolomics
Metabolomics focuses on small-molecule metabolites—
such as hormones, amino acids, and lipids—that serve as
substrates, intermediates, and products of metabolism,
offering a direct window into the biochemical pathways
driving complex diseases, including NCDs [119]. Closer
to the actual phenotype than mRNA or protein, metabo-
lite levels provide a particularly valuable physiological
readout because they integrate environmental and mul-
tiple regulatory inputs [120]. Each tissue or cell type has
a unique metabolic signature, allowing metabolomics
to highlight organ or tissue-specific changes linked to
disease [120]. The dynamic nature of the metabolome,
highly responsive to factors such as diet and chemical
exposure, makes it indispensable for studying gene-envi-
ronment interactions in NCDs [121]. Integrating metab-
olomics data with other omics layers, such as genomics
and proteomics, enhances our ability to map metabolic
pathways, predict metabolite abundances, and identify
novel biomarkers and therapeutic targets across diverse
populations.

Metabolomics enables the quantification of both
endogenous metabolites and xenobiotics—foreign sub-
stances like environmental chemicals, pollutants, and
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drugs—offering a comprehensive view of how external
exposures impact biological systems [119]. By analyz-
ing these external compounds alongside changes in the
endogenous metabolome, metabolomics reveals critical
insights into the biological effects of environmental expo-
sures. For example, a study on occupational exposure
to trichloroethylene (TCE) identified TCE metabolites
in human plasma and linked them to changes in endog-
enous metabolites associated with immunosuppression,
hepatotoxicity, and nephrotoxicity, highlighting the toxic
effects of TCE [122]. Similarly, the EXPOsOMICS project
explored biofluids and exhaled breath for disinfection
by-products (DBPs) from swimming pools, uncovering
potential disruptions to metabolites in the tryptophan
pathway [123]. In another study, researchers examined
the relationship between SNPs in the methionine salvage
enzyme APIP and mortality risk in sepsis triggered by
infections like Salmonella. By analyzing plasma metab-
olomic profiles from about 1,000 patients, the study
showed that sepsis survivors had significantly lower lev-
els of the enzyme’s substrate, methylthioadenosine, than
nonsurvivors, illustrating how genetic variation and
metabolite levels jointly influence sepsis outcomes [124].
These examples demonstrate metabolomics’ capacity to
unravel gene-environment interactions and the biological
consequences of external exposures.

A key challenge in metabolomics is the identification
and measurement of metabolites, but recent advance-
ments have significantly eased this bottleneck [119, 120,
125]. Technological advances in nuclear magnetic reso-
nance (NMR) and mass spectrometry (MS)-based meth-
ods, such as GC-MS and LC-MS, have also improved
the precision and range of metabolite quantification.
Expanded metabolite databases, such as The Human
Metabolome Database (HMDB) and XCMS-METLIN,
now contain tens of thousands of metabolites, includ-
ing xenobiotics from environmental sources. Addition-
ally, various bioinformatics tools now enable more robust
analysis, linking metabolic signatures to disease states
and outcomes, thus enhancing the potential of metabo-
lomics in NCD research [119].

Exposomics

Exposomics is a burgeoning field that explores the com-
prehensive impact of environmental factors on human
health over an individual’s lifetime [126]. This discipline
considers various exposures—from chemical and biologi-
cal agents to psychosocial factors, socioeconomic status
and interpersonal relationships. These factors can trigger
various biological responses, including changes in gene
and protein expression, which in turn may influence the
microbiome and epigenome [126]. This complex inter-
play underscores how environmental factors, intertwined
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with genetic predispositions, contribute to the develop-
ment of NCDs (Fig. 2). Examples of replicated gene-
environment interactions include BRCA-1 associated
protein-1 (BAP1) mutations and asbestos exposure for
mesothelioma [127], chromodomain helicase DNA-bind-
ing protein 8 (CHDS8) and pesticide exposure for autism
spectrum disorder [128], the fat mass and obesity-asso-
ciated gene (FTO) and physical activity for obesity, and
dopamine receptor D4 (DRD4) and parenting style for
attention-deficit/hyperactivity disorder (ADHD) [129].
These interactions highlight how specific genetic suscep-
tibilities can be activated or exacerbated by environmen-
tal factors, demonstrating the crucial role of exposomics
in understanding NCDs. A subset of notable GxE inter-
actions implicated in common NCDs is shown in Fig. 3.
While most of these GXE examples have focused on sin-
gle environmental variables, the broader and more sys-
tematic measurement of environmental factors—such as
those captured through exposomics—holds tremendous
potential for deepening our understanding of complex
diseases. Although still in its early stages, a few studies
have ventured into multi-exposure genome-wide interac-
tion analysis, jointly modeling the effects of the genome
and the environment using methods like StructLMM
(structured linear mixed model) [130], GXEMMs (GxE
Mixed Model) [131], and IGE (integrative analysis of
genomic and exposomic data) [132]. These approaches
account for genome-exposome correlations and the
interrelationships among exposome variables, offering
a more holistic view of gene-environment interactions
[133]. However, such methods are often computationally
intensive and challenging to interpret, underscoring the
complexity and potential of exposomics in advancing our
understanding of NCDs.

Recent technological advancements, especially in
high-resolution mass spectrometry (HRMS) and wear-
able devices, have significantly improved the ability to
measure the exposome with precision and individual
specificity [134]. HRMS enables the detailed detection
of small molecules in biological samples like plasma and
urine, allowing for an in-depth analysis of exposures to
pharmaceuticals, pollutants, and nutrients [135]. Com-
plementing this, wearable technologies such as sili-
cone wristbands and other personal passive samplers
have emerged as powerful tools for capturing personal
exposure data. These devices can monitor environmen-
tal exposures in real-time across different settings and
critical life stages, such as during pregnancy or early
childhood, thus providing a dynamic and personalized
exposome profile [136]. For instance, studies employing
wristband samplers in China have successfully profiled
personal chemical exposures, demonstrating the diversity
and complexity of environmental interactions individuals
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Fig. 2 The Exposome and Multi-Omic Interactions for GXE Interaction Analyses in the Context of NCDs. The exposome encompasses

the cumulative impact of environmental influences, including external factors (e.g., urban and built environments, air and water quality, soil
contaminants such as heavy metals and persistent organic pollutants), lifestyle factors (e.g., physical activity, diet, smoking, alcohol use, and sleep
patterns), psychosocial factors, and social and economic determinants (e.g., socio-economic status, access to resources). It also includes occupation
and residential exposures (e.g., noise pollution and indoor air quality), as well as chemical and physical agents. These diverse influences interact
with multiple biological layers—genome, epigenome, transcriptome, proteome, and metabolome—triggering complex, nonlinear responses.
These interactions drive the onset, progression, and development of NCDs, including cardiovascular diseases, diabetes, respiratory illnesses,

and cancers. Integrating the exposome into multi-omic studies is essential to unraveling these dynamics and advancing precision medicine
approaches for chronic disease prevention and management. NCD—non-communicable diseases. Schematic plot created using BioRender

(https://BioRender.com)

face daily [137]. Another innovative approach uses a min-
iaturized wearable device that samples air to capture par-
ticulates, further analyzed using HRMS to identify both
hydrophobic and hydrophilic chemical compounds [138].
These studies exemplify how wearables can offer insights
into the spatiotemporal dynamics of personal exposures
and their potential health impacts. By integrating data
from these wearables with systems biology approaches,
researchers can now begin to unravel the intricate gene-
environment interactions that significantly influence the
pathogenesis of NCDs, paving the way for targeted pre-
vention and therapeutic strategies.

Furthermore, new initiatives are expanding the scope
of exposomics research, leveraging large-scale resources
to deepen our understanding of environmental con-
tributions to health. The All of Us Research Program
[139] is increasingly integrating environmental exposure
data with genomic, clinical, and demographic informa-
tion from its diverse cohort of participants. By linking
geospatial data with exposure estimates from tools like
the Environmental Justice Index, the program aims to

examine how environmental factors influence disease
susceptibility. Similarly, the European Human Expo-
some Network (EHEN), the world’s largest network of
exposome-focused projects, is advancing research on
the health impacts of air pollution, noise, chemicals, and
urbanization [140]. Together, these efforts are equipping
researchers with unparalleled data resources to elucidate
the complex interplay between genetic and environmen-
tal factors in NCDs (Fig. 3).

Electronic health records (EHRs)

EHRs are digital versions of patients’ medical histories,
encompassing a broad spectrum of data, including demo-
graphics, medical histories, vital signs, laboratory test
results, radiology images, diagnoses, treatment proce-
dures, and medications [37]. Longitudinal data available
in practice-based EHRSs, such as those from chronic dis-
ease management clinics, enable researchers to charac-
terize genetic factors with small but reproducible effects
on drug outcomes. For instance, the electronic Medical
Records and Genomics (eMERGE) network, supported
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Fig. 3 Notable examples of how genetic and environmental factors interact to influence the risk of developing NCDs. This Sankey diagram
illustrates examples of gene-environment interactions in non-communicable diseases (NCDs) identified through genome-wide gene-environment
interaction and Mendelian randomization studies; it is not an exhaustive list of GxE interaction studies in NCDs. Genes (left vertical lines) are
connected through environmental exposures (middle vertical lines) to NCDs (right vertical lines); green lines represent interactions that reduce
NCD risk, while light purple lines indicate increased risk. Studies using candidate-gene approaches were excluded due to inherent limitations such
as high risk of false positives, lower replication rates, selection bias, and limited genetic coverage. A full list of the SNPs (rsID and PMID) implicated

in the GxE interactions and a brief description of each GxE interaction are shown in Table S1

by EHRSs, presents a novel opportunity to coordinate such
investigative efforts across multiple institutions, facilitat-
ing the dissection of GxE interactions.

With advancements in healthcare technology, EHRs
have expanded to include Personal Health Records
(PHRs), which capture out-of-clinic data such as daily
behaviors and physiological measurements collected by
smart wearable devices. In the realm of precision medi-
cine, EHRs serve as crucial repositories that connect
detailed clinical data with genetic profiles from multi-
omics studies. This integration offers a holistic view of
a patient’s health landscape, combining structured data
like lab results and diagnosis codes with unstructured
data, such as free-text clinical notes. Although rich with
information, EHRs present challenges in data heteroge-
neity, quality, and management, especially given their
mix of unstructured and structured formats [37]. These
challenges complicate the extraction and analysis of
data but are essential to address for leveraging EHRs in

enhancing our understanding of NCDs through multi-
omics integration.

Advances in multi-omics integration techniques
The field of multi-omics integration has rapidly evolved
to enhance our understanding of the GxE interactions
that underlie NCDs and other complex diseases [32].
Individual omics approaches, such as GWAS, have suc-
cessfully identified numerous SNPs associated with
various NCDs [14—[16, 141]. However, the challenge of
uncovering the functional roles of these SNPs, especially
those located in non-coding regions, necessitates the
integration of genomic data with transcriptomic, prot-
eomic, metabolomic, epigenomic, and other omics data-
sets [32]. This comprehensive integration is crucial for
mapping the flow of genomic information and elucidat-
ing the interactive networks essential for the onset and
progression of NCDs.
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New advances in analytical methods and software have
significantly improved our ability to integrate data across
multiple omics layers, offering a deeper understanding
of how genetic variations interact with environmental
factors to influence biological pathways and disease out-
comes [41, 44, 60, 81]. By synthesizing data from various
domains, multi-omics approaches provide powerful tools
for elucidating the intricate dynamics of GxE interactions
in NCD research, paving the way for targeted interven-
tions and personalized medicine. These integration tech-
niques utilize approaches that often fall under two broad
categories: a suite of post-GWAS analyses and machine
learning-based methods [35]. Post-GWAS analysis
enhances the interpretation of GWAS results by incorpo-
rating additional omics data, enriching our understand-
ing of how identified genetic variants influence disease
phenotypes. Conversely, machine learning methods
utilize algorithms to model complex interactions across
different biological layers, offering robust tools for deci-
phering the intricate dynamics of GxE interactions and
advancing NCD research.

Post-GWAS multi-omics integration approaches
Enrichment-based methods

Enrichment-based methods provide a powerful way
to integrate GWAS data with additional omics layers,
thereby enhancing the understanding of complex GxE
interactions that underpin NCDs [24]. These approaches
utilize overlap, correlation, or association analysis tech-
niques to identify quantitative trait loci (QTLs) that
are significantly associated with molecular features
such as gene expression (eQTLs), methylation intensity
(meQTLs), and protein levels (pQTLs) [142]. For exam-
ple, the GTEx [88], ENCODE [87], and Roadmap Epig-
enomics [143] projects have systematically cataloged
associations between SNPs and various molecular fea-
tures, creating valuable research resources. Integration of
GWAS significant variants and QTLs is achieved through
overlapping or positional mapping with functional anno-
tations, confirmed by statistical tests to ensure enrich-
ment is significant and not due to random chance.

For instance, a study [144] on atrial fibrillation uti-
lized an integrative multi-omics approach combining
genomics, transcriptomics, and proteomics from human
atrial tissues. This cross-sectional study identified the
widespread effects of genetic variants on both mRNA
and protein expression, pinpointing transcription fac-
tor NKX2-5 as a crucial link between a GWAS SNP
and atrial fibrillation [144]. Similarly, in schizophrenia,
enrichment-based methods revealed that risk loci were
associated with meQTLs in fetal brain tissue (most nota-
ble associations include, rs2535627-cg11645453 and
rs4648845-cg02275930), suggesting that altered DNA
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methylation may play a role in the disease’s pathogenesis
[145]. These and numerous other examples illustrate how
enrichment methods can reveal the cellular origins and
molecular networks of disease mechanisms.

However, these enrichment estimates can be biased by
factors like linkage disequilibrium and the presence of
multiple functional variants [146]. Advanced statistical
methods, such as hierarchical Bayesian modeling [147]
and permutation tests [146], are employed to mitigate
these biases. These strategies not only aid the functional
annotation of genetic data but also the discovery of novel
biomarkers, offering insights into the tissues and mecha-
nistic pathways involved in NCDs.

Statistical fine-mapping methods

Statistical fine-mapping methods crucially enhance the
integration of GWAS with various quantitative trait loci
(QTLs), aiding in identifying causal variants that may
influence NCDs and other complex conditions [148].
These approaches, such as colocalization and Mende-
lian randomization (MR), are pivotal in determining the
specific genetic variants that could contribute to both
observed molecular traits and disease phenotypes. Colo-
calization analysis, often conducted using Bayesian statis-
tical methods [149, 150] among others, evaluates whether
a genetic variant (s) can be linked to both a GWAS trait
and a molecular QTL. This can highlight potential causal
genes and pathways implicated in diseases, exemplified
by research in Alzheimer’s disease that linked genetic risk
variants with eQTLs affecting novel and known genes
[151].

Mendelian randomization uses genetic variants as
instrumental variables to explore causal relationships
between modifiable molecular traits and disease out-
comes, functioning under the strong assumption that the
variant influences the disease solely through its effect on
an intermediary molecular trait—a premise that is chal-
lenging to validate [152—[154]. For example, a study on
depression linked genetically regulated brain protein
levels to the disease, suggesting causality through MR
analysis [155]. Furthermore, the comprehensive review
by Markozannes et al. (2022) on cancer risk used MR to
validate causal associations, such as the effects of BMI on
kidney and endometrial cancers and circulating sex hor-
mones on breast cancer [156]. These robust associations
highlight the utility of MR in confirming causal pathways,
providing a basis for targeted preventive strategies and
therapies. Both colocalization and MR provide insights
into potential causal mechanisms, with significant colo-
calization often implying a causal pathway that might
be validated through MR. These methods not only pin-
point underlying genetic interactions but also guide the
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development of targeted therapies and preventive meas-
ures across a spectrum of complex diseases.

Recent methodological advances in multi-ancestry
fine-mapping strategies have significantly enhanced the
ability to identify causal genes, offering insights beyond
those provided by single-ancestry approaches [157, 158].
MA-FOCUS (multi-ancestry fine-mapping of causal gene
sets), for example, integrates GWAS, eQTL, and LD data
from multiple ancestries without assuming shared eQTL
architecture [158]. It focuses on consistency in causal
genes across populations, improving accuracy in identi-
fying disease-relevant genes for traits like hematopoietic
and cardiovascular diseases. Similarly, SuSiEx, building
on the single-population framework of Sum of Single
Effects (SuSiE), offers a powerful cross-population fine-
mapping tool. It integrates data across ancestries, models
population-specific allele frequencies and LD patterns,
and handles multiple causal variants within genomic
regions using GWAS summary statistics [157]. In evalu-
ations involving traits from the UK Biobank and Taiwan
Biobank, and a schizophrenia GWAS across East Asian
and European ancestries, SuSiEx fine-mapped more
association signals, produced smaller credible sets, and
achieved higher posterior inclusion probability for causal
variants, even capturing population-specific causal vari-
ants [157]. Both MA-FOCUS and SuSiEx highlight the
critical importance of including genetic data from diverse
ancestries to improve the resolution of genetic studies
and to uncover more precise therapeutic targets.

Imputation-based methods
Imputation-based methods are a powerful tool for inte-
grating genomic and multi-omics data, utilizing extensive
datasets from sources such as GTEx [88] and ENCODE
[87]. These methods depend on a reference panel built
from robust genetic prediction models derived from
genotype data and molecular measurements (e.g., gene
or protein levels) of healthy individuals [35]. These mod-
els are crafted using statistical techniques, including
LASSO, ridge regression, and elastic net [35]. Through
this approach, imputation-based methods impute molec-
ular features within GWAS datasets, enabling the iden-
tification of associations between genetically predicted
molecular features and various NCDs. Key findings from
this method often reveal molecular features that are dif-
ferentially expressed between cases and controls, thus
highlighting potential pathways of disease manifestation.
Transcriptome-wide association studies (TWAS) are a
common application, successfully identifying molecular
features linked to various traits and conditions [159].
Beyond gene expression, imputation-based integration
has been adapted to explore other molecular features,
such as DNA methylation and protein levels, though
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these remain less commonly applied compared to TWAS
[159]. Furthermore, multi-omics integration approaches
often extend beyond the use of GWAS data alone,
employing previously described enrichment-based meth-
ods to merge findings from different omic layers—such
as transcriptomics and epigenomics—through overlap
and correlation analyses. These integrated analyses pro-
vide deeper insight into the complex interactions during
the pathogenesis of NCDs. For instance, in one integra-
tive study, researchers analyzed the relationships among
intestinal microbiota, serum metabolome, and inflamma-
tory cytokines in groups with and without schizophrenia
[160]. Utilizing weighted gene co-expression network
analysis [161], they identified significant co-abundance
clusters of metabolites and gut bacteria, which correlated
with cytokine levels. This suggests that specific bacteria
could influence inflammatory responses through meta-
bolic modulation [160]. Such integrative studies under-
score the potential of using multi-omics data to uncover
biological networks involved in NCDs, particularly high-
lighting pathways such as the gut-brain and gut-immune
axes, which are crucial for understanding complex dis-
eases (Additional file 1).

Al/machine-learning-based method

Machine learning (ML) methods are increasingly used
to understand the complex GxE interactions in various
NCDs [28, 32, 162, 163]. These methods adeptly handle
the integration of noisy, high-dimensional multi-omic
datasets, essential for elucidating the multifaceted bio-
logical processes underlying NCDs [162, 163]. Several
integration strategies have been developed, each tailored
to optimize the handling of these complex datasets in
different scenarios [37]. Early integration, for example,
concatenates datasets sample-wise, creating a compre-
hensive input matrix for ML models [164, 165]. However,
the sheer size and complexity of such integrated data
can be challenging for many ML algorithms, especially
with smaller sample sizes. To mitigate these challenges,
other strategies such as mixed integration [166]—which
reduces dataset complexity individually—and intermedi-
ate integration—which reduces complexity jointly—are
utilized [167-[169]. Late integration, conversely, analyzes
each omics dataset independently before aggregating the
outputs for a final decision [170]. In contrast, hierarchical
integration systematically incorporates known biological
regulatory frameworks into the analysis, reflecting the
sequences of molecular interactions [171].

The versatility of ML methods facilitates a broad spec-
trum of applications in multi-omics data integration for
NCDs, from diagnostic classification to prognosis pre-
diction and evaluating treatment responses. The forth-
coming sections will explore these applications in detail,
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presenting examples of specific ML frameworks that
have shown promise in enhancing our understanding of
many NCDs and other complex diseases. By leveraging
these advanced ML approaches, researchers can pinpoint
potential biomarkers, unravel disease mechanisms, and
enhance the personalization of healthcare—key com-
ponents in advancing the field of precision medicine for
chronic diseases. In Additional file 2: Table S2, we pro-
vide a non-exhaustive list of multi-omics integration and
GxE interaction analyses approaches.

Diagnostic classification

Diagnostic classification through ML involves accurately
grouping patients into predefined classes representing
specific disease diagnoses, a process crucial for manag-
ing NCDs [162]. In cardiovascular disease (CVD), ML
classifiers have been utilized to predict CVD and related
risk factors from omics data, illustrating the application’s
potential. A study by Drouard et al. (2024) compared
various ML strategies using blood-derived metabo-
lomics, epigenetics, and transcriptomics data to predict
CVD risk factors [172]. The findings revealed that multi-
omics predictions generally outperformed single-omics
predictions, particularly in distinguishing individuals
with extreme levels of CVD risk factors. Techniques like
semi-supervised autoencoders, which refine feature rep-
resentation before classification, demonstrated improved
predictive accuracy over unsupervised methods, high-
lighting the capabilities of ML to enhance diagnostic pre-
cision in complex disease settings [172].

In the realm of cancer diagnostics, ML has shown
significant promise. For instance, a study by Khadirnai-
kar et al. (2023) on non-small cell lung cancer (NSCLC)
employed ML to identify novel subtypes, enhancing
prognostic accuracy and treatment personalization [173].
By applying consensus K-means clustering to multi-
omics data, the study identified five distinct NSCLC
clusters with varying survival outcomes and genetic char-
acteristics, demonstrating the superior performance of
multi-omics over single-omics models. Similarly, a novel
approach by Abassi et al. (2024) utilized a combination of
ML and deep learning (DL) techniques to improve diag-
nostic accuracy for leukemia [174]. Employing various
ML algorithms and deep learning networks like recur-
rent neural networks (RNNs), they achieved up to 98%
accuracy in predicting leukemia from multi-omics data.
This approach not only emphasizes the potential of inte-
grating various omics data for cancer diagnostics but also
showcases the efficiency of ML and DL in refining diag-
nostic classifications across different cancer types (Addi-
tional file 3).

Similarly, in psychiatric disorders, which share
overlapping genetic, environmental risk factors, and
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symptomatology, ML tools are invaluable for refining
diagnosis. Xie et al. (2021) demonstrated this by using
gene expression and DNA methylation data to construct
models that effectively distinguished patients with major
depressive disorder (MDD) from healthy controls [175,
176]. Their approach identified genes that were either
upregulated and hypomethylated or downregulated and
hypermethylated in MDD patients. Although the gene
expression classifier exhibited superior predictive power
compared to the DNA methylation classifier, both mod-
els underscore the potential of ML in enhancing diagnos-
tic accuracy.

Clinical outcome (Risk) prediction

Risk prediction is a vital ML application in the multi-
omics analysis of NCDs [35]. This approach leverages
ML to identify and prioritize molecular features that may
forecast an increased risk of diseases. Typically, these
features are unearthed through detailed single-omics
analyses or ML-based feature selection within advanced
integration strategies. Once identified, these molecu-
lar characteristics inform the development of statistical
models designed to predict individual disease risks.

A notable method employed in risk prediction is the
generation of polygenic risk scores (PGS), which calcu-
late an individual’s disease susceptibility based on quan-
titative trait loci (QTLs) and other regulatory genetic
variants [24, 58]. These scores sum up an individual’s
risk alleles, each weighted by its effect size derived from
GWAS. Techniques such as penalized regression—
LASSO, elastic net, ridge regression—and Bayesian
methods refine these risk scores, enhancing their predic-
tive accuracy. An innovative adaptation in this domain
involves integrating PGS with other omics data, which
allows for a more nuanced interpretation of genetic con-
tributions to disease risk [48, 58].

For instance, in a study by Wang et al. (2022), research-
ers explored the integration of multi-omics data for
predicting clinical outcomes in neuroblastoma, a com-
plex cancer [177]. They employed network-based meth-
ods, constructing Patient Similarity Networks (PSN) by
assessing distances among patients using omics-derived
features. Two distinct integration strategies were tested:
network-level fusion, using the Similarity Network Fusion
algorithm to merge PSNs across various omics types, and
feature-level fusion, combining network features from
individual PSNs [177]. Their findings highlighted that
network-level fusion provided superior performance in
integrating diverse omics data, demonstrating the poten-
tial of ML to enhance outcome predictions in NCDs
through multi-omics integration techniques. Despite
these advances, the clinical adoption of such models
remains modest, underscoring the ongoing challenges in
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model validation and generalizability within healthcare
settings.

Treatment response prediction

Predicting treatment responses is another critical appli-
cation of ML in the context of multi-omics for NCDs [35].
This ML application spans various treatment-response
assessment regimes, including pharmacotherapy, psycho-
therapy, and more, aiming to forecast outcomes such as
prognosis, relapse, or therapeutic efficacy [178, 179]. Par-
ticularly in chronic diseases where treatment paths can
vary significantly among individuals, leveraging multi-
omics data can markedly enhance the precision of these
predictions.

In cancer, where genetic heterogeneity strongly influ-
ences treatment outcomes, ML models have shown
promise in predicting responses to anticancer drugs. A
study by Wang et al. (2022) illustrates this with a deep
neural network that integrates multi-omics data—includ-
ing gene expressions, copy number variations, gene
mutations, protein expressions, and metabolomics—
from cancer cell lines [177]. The model features inno-
vative components such as a graph embedding layer
to incorporate interactome data and an attention layer
to prioritize relevant omics features. This approach
achieved an impressive R? value of 0.90, outperforming
standard neural networks in predicting drug responses
using data from the Cancer Cell Line Encyclopedia
(CCLE) and the Genomics of Drug Sensitivity in Cancer
(GDSC). This example underscores the power of ML in
harnessing multi-omics data to enhance the personaliza-
tion of cancer treatments.

Another study by Joyce et al. (2021) explored the
predictive power of combining genomics and plasma
metabolomics to determine the effectiveness of combi-
nation pharmacotherapy in treating major depressive
disorder (MDD) [180]. They developed two models: one
using only metabolomics and another incorporating
both metabolomics and genomics. The latter, a multi-
omics approach, utilized penalized linear regression and
XGBoost algorithms, demonstrating superior predictive
performance as evidenced by a higher area under the
curve (AUC) compared to the metabolomics-only model.
This study underscores the added value of integrating
multiple types of omics data to enhance the accuracy of
predicting treatment responses.

Estimating GXE interactions

Unraveling gene-environment (GxE) interactions is cru-
cial for understanding the complex etiology of NCDs.
However, analytical tools for GxE interaction analy-
sis remain limited due to challenges posed by high data
dimensionality, significant noise, and heterogeneity in
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genetic and environmental factors across populations,
which can obscure true interactions and hinder repli-
cability. Traditional GxE interaction analyses often rely
on regression techniques [181-[184], linking response
variables to main genetic and environmental effects and
their interactions. These methods face limitations such as
stringent requirements to maintain a "main effects, inter-
actions" hierarchy [183]. This hierarchy demands that if
an interaction effect is identified, its corresponding main
effects must also be considered in the model, which com-
plicates the analysis by imposing additional constraints
on variable selection [185, 186]. Moreover, high dimen-
sionality demands multiple comparison adjustments,
increasing the risk of Type II errors (failing to detect true
effects), and many studies lack sufficient power due to
small effect sizes and limited sample sizes [187].

The emergence of large-scale biobanks and observa-
tional studies like the UK Biobank [188], the All of Us
Research Program [139], FinnGen [189], and initiatives
supported by the Barcelona Institute for Global Health
(ISGlobal) are helping address sample size limitations
by providing extensive genetic and environmental data
across diverse populations. Leveraging these rich data-
sets, researchers have turned to machine learning (ML)
and artificial intelligence (AI) approaches to enhance
GxE interaction analysis [190]. For instance, Wu et al.
(2023) recently developed a novel methodology that lev-
erages deep learning to enhance GxE interaction analy-
sis [191]. This approach integrates deep neural networks
with penalization strategies to simultaneously estimate
and select significant GxE interactions and correspond-
ing main effects while respecting the required hierarchi-
cal structure. Demonstrations through simulation studies
and applications in NCD contexts, such as lung adeno-
carcinoma and skin cutaneous melanoma, show that this
method not only manages the complexity of the data but
also surpasses traditional regression methods in predic-
tive accuracy and feature selection [191].

Madhukar et al. (2019) also introduced BANDIT, a
Bayesian machine-learning approach for drug target
identification using diverse data types [192]. BANDIT
integrates over 20 million data points from six distinct
data types — including drug efficacies, transcriptional
responses, drug structures, adverse effects, bioas-
say results, and known targets — to predict drug-target
interactions. Benchmarking showed approximately 90
percent accuracy in correctly identifying known drug
targets across over 2,000 small molecules. Applied to
compounds without known targets, BANDIT generated
novel molecule-target predictions that were experimen-
tally validated, including identifying new microtubule
inhibitors effective against resistant cancer cells [192].
Although primarily focused on drug discovery, BANDIT
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exemplifies how integrating heterogeneous omics data
through machine learning can elucidate complex biologi-
cal interactions, including GxE interactions relevant to
NCDs.

Similarly, other ML-based methods have shown prom-
ise in addressing the complexities of GxE interactions
[193]. Zou et al. (2010) introduced a nonparametric
Bayesian approach for mapping quantitative trait loci
(QTL) that captures both main effects and higher-order
interactions, including gene-environment interactions,
without requiring explicit specification of interaction
terms [194]. This method employs a Gaussian process
prior combined with variable selection to identify impor-
tant genetic and environmental factors. By modeling all
potential interactions in a single framework, it avoids the
computational and multiple-testing challenges associated
with parametric approaches. Applied to the polygenic
mouse model of obesity, the method identified key quan-
titative trait loci (QTLs) influencing fat pad weight and
highlighted how nonparametric Bayesian variable selec-
tion could improve the detection of GxE interactions in
complex traits.

Spanbauer et al. (2020) employed a non-paramet-
ric machine learning approach using Bayesian addi-
tive regression trees with mixed models (mixedBART)
for precision medicine. This method adeptly identifies
patient characteristics associated with treatment effect
heterogeneity in clinical trials [195]. In a study focusing
on type II diabetes mellitus among African-American
patients, mixedBART predicted individualized treat-
ment effects based on demographic and health measures.
While additional analyses showed insufficient evidence
for treatment effects, mixedBART facilitated the multi-
exploration of treatment heterogeneity, underscoring its
potential in GxE interaction studies [195].

In addition, the advent of multimodal medical large
language models (LLMs) offers promising avenues for
future GxE interaction studies in NCDs. Building on
established medical LLMs [196, 197], several multimodal
models such as LLaVA-Med (Large Language and Vision
Assistant for BioMedicine) have been proposed [198].
These models are designed to process medical images
and generate text-based interpretations, demonstrating
medical image understanding and diagnosis capabili-
ties. While current multimodal LLMs primarily handle
modalities like text and imaging data, there is growing
interest in extending these models to incorporate molec-
ular-level omics data, including genomics. For instance,
preliminary efforts like MedGPT have explored analyz-
ing genomic data using LLMs, although they remain at a
proof-of-concept stage with preliminary results [199]. As
these models evolve and integrate more diverse datasets,
they have the potential to enhance our ability to interpret
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complex biological interactions, including GxE interac-
tions relevant to NCDs. However, significant challenges
remain, and more research is needed to fully realize the
integration of multimodal omics data in LLMs.

In summary, these advancements illustrate the grow-
ing role of ML/AI tools in addressing the challenges of
GxE interaction analysis in NCDs and other complex
diseases. By harnessing large and diverse datasets and
employing sophisticated analytical methods, research-
ers can better understand the complex interplay between
multi-omic factors and the exposome. However, applying
AI/ML methods in this context also presents challenges.
Bias remains a significant concern, as algorithms trained
on datasets that underrepresent certain demographic
groups can yield skewed predictions, potentially exac-
erbating existing health disparities among populations
affected by NCDs [200]. The “black box” nature of many
AI/ML models, particularly deep learning approaches,
poses another hurdle, as the lack of interpretability may
undermine clinical decision-making and trust, especially
when transparent reasoning is crucial for evaluating risk
factors or treatment options [201]. Furthermore, the use
of sensitive patient data in NCD research heightens the
risk of privacy breaches, raising complex ethical and legal
challenges in data governance [202]. Overcoming these
challenges requires diverse and representative training
datasets, the development of interpretable AI models
tailored to NCD applications, and robust privacy pro-
tections to ensure ethical and equitable use of AI/ML in
advancing GxE research and clinical practice. Together,
these efforts not only enhance our understanding of dis-
ease mechanisms but also contribute to the development
of personalized interventions and treatments (Fig. 4).

Current challenges and opportunities

Diversity of omics and multi-omics datasets

Despite efforts to diversify genomic datasets, the vast
majority of GWAS, about 85% as of 2023, predominantly
feature individuals of European genetic ancestry [203].
Progress toward including under-represented popula-
tions has been slow, with the share of studies involv-
ing these groups either stagnating or even declining in
recent years [48]. Although there has been a modest rise
in the representation of Asian ancestries, African, Latin
American, and Indigenous populations remain markedly
underrepresented [66]. This imbalance is compounded
by the over-reliance on easily accessible and homogene-
ous resources like the UK Biobank, which primarily com-
prises individuals of European ancestry, whereas other
ancestry groups often have limited data repositories
available [66]. Figure 5 presents the global distribution of
total GWAS sample sizes by country, underscoring sig-
nificant regional disparities.
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Fig. 4 Schematic Overview of Al/ML-based Multi-Omics Data Integration Workflow. This schematic illustrates a simplified workflow for multi-omics
data integration, highlighting key steps in processing, analyzing, and translating multi-omics datasets. The process begins with omics layers (e.g.,
genomics, transcriptomics, proteomics, metabolomics), integrated using approaches like early integration (merging raw data), mixed integration
(combining intermediate features), and late integration (aggregating model outputs). These datasets are analyzed using unsupervised learning
methods, including Principal Component Analysis (PCA), t-Distributed Stochastic Neighbor Embedding (t-SNE), clustering, Non-Negative Matrix
Factorization (NMF), Canonical Correlation Analysis (CCA), autoencoders, and Latent Dirichlet Allocation (LDA), as well as supervised methods

like regression, Support Vector Machines (SVMs), Random Forests, Neural Networks, k-Nearest Neighbors (k-NN), Elastic Net, and deep learning.
Model performance is evaluated using metrics such as F-measure, Area Under the Receiver Operating Characteristic Curve (AUROC), Cohen’s Kappa,
and error measures like Mean Squared Error (MSE), Mean Absolute Error (MAE), and Root Mean Squared Error (RMSE). Validation ensures robustness
and biological relevance through larger cohorts, model organisms, functional annotation, and perturbation analyses. Finally, insights are translated
into diagnostic classification, clinical outcome prediction, treatment response prediction, and gene-environment (GxE) interaction analysis. This
schematic is not exhaustive but provides a simplified guide to navigate the manuscript’s discussion on multi-omics data integration

GWAS Sample Size
H >1 million
E 100k-1M
\ 5k-100k

501-5k
101-500
1-100

0

No Data

Fig. 5 Global Distribution of Total GWAS Sample Sizes by Country. This map illustrates the geographic distribution of cumulative participants

in genome-wide association studies (GWAS) across various countries for years where data are available, highlighting global disparities in genetic

research participation. Data were sourced from Mills, M.C,, and Rahal, C. (2020) in their study "The GWAS Diversity Monitor Tracks Diversity by Disease

in real-time," published in Nature Genetics, 52, pp. 242-243, https://doi.org/10.1038/541588-020-0580-y. The Leverhulme Centre for Demographic
Science maintains the data

This lack of diversity leads to a substantial problem:
PGSs derived from predominantly European datasets
show dramatically reduced predictive accuracy when
applied to non-European populations [48, 49]. For

instance, Martin et al. (2019) reported a decline in PGS
accuracy of about 37%, 50%, and 78% for individuals of
South Asian, East Asian, and African ancestries, respec-
tively [48]. Further studies, such as those by Privé et al.
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(2021) and Ding et al. (2023), confirm that PGS accuracy
not only diminishes across different ancestries but also
varies significantly within them depending on the genetic
distance from the European training populations [49,
204]. The limited generalizability of these genetic insights
could potentially exacerbate health disparities, under-
scoring the urgent need to broaden the genetic diversity
in omics research to ensure that genomic advancements
benefit all populations equitably [48, 67].

Furthermore, increasing the diversity of genomic
data not only mitigates disparities but also significantly
enhances the fine-mapping of GWAS signals and the
identification of target genes [67]. This is crucial for
uncovering the genetic mechanisms influencing the
development of NCDs and other complex conditions.
Underrepresented groups, such as those of African and
South Asian ancestries, exhibit higher genetic diver-
sity, which translates into substantial gains in genomic
research [205, 206]. Studies incorporating these popu-
lations have unearthed population-enriched clinically
important variants that were previously undiscovered in
predominantly European datasets. For example, research
into African genetic ancestry has led to critical insights,
including the link between APOLI variants and chronic
kidney disease [207], the identification of G6PD variants
that refine diabetes diagnostics [208], and loss of function
variants in PCSK9 that contribute to lower low-density
lipoprotein cholesterol levels—this latter discovery has
spurred the development of PCSK9 inhibitor drugs [209].
These findings underscore the value of including diverse
genetic backgrounds in research to achieve a comprehen-
sive understanding of genetic factors across all popula-
tions, enhancing the overall impact of genomic studies
on global health.

The lack of genetic diversity is a pervasive issue across
various omics datasets, not just genomics [35, 91, 142,
159]. For instance, bulk and single-cell transcriptomic
analyses are beginning to uncover significant hetero-
geneity in gene expression across different cell types
and even within the same type. This diversity is espe-
cially pronounced across different genetic ancestries,
shaped by distinct environmental and genetic interac-
tions. Major research efforts, such as single-cell con-
sortia including KPMP, LungMAP, HTCA, GTEx [88],
HuBMAP, Azimuth, HCA, and the Allen Brain Atlas,
have predominantly focused on populations of European
genetic ancestry, resulting in the underrepresentation
of other groups. For example, of the 4,723 samples ana-
lyzed across these consortia, the majority are from indi-
viduals of European descent, starkly contrasted with the
minimal representation from African, Hispanic, and East
Asian ancestries. Addressing this imbalance is critical for
enhancing our understanding of context-specific cellular
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mechanisms and improving the detection and treatment
of diseases that vary regionally due to factors like genetic
drift and migration. This understanding is particularly
vital in pharmacogenomics, where knowing context-spe-
cific gene regulation can significantly advance personal-
ized medicine. In a significant step toward addressing this
imbalance, the Chan Zuckerberg Initiative has recently
funded the Ancestry Networks for the Human Cell Atlas
(HCA) with a $28 million grant, supporting the inclusion
of ancestrally diverse tissue samples to ensure a broader
representation and deeper insights into the genetic
underpinnings of health and disease across populations.

Similarly, the representation of genetic diversity in
epigenomic data is markedly limited [210], as demon-
strated by a study by Breeze et al. (2022). This study
revealed that among the 5,048 epigenetic experiments
from the US-based ENCODE data and the Interna-
tional Human Epigenome Consortium (IHEC), 87.1%
(n=4,397) predominantly featured samples of European
genetic ancestry, with other ancestries severely underrep-
resented. Such disparities underscore a significant bias in
the samples analyzed, with only a fraction representing
African, Asian, and other ancestries. This lack of diver-
sity impedes our ability to fully understand and interpret
disease-associated genomic regions across populations.
Epigenomic markers such as promoters, enhancers, and
repressors are crucial for annotating non-coding regions
identified by GWAS, which often have unclear functional
implications. Broadening the scope of epigenomic data
to include diverse populations could enhance the inter-
pretation of GWAS loci, offering vital insights into the
regulatory mechanisms affecting diseases that dispropor-
tionately impact non-European populations, like prostate
cancer, hypertension, and chronic kidney disease.

Measuring exposomes
Measuring exposomes in multi-omics research on NCDs
involves significant challenges due to the complexity
and diversity of environmental exposures. Exposomes
encompass a range of external factors, like pollution and
radiation, alongside internal factors, such as microbiome
interactions and metabolic processes. Technologies like
mass spectrometry (MS) and geographic information
systems (GIS) are essential for quantifying these expo-
sures. MS, particularly untargeted MS, excels in detecting
a broad spectrum of small molecules in biological sam-
ples, providing a comprehensive snapshot of chemical
exposures. However, the vast amount of data generated
requires advanced bioinformatics for accurate analysis,
and detection sensitivity varies significantly among dif-
ferent chemical classes.

GIS tools assess environmental exposure by integrat-
ing diverse data sources to model spatial and temporal
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distribution patterns of factors like air and water qual-
ity. This modeling is crucial for evaluating health risks
linked to environmental factors. Additionally, wearable
sensor technologies revolutionize exposure monitoring
by providing real-time, individual exposure data to ele-
ments such as air quality and UV radiation, offering
granular insights into daily exposure patterns. Despite
these advancements, the dynamic nature of environ-
mental exposures and the heterogeneity in measurement
techniques pose substantial challenges. These include
the need for standardized data collection methods and
the development of structured data sharing protocols to
facilitate comparisons and enhance the accuracy of expo-
some research in understanding NCDs.

Establishing and maintaining biobanks

Establishing and maintaining biobanks is a critical yet
challenging endeavor in omics and multi-omics research,
particularly in low and middle-income countries (LMICs)
[45, 47, 66, 69]. While most biobanks are found in high-
income countries, equipped with advanced infrastructure
and technical capacity, LMICs face substantial barriers
such as inadequate funding, limited institutional capac-
ity, and a shortage of skilled professionals. This dispar-
ity is especially pronounced in Africa and South Asia,
which are severely underrepresented in genomic research
[48, 66]. Most genomic studies in LMICs rely on fund-
ing from high-income countries through collaborative
efforts, often resulting in research agendas set by external
priorities rather than local needs [66].

Significant and sustained investment in biobanking
infrastructure in under-represented regions is crucial to
address the lack of diversity in omics research. Initiatives
like the China Kadoorie Biobank and the South African
Human Genome Project provide hopeful examples of
how national governments are recognizing the value of
omics studies [66]. In addition, further improvement in
this field could be achieved by global consortia directing
technical and financial resources to build local biobank-
ing capacities in LMICs. This approach not only helps
in establishing the necessary infrastructure for sample
processing, genotyping, sequencing, and computational
analysis, but also facilitates equitable data, ultimately
benefiting the global scientific community. For instance,
the Africa Wits-INDEPTH Partnership for Genomic
Research (AWI-Gen) exemplifies a strategic regional
collaboration funded by the NIH [66]. This project has
established a cross-sectional population cohort of about
12,000 adults across four African countries, leverag-
ing existing Health and Demographic Surveillance Sys-
tem centers and community engagement to span a wide
representation of social and genetic variability [67, 211].
Similarly, initiatives such as the H3Africa, H3Africa
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Bioinformatics Network(H3AfricaBioNet), and the Data
Science for Health Discovery and Innovation in Africa,
strategic funding commitments by the NIH, exemplify
efforts to bolster genetic research capacity in Africa [212,
213]. However, it is important to note that future funding
commitments in genomics will benefit from expansion to
broader continental regions to address health problems
and capacity-building needs of countries with no pre-
existing omics research infrastructure.

Another significant hurdle is the lack of expertise for
addressing the ethical, legal, and social implications
(ELSIs) of multi-omics research, which hinders the con-
duct of research and efficient sharing of data [47]. To
address this, it is essential to create national and local
opportunities for advanced training, foster continuous
professional development, and develop comprehensive
ELSI guidelines that can be integrated into study designs.
These measures will ensure that multi-omics research
is conducted responsibly and its benefits are equitably
shared, maintaining the integrity and relevance of the
research. Additionally, promoting workforce diversity in
omics research is crucial for building trust and fostering
engagement among underrepresented groups. Diverse
research teams are more likely to focus on health issues
pertinent to their communities, which in turn encour-
ages broader participation and consent in biobank stud-
ies. This not only strengthens the relationship between
researchers and participants but also enhances the
quality of research data, making genomic studies more
impactful and relevant across populations [67].

Multi-omics data and integration methods

Integrating multi-omics data to unravel complex GxE
interactions in NCDs is complicated by diverse data for-
mats and significant preprocessing requirements [35, 142,
214, 215]. The lack of standardized methods for preproc-
essing and integrating data from various omics platforms
often compromises the effectiveness of analyses [41, 216].
Additionally, the integration process is challenged by the
"curse of dimensionality." This term describes issues that
arise in high-dimensional datasets, where the volume
of variables far exceeds the number of samples, leading
to data sparsity and inconsistency across samples [217].
This makes it difficult to draw reliable conclusions from
the data, emphasizing the need for robust analytical tools
and methods that can handle and integrate vast and var-
ied omics data effectively.

On the other hand, tissue and cell-type heterogene-
ity present another significant challenge in multi-omics
integration, particularly relevant to studying complex
diseases [218]. Different cell types within a single tissue
sample can exhibit unique omics profiles, influenced by
the tissue’s specific section or the physiological condition
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of an individual [218]. These variations can skew bio-
marker levels and lead to misleading associations that
reflect cellular differences rather than the disease itself.
Although statistical methods have been developed to
adjust for cell-type heterogeneity, they may not fully
account for the true biological variations or might even
over-correct them. Ideally, single-cell omics would pro-
vide a clearer picture by isolating the profiles of each cell
type, but this approach is often impractical due to high
costs and material requirements [37, 178]. The chal-
lenges of sample heterogeneity and technical artifacts,
such as batch effects during sequencing, underscore the
complexity of data preprocessing in multi-omics stud-
ies. Ensuring consistent data processing and leveraging
appropriate statistical controls are crucial for mitigating
these issues and enhancing the reliability of multi-omics
analyses.

Furthermore, while NGS technologies have made
sequencing faster and more affordable, they have also
introduced challenges such as increased costs for partici-
pant recruitment and sample processing, and complexi-
ties in data management and storage [178, 218]. Privacy
concerns frequently limit data sharing between institu-
tions, sometimes leading to the withdrawal of large data-
sets from public access due to potential identification
risks [215, 218]. Moreover, proprietary standards for bio-
medical devices and health IT systems hinder seamless
data integration across different sources [35]. Addressing
these issues requires comprehensive efforts to harmo-
nize data across various healthcare providers and omics
modalities, necessitating a collaborative approach from
all stakeholders in healthcare and research to enhance
real-world evidence-based practices and improve health-
care outcomes.

Another multi-omics integration challenge, particularly
when applying enrichment-based methods to uncover
gene-environment interactions in NCDs, is the poten-
tial bias introduced by linkage disequilibrium, colocali-
zation of multiple functional variants, and unaccounted
confounders [219]. Fine-mapping and imputation-based
methods, which are crucial for developing biomarkers
and understanding molecular mechanisms, depend heav-
ily on the accuracy of population-specific linkage dis-
equilibrium matrices [220]. These methods also rely on
robust genetic reference models for molecular features
such as gene expression or methylation, which are dif-
ficult to obtain for features other than gene expression
[220]. The variability of QTL architecture across different
tissues further complicates these analyses, necessitating
careful consideration of tissue relevance to the disease
mechanisms under study [220]. Researchers must ensure
they are well-versed in the biological assumptions, sta-
tistical constraints, and computational demands of the
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integration tools they choose to employ to enhance the
reliability and applicability of their findings in NCD
research.

Validation of GXE interactions and translational applications
Validating GxE interactions identified in human research
and translating them into actionable insights remains
a critical challenge. Translational studies using model
organisms bridge observational findings with mecha-
nistic understanding, allowing researchers to explore
how genetic and environmental factors interplay in the
development of NCDs [133]. Model organisms such as
mice [221], rats [222], Drosophila melanogaster [223],
and Caenorhabditis elegans [224] offer controlled envi-
ronments where genetic and environmental variables
can be precisely manipulated. This control facilitates the
dissection of complex biological processes that are chal-
lenging to study directly in humans due to ethical and
practical constraints. Moreover, hypotheses generated
from these studies can be tested using human genetic
data, improving detection power and enabling a more
detailed analysis of subpopulations to understand GxE
interactions better. Incorporating functional annotations
from resources such as ENCODE, GTEx, and Roadmap
Epigenomics further enhances this process by prioritiz-
ing candidate variants and regulatory regions for GxE
studies, particularly those in non-coding regions often
affected by environmental exposures [225].

For example, genetically diverse rodent models like
the Collaborative Cross [226] and Diversity Outbred
lines [227], which have high sequence homology with
humans, have been instrumental in identifying QTLs and
candidate genes involved in GXE interactions relevant to
human NCDs. A notable case involves mutations in the
tumor suppressor gene BAPI, which have been linked
with increased susceptibility to mesothelioma follow-
ing asbestos exposure [228]. Exploring how BAPI muta-
tions interact with asbestos exposure could elucidate key
molecular pathways in carcinogenesis, with the potential
to inform targeted screening, prevention strategies, and
therapies tailored to the underlying mechanisms. Simi-
larly, studies in Drosophila and C. elegans have facilitated
high-throughput screening of genetic variants and envi-
ronmental exposures, uncovering genetic pathways that
modulate responses to environmental stressors and offer-
ing translational insights about human health [229, 230].

However, the translation of findings from model sys-
tems to human populations is not without challenges.
While model organisms provide controlled environ-
ments, they cannot fully replicate the genetic complex-
ity, environmental diversity, or numerous confounding
factors that influence human health. For instance, gene
synteny between humans and model organisms often



Alemu et al. Human Genomics (2025) 19:8

diverges, particularly for non-coding and regulatory
regions, limiting the applicability of some findings. Stud-
ies such as Seok et al. (2013) have demonstrated that
genomic responses in mouse models often poorly mimic
human inflammatory diseases, reflecting the inherent
differences in gene regulatory networks and physiologi-
cal responses. Furthermore, humans are exposed to a
far more diverse range of environmental factors—such
as diet, pollution, and stress—than those typically repli-
cated in model organism studies, which limits the gener-
alizability of findings [231, 232] (Table 1).

Functional annotations and perturbation studies, con-
ducted in both in vitro and in vivo settings, hold prom-
ise for unraveling the complexities of GXE interactions
in NCDs and other complex diseases [233]. Functional
annotations derived from large-scale projects, such as
ENCODE and GTEx, systematically map regulatory ele-
ments and link genetic variants to potential functional
effects, guiding the identification of candidate variants
and regulatory regions [88, 234, 235]. Perturbation stud-
ies, including CRISPR-Cas9-based approaches, enable
direct testing of causal hypotheses [236]. For example,
CRISPR interference (CRISPRi) and activation (CRIS-
PRa) screens in human induced pluripotent stem cell
(hiPSC)-derived neurons have identified essential genes
for neuronal survival under chronic oxidative stress—a
key environmental factor relevant to neurodegenera-
tive diseases—revealing critical mediators like GPX4 and
other selenoprotein synthesis genes [237].

Translational applications of GxE analysis have direct
implications for personalized medicine and public health
interventions [238]. In precision environmental health,
identifying how specific genetic variations influence sus-
ceptibility to environmental exposures enables the devel-
opment of tailored interventions. For instance, genetic
variation in CYP2D6 may influence susceptibility to Par-
kinson’s disease through pesticide exposure, with poor
metabolizers potentially at greater risk [239]. These find-
ings could inform strategies to reduce exposure in vul-
nerable populations, though further research is needed
for confirmation. The ALDH2*2 variant, common in cer-
tain populations, impairs acetaldehyde metabolism and
may increase the risk of esophageal cancer with alcohol
intake, suggesting the potential for personalized dietary
recommendations and targeted prevention strategies in
affected populations [240].

In pharmacogenomics, GXE interactions can guide per-
sonalized medication regimens to optimize efficacy and
minimize adverse effects. Personalized warfarin dosing
based on variations in genes like VKORI and CYP2C9 has
been shown to improve therapeutic outcomes and reduce
the risk of bleeding complications [241]. Variants in the
TPMT gene necessitate dose adjustments of thiopurine

Page 20 of 27

drugs to prevent toxicity in treating conditions like leu-
kemia and autoimmune diseases [242]. CYP2D6 gene
variants inform the selection and dosing of antidepres-
sants, enhancing treatment response and reducing side
effects [242]. In oncology, identifying BRCA1/2 muta-
tions allows for the use of Poly(ADP-ribose) polymerase
(PARP) inhibitors in targeted cancer therapy, while HER2
expression guides the use of trastuzumab in breast can-
cer treatment, exemplifying how GxE insights contribute
to precision medicine [243]. Approaches that integrate
biological pathways and regulatory annotations can fur-
ther enhance the discovery and application of such GxE
findings.

These translational applications underscore the impor-
tance of validating GxE interactions through model
organisms and advanced experimental systems. How-
ever, significant challenges persist. Limited experimen-
tal validation of GxE findings in model organisms and
translational settings undermines confidence in the bio-
logical mechanisms underlying these interactions, slow-
ing their application to precision medicine and public
health interventions [244]. High costs and the technical
complexity of integrating environmental monitoring data
with omics insights further impede progress. Addition-
ally, the lack of standardized protocols for validating GXxE
findings, combined with the scarcity of diverse model
systems, restricts the development of tailored therapies
and prevention strategies [233, 244]. These issues col-
lectively limit the potential of GXE research to address
global health disparities effectively, particularly in low-
resource settings where both environmental and omics
data are underrepresented.

Summary and concluding remarks
This scoping review highlighted that NCDs, such as car-
diovascular diseases, cancers, chronic respiratory dis-
eases, and diabetes, result from the complex interaction
of gene and environmental factors, such as diet, physi-
cal inactivity, and tobacco use. To unravel the complex-
ity of GxE interactions and gain an understanding of the
multiple factors underlying many NCDs, a multi-omics
approach is indeed essential. By employing multi-omics
and data integration techniques, it can be possible to fully
understand how the interaction of genetic and environ-
mental factors influences NCD development, progres-
sion, and treatment response. This involves exploring a
range of omics disciplines—genomics, transcriptomics,
epigenomics, proteomics, and exposomics and under-
standing how they individually and collectively influence
the risk to NCDs.

Despite the transformative potential of global multi-
omics research in advancing precision medicine, there
are significant challenges and opportunities related
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to its practical translational applications. Our review
highlighted that the genome can not be viewed as a
static entity, as both genetic and environmental factors
dynamically influence disease onset and progression.
We provide several examples of how different modali-
ties complement genomic data by revealing dynamic
changes in gene expression, pathways, and networks due
to environmental exposures. Thus, comprehensive omics
integration is essential for identifying novel biomarkers
and therapeutic targets and enhancing diagnostic, prog-
nostic, and treatment strategies. Integrative analyses ide-
ally would involve multiple omics data from the same
individuals, although practical challenges such as cost
and tissue accessibility may often limit this ideal. Interna-
tional consortia and national biobanks have been estab-
lished to address these challenges, collecting detailed
phenotypic and, increasingly, omics biomarker data to
fill major gaps in NCD research. Moreover, we under-
scored a pervasive issue of limited diversity across omics
and multi-omics datasets, affecting the transferability
of research findings and tools across different genetic
ancestries. Currently, most genomic and omics studies
predominantly feature individuals of European descent,
significantly underrepresenting African, Latin Ameri-
can, and Indigenous populations. This underrepresenta-
tion compromises the predictive accuracy of polygenic
scores and other genomic tools when applied to non-
European groups. Furthermore, including diverse genetic
ancestries is crucial not only for enhancing the precision
of GWAS signal mapping but also for discovering clini-
cally relevant genetic variants that remain unidentified
in predominantly European datasets. For example, stud-
ies involving African ancestry have led to key discover-
ies in chronic kidney disease and diabetes management.
Addressing this lack of diversity is essential not only to
improve the scientific robustness of omics research but
also to mitigate health disparities, ensuring that the ben-
efits of genomic advances reach all populations equitably.
To address fairness in multi-omics for equitable health
advancements, concerted efforts should focus on increas-
ing the diversity of both omics and multi-omics datasets.
Future research should also aim to develop equity-cen-
tered genomics medicine advanced computational meth-
ods and tools that efficiently integrate various omics
datasets. These tools must generate biomarkers or risk
predictors that are broadly transferable across genetic
ancestries, with a particular emphasis on accounting for
known confounders such as gene-environment correla-
tions, including population stratification and assorta-
tive mating. By doing so, we can improve the scientific
robustness of omics research and ensure that the bene-
fits of genomic advances reach all populations equitably,
thereby helping to mitigate health disparities globally.
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Lastly, our exploration of multi-omics integration
methods has illuminated the intricate challenges of com-
bining diverse datasets to decode complex GxE interac-
tions in NCDs. The heterogeneity of tissue and cell types
significantly compounds these challenges, with variations
in omics profiles within a single tissue potentially mis-
leading biomarker identification. Statistical adjustments
for cell-type heterogeneity aim to correct these varia-
tions, yet there is a risk of over-correction, obscuring
genuine biological differences. High costs and logistical
constraints often thwart the ideal solution of employing
single-cell omics to circumvent these issues. Moreover,
while advancements like NGS have reduced costs and
increased the speed of data acquisition, they introduce
new difficulties in data management, participant recruit-
ment, and inter-institutional data sharing due to privacy
concerns. This requires a coordinated effort to harmonize
multi-omics data across different healthcare settings,
requiring a collaborative approach among all stakehold-
ers to leverage real-world evidence for improving health
outcomes effectively.

Supplementary Information

The online version contains supplementary material available at https://doi.
0rg/10.1186/540246-025-00718-9.

Additional file 1.
Additional file 2.
Additional file 3.

Acknowledgements
Not applicable.

Author contributions

TBM and ATA conceived this project. RA drafted the manuscript. RA, NTS, and
YYA generated the figures and tables presented in the manuscript. All authors
read and approved the manuscript.

Funding

AT Amare is currently supported by the National Health and Medical Research
Council (NHMRC) Emerging Leadership (EL1) Investigator Grant (APP2008000).
This work was partly supported by the National Institutes of Health (NIH)
grant ROTHGO11411. ET-A contributed to this work as part of his official duties
as employee of the United States Federal Government. This funding source
had no role in the design of the study and collection, analysis, writing, and
interpretation of the manuscript.

Availability of data and materials

All data analyzed in this study are publicly available from the cited sources; no
new data were generated. Citation trends for multi-omics, personalized/preci-
sion medicine, and gene-environment interactions from 2000 to 2023 were
obtained from PubMed using a Python script that utilizes the requests and
BeautifulSoup libraries. Sequencing cost data were sourced from the National
Human Genome Research Institute’s Genome Sequencing Program (www.
genome.gov/sequencingcostsdata, accessed June 17, 2024). The geographic
distribution data of cumulative participants in genome-wide association
studies (GWAS) were obtained from Mills and Rahal (2020) as maintained by
the Leverhulme Centre for Demographic Science. The python scripts used to
generate the figures are publicly available on GitHub at https://github.com/
robelalemu01/multi-omics-gxe-ncd-review.


https://doi.org/10.1186/s40246-025-00718-9
https://doi.org/10.1186/s40246-025-00718-9
http://www.genome.gov/sequencingcostsdata
http://www.genome.gov/sequencingcostsdata
https://github.com/robelalemu01/multi-omics-gxe-ncd-review
https://github.com/robelalemu01/multi-omics-gxe-ncd-review

Alemu et al. Human Genomics (2025) 19:8

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Author details

‘Program in Medical and Population Genetics, Broad Institute of MIT

and Harvard, Cambridge, MA, USA. 2Anderson School of Management,
University of California Los Angeles, Los Angeles, CA, USA. 3Adelaide Medical
School, Faculty of Health and Medical Sciences, The University of Adelaide,
Adelaide, Australia. 4Alpert Medical School, Lifespan Health Systems, Brown
University, WarrenProvidence, Rhode Island, USA. *Epidemiology Branch,
Division of Population Health Research, Division of Intramural Research, Eunice
Kennedy Shriver National Institute of Child Health and Human Development,
National Institutes of Health, Bethesda, MD, USA. 6Departmeﬁ‘[ of Pediatrics,
Cincinnati Children’s Hospital Medical Center, University of Cincinnati College
of Medicine, Cincinnati, OH, USA.

Received: 29 October 2024 Accepted: 16 January 2025
Published online: 31 January 2025

References

1. Ferrari AJ, et al. Global incidence, prevalence, years lived with disability
(YLDs), disability-adjusted life-years (DALYs), and healthy life expectancy
(HALE) for 371 diseases and injuries in 204 countries and territories and
811 subnational locations, 1990-2021: a systematic analysis for the
Global Burden of Disease Study 2021.The Lancet. 2024;403:2133-61.

2. World Health Organization. Global Action Plan for the Prevention and
Control of Noncommunicable Diseases, 2013-2020.

3. World Economic Forum, H. S. of P. H. The Global Economic Burden of Non-
Communicable Diseases. www.weforum.org/EconomicsOfNCD (2011).

4. Forouzanfar MH, et al. Global, regional, and national comparative
risk assessment of 79 behavioural, environmental and occupational,
and metabolic risks or clusters of risks, 1990-2015: a systematic
analysis for the Global Burden of Disease Study 2015. The Lancet.
2016,388:1659-724.

5. Ndubuisi NE. Noncommunicable diseases prevention in low- and
middle-income countries: an overview of health in all policies (HiAP).
Inquiry (United States). 2021,58:536.

6. Budreviciute A, et al. Management and prevention strategies for
non-communicable diseases (NCDs) and their risk factors. Front Public
Health. 2020;8:21.

7. CalcaterraV, Zuccotti G. Non-communicable diseases and rare diseases:
a current and future public health challenge within pediatrics. Children.
2022;9:245.

8. Tohi M, Bay JL, Tuakoi S, Vickers MH. The developmental origins of
health and disease: adolescence as a critical lifecourse period to break
the transgenerational cycle of NCDs—a narrative review. Int J Environ
Res Public Health. 2022;19:52.

9. CalcaterraV, Zuccotti G. Non-communicable diseases and rare diseases:
a current and future public health challenge within pediatrics. Children.
2022;9:21.

10.  World Health Organization (WHO). GLOBAL STATUS REPORT on Noncom-
municable Diseases 201 4 Attaining the Nine Global Noncommunicable
Diseases Targets; a Shared Responsibility’. (2014).

11. Drobni ZD, et al. Heritability of coronary artery disease: insights from a
classical twin study. Circ Cardiovasc Imaging. 2022;15:133-41.

12. Bai D, et al. Association of genetic and environmental factors with
Autism in a 5-country cohort. JAMA Psychiat. 2019;76:1035-43.

13. Khera AV, Kathiresan S. Genetics of coronary artery disease: discovery,
biology and clinical translation. Nat Rev Genet. 2017;18:331-44.

22.

23.

24,

25.

26.

27.

28.

29.

30.

31

32.

33

34,

35.

36.

37.

38.

39.

40.

Page 23 of 27

Balmain A, Gray J, Ponder B.The genetics and genomics of cancer. Nat
Genet. 2003;33:238-44.

Grotzinger AD, et al. Genetic architecture of 11 major psychiatric disor-
ders at biobehavioral, functional genomic and molecular genetic levels
of analysis. Nat Genet. 2022;54:548-59.

Tcheandjieu C, et al. Large-scale genome-wide association study of
coronary artery disease in genetically diverse populations. Nat Med.
2022;28:1679-92.

Khan A, et al. Genome-wide polygenic score to predict chronic kidney
disease across ancestries. Nat Med. 2022;28:1412-20.

Tsuo K, et al. Multi-ancestry meta-analysis of asthma identifies novel
associations and highlights the value of increased power and diversity.
Cell Genom. 2022;2:25.

Sadee W, et al. Missing heritability of common diseases and treatments
outside the protein-coding exome. Hum Genet. 2014;133:1199-215.
Génin E. Missing heritability of complex diseases: case solved? Hum
Genet. 2020;139:103-13.

Manolio TA, et al. Finding the missing heritability of complex diseases.
Nature. 2009;461:747-53.

Blanco-Gomez A, et al. Missing heritability of complex diseases: enlight-
enment by genetic variants from intermediate phenotypes. BioEssays.
2016;38:664-73.

Zuk O, Hechter E, Sunyaev SR, Lander ES. The mystery of missing herit-
ability: genetic interactions create phantom heritability. Proc Natl Acad
SciUSA.2012;109:1193-8.

Cano-Gamez E, Trynka G. From GWAS to function: using functional
genomics to identify the mechanisms underlying complex diseases.
Front Genet. 2020;11:254.

Spain SL, Barrett JC. Strategies for fine-mapping complex traits. Hum
Mol Genet. 2015;24:111-9.

Hofker MH, Fu J, Wijmenga C. The genome revolution and its role in
understanding complex diseases. Biochimica et Biophysica Acta Mol
Basis Dis. 2014;1842:1889-95.

Kierczak M, et al. Contribution of rare whole-genome sequencing vari-
ants to plasma protein levels and the missing heritability. Nat Commun.
2022;13:17.

Virolainen SJ, VonHandorf A, Viel KCMF, Weirauch MT, Kottyan LC. Gene—
environment interactions and their impact on human health. Genes
Immunity. 2023;1:1-11.

Jung HU, et al. Gene-environment interaction explains a part of missing
heritability in human body mass index. Commun Biol. 2023;6:18.

Wang K, et al. Interpretation of association signals and identification

of causal variants from genome-wide association studies. Am J Hum
Genet. 2010;86:730-42.

DuY, Fan K, Lu X, Wu C. Integrating multi-omics data for gene-environ-
ment interactions. BioTech. 2021;10:26.

Noble AJ, et al. A final frontier in environment-genome interactions?
integrated, multi-omic approaches to predictions of non-communica-
ble disease risk. Front Genet. 2022;13:214.

Raufaste-Cazavieille V, Santiago R, Droit A. Multi-omics analysis: Paving
the path toward achieving precision medicine in cancer treatment and
immuno-oncology. Front Mol Biosci. 2022;9:43.

Kamali Z, et al. Large-scale multi-omics studies provide new insights
into blood pressure regulation. Int J Mol Sci. 2022;23:14.
Sathyanarayanan A, et al. Multi-omics data integration methods and
their applications in psychiatric disorders. Eur Neuropsychopharmacol.
2023;69:26-46.

Wu H, Eckhardt CM, Baccarelli AA. Molecular mechanisms of environ-
mental exposures and human disease. Nat Rev Genet. 2023;24:332-44.
Tong L, et al. Integrating multi-omics data with ehr for precision
medicine using advanced artificial intelligence. IEEE Rev Biomed Eng.
2024;17:80-97.

Nicora G, Vitali F, Dagliati A, Geifman N, Bellazzi R. Integrated multi-
omics analyses in oncology: a review of machine learning methods and
tools. Front Oncol. 2020;10:56.

Subramanian |, Verma S, Kumar S, Jere A, Anamika K. Multi-omics data
integration, interpretation, and its application. Bioinf Biol Insights.
2020;14:658.

Zhan C, et al. From multi-omics approaches to personalized medicine
in myocardial infarction. Front Cardiovasc Med. 2023;10:356.


http://www.weforum.org/EconomicsOfNCD

Alemu et al. Human Genomics

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

(2025) 19:8

Reel PS, Reel S, Pearson E, Trucco E, Jefferson E. Using machine learning
approaches for multi-omics data analysis: a review. Biotechnol Adv.
2021;49:563.

Prosperi M, Min JS, Bian J, Modave F. Big data hurdles in precision
medicine and precision public health. BMC Med Inform Decis Mak.
2018;18:21457.

Santiago-Rodriguez TM, Hollister EB. Multi‘'omic data integration: a
review of concepts, considerations, and approaches. Semin Perinatol.
2021;45:210.

Picard M, Scott-Boyer MP, Bodein A, Périn O, Droit A. Integration strate-
gies of multi-omics data for machine learning analysis. Comput Struct
Biotechnol J. 2021;19:3735-46.

Yang G, Mishra M, Perera MA. Multi-omics studies in historically
excluded populations: the road to equity. Clini Pharmacol Therap.
2023;113:541-56.

Green S, Prainsack B, Sabatello M. Precision medicine and the problem
of structural injustice. Med Health Care Philos. 2023,;26:433-50.
Edwards, T. L., Breeyear, J.,, Piekos, J. A, & Velez Edwards, D. R. Consid-
eration of Race and Ethnicity in Precision Medicine. Trends Genet 36:
807-809 (2020).

Martin AR, et al. Clinical use of current polygenic risk scores may exacer-
bate health disparities. Nat Genet. 2019;51:584-91.

Ding Y, et al. Polygenic scoring accuracy varies across the genetic
ancestry continuum. Nature. 2023;618:774-81.

Wekesa JS, Kimwele M. A review of multi-omics data integration
through deep learning approaches for disease diagnosis, prognosis,
and treatment. Front Geneti. 2023;14:52.

Barouki, R, Gluckman, P. D., Grandjean, P, Hanson, M. & Heindel, J. J.
Developmental Origins of Non-Communicable Disease: Implications for
Research and Public Health. http://www.ehjournal.net/content/11/1/42
(2012).

Ngo KJ, et al. Lysosomal genes contribute to Parkinson’s disease near
agriculture with high intensity pesticide use. NPJ Parkinsons Dis.
2024;10:501.

Schaffner SL, et al. Genetic variation and pesticide exposure influence
blood DNA methylation signatures in females with early-stage Parkin-
son’s disease. NPJ Parkinsons Dis. 2024;10:654.

Young Al, Wauthier F, Donnelly P. Multiple novel gene-by-environment
interactions modify the effect of FTO variants on body mass index. Nat
Commun. 2016;7:21.

QiT, Song L, GuoY, Chen C, Yang J. From genetic associations to genes:
methods, applications, and challenges. Trends Genet. 2024. https://doi.
org/10.1016/j.tig.2024.04.008.

Kamali Z, et al. Large-scale multi-omics studies provide new insights
into blood pressure regulation. Int J Mol Sci. 2022;23:85.

Visscher PM, et al. 10 years of GWAS discovery: biology, function, and
translation. Am J Hum Genet. 2017;101:5-22.

Abdellaoui A, Yengo L, Verweij KJH, Visscher PM. 15 years of GWAS
discovery: realizing the promise. Am J Hum Genet. 2023;110:179-94.
Loos RJF. 15 years of genome-wide association studies and no signs of
slowing down. Nat Commun. 2020;11:89.

Satam H, et al. Next-generation sequencing technology: current trends
and advancements. Biology. 2023;12:856.

Wang K, et al. Diverse Genome-wide Association Studies Associ-

ate the IL12/I1L23 Pathway with Crohn Disease. Am J Hum Genet.
2009;84:399-405.

Lennon NJ, et al. Selection, optimization and validation of ten chronic
disease polygenic risk scores for clinical implementation in diverse US
populations. Nat Med. 2024;30:480-7.

Amare AT, et al. Association of polygenic score for major depression
with response to lithium in patients with bipolar disorder. Mol Psychia-
try. 2021;26:2457-70.

Schubert KO, et al. Combining schizophrenia and depression polygenic
risk scores improves the genetic prediction of lithium response in
bipolar disorder patients. Transl Psychiatry. 2021;11:74.

Amare AT, Schubert KO, Baune BT. Pharmacogenomics in the treat-
ment of mood disorders: strategies and opportunities for personalized
psychiatry. EPMA J. 2017;8:211-27.

Fatumo S, et al. A roadmap to increase diversity in genomic studies. Nat
Med. 2022;28:243-50.

67.

68.

69.

70.

72

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

92.

93.

94,

Page 24 of 27

Fatumo S, et al. A roadmap to increase diversity in genomic studies.
Nat Med. 2022;28:243-50.

Genevieve LD, Martani A, Shaw D, Elger BS, Wangmo T. Structural rac-
ism in precision medicine: Leaving no one behind. BMC Med Ethics.
2020;21:89.

Khoury MJ, et al. Health equity in the implementation of genom-
ics and precision medicine: a public health imperative. Genet Med.
2022,;24:1630-9.

Tishkoff SA, Williams SM. Genetic analysis of African popula-

tions: human evolution and complex disease. Nat Rev Genet.
2002;3:611-21.

Reed FA, Tishkoff SA. African human diversity, origins and migrations.
Curr Opini Genet Dev. 2006;16:597-605.

Campbell MC, Tishkoff SA. African genetic diversity: Implications for
human demographic history, modern human origins, and complex
disease mapping. Annu Rev Genom Hum Genet. 2008;9:403-33.
Gurdasani D, et al. The African Genome Variation Project shapes
medical genetics in Africa. Nature. 2015;517:327-32.

Sirugo G, et al. Genetic studies of African populations: an overview
on disease susceptibility and response to vaccines and therapeutics.
Hum Genet. 2008;123:557-98.

Genomic data in the All of Us Research Program. Nature 627,
340-346 (2024).

Domingue BW, Fletcher J, Conley D, Boardman JD. Genetic and
educational assortative mating among US adults. Proc Natl Acad Sci
US A 2014;111:7996-8000.

Veller C, Coop GM. Interpreting population- and family-based
genome-wide association studies in the presence of confounding.
PLoS Biol. 2024;22:86.

Howe LJ, et al. Within-sibship genome-wide association analyses
decrease bias in estimates of direct genetic effects. Nat Genet.
2022;54:581-92.

Morris, T.T,, Davies, N. M., Hemani, G. & Smith, G. D. Population Phe-
nomena Inflate Genetic Associations of Complex Social Traits. https://
www.science.org (2020).

Young Al, et al. Mendelian imputation of parental geno-

types improves estimates of direct genetic effects. Nat Genet.
2022;54:897-905.

Wang, Z. G. M. S. M. RNA-Seq a revolutionary tool for transcriptomics.
Lowe R, Shirley N, Bleackley M, Dolan S, Shafee T. Transcriptomics tech-
nologies. PLoS Comput Biol. 2017;13:85.

Romanoski CE, et al. Systems genetics analysis of gene-by-environment
interactions in human cells. Am J Hum Genet. 2010;86:399-410.
Orozco LD, et al. Unraveling inflammatory responses using systems
genetics and gene-environment interactions in macrophages. Cell.
2012;151:658-70.

Dermitzakis ET. Gene-gene and gene-environment interactions
detected by transcriptome sequence analysis in twins. Nat Genet.
2015;47:88-91.

Eid A, Mhatre |, Richardson JR. Gene-environment interactions in
Alzheimer's disease: a potential path to precision medicine. Pharmacol
Therap. 2019;199:173-87.

Abascal F, et al. Expanded encyclopaedias of DNA elements in the
human and mouse genomes. Nature. 2020;583:699-710.

GTEx Consortium. The GTEx Consortium Atlas of Genetic Regulatory Effects
across Human Tissues The GTEx Consortium*. www.gtexportal.org.
Stricker SH, Koferle A, Beck S. From profiles to function in epigenomics.
Nat Rev Genet. 2016;18:51-66.

Mehrmohamadi M, Sepehri MH, Nazer N, Norouzi MR. A compara-
tive overview of epigenomic profiling methods. Front Cell Dev Biol.
2021,9:26.

Westerman KE, Sofer T. Many roads to a gene-environment interaction.
Am J Hum Genet. 2024;111:626-35.

Stepanyan A, et al. Long-term environmental metal exposure is associ-
ated with hypomethylation of CpG sites in NFKB1 and other genes
related to oncogenesis. Clin Epigenetics. 2023;15:52.

Shiek SS, Mani MS, Kabekkodu SP, Dsouza HS. Health repercussions of
environmental exposure to lead: methylation perspective. Toxicology.
2021;461:96.

Choi SW, Friso S. Epigenetics: a new bridge between nutrition and
health. Adv Nutr. 2010;1:8-16.


http://www.ehjournal.net/content/11/1/42
https://doi.org/10.1016/j.tig.2024.04.008
https://doi.org/10.1016/j.tig.2024.04.008
https://www.science.org
https://www.science.org
http://www.gtexportal.org

Alemu et al. Human Genomics

95.

96.

97.

98.

99.

100.

102.

103.

105.

106.

107.

108.

109.

110.

11,

112

113.

116.

117.

118.

120.

121.

122.

123.

(2025) 19:8

Kim K, Friso S, Choi SW. DNA methylation, an epigenetic mechanism
connecting folate to healthy embryonic development and aging. J
Nutr Biochem. 2009;20:917-26.

Lee HS. Impact of maternal diet on the epigenome during in utero
life and the developmental programming of diseases in childhood
and adulthood. Nutrients. 2015;7:9492-507.

Singh D, et al. Hidden pharmacological activities of valproic acid: a
new insight. Biomed Pharmacother. 2021;1:42.

Diederich M, Chateauvieux S, Morceau F, Dicato M. Molecular and
therapeutic potential and toxicity of valproic acid. J Biomed Biotech-
nol. 2010;20:10.

Grundberg E, et al. Global analysis of dna methylation variation in
adipose tissue from twins reveals links to disease-associated variants
in distal regulatory elements. Am J Hum Genet. 2013;93:876-90.

Bell JT, et al. Epigenome-wide scans identify differentially methyl-
ated regions for age and age-related phenotypes in a healthy ageing
population. PLoS Genet. 2012;8:285.

Van Dongen J, et al. Genetic and environmental influences interact
with age and sex in shaping the human methylome. Nat Commun.
2016;7:52.

Murrell A, Rakyan VK, Beck S. From genome to epigenome. Hum Mol
Genet. 2005;14:21.

Wu YL, et al. Epigenetic regulation in metabolic diseases: mecha-
nisms and advances in clinical study. Sig Transd Target Ther.
2023;8:56.

Feil R, Fraga MF. Epigenetics and the environment: emerging patterns
and implications. Nat Rev Genet. 2012;13:97-109.

Villicana S, Bell JT. Genetic impacts on DNA methylation: research
findings and future perspectives. Genome Biol. 2021;22:56.

Teh AL, et al. The effect of genotype and in utero environment on
interindividual variation in neonate DNA methylomes. Genome Res.
2014,24:1064-74.

Gigante S, et al. Using long-read sequencing to detect imprinted
DNA methylation. Nucleic Acids Res. 2019;47:74.

Harper JW, Bennett EJ. Proteome complexity and the forces that
drive proteome imbalance. Nature. 2016;537:328-38.

Leutert M, Entwisle SW, Villén J. Decoding post-translational modifi-
cation crosstalk with proteomics. Mol Cell Proteom. 2021;20:87.

Lee JM, Hammarén HM, Savitski MM, Baek SH. Control of protein sta-
bility by post-translational modifications. Nat Commun. 2023;14:527.
Vileigas DF, et al. Landscape of heart proteome changes in a diet-
induced obesity model. Sci Rep. 2019;9:21.

Félix, L. Teratogenicity Testing Methods and Protocols Methods in
Molecular Biology 1797. http://www.springer.com/series/7651.

Sinha |, et al. Changes in salivary proteome before and after cigarette
smoking in smokers compared to sham smoking in nonsmokers: a
pilot study. Tob Induc Dis. 2021;19:458.

Eldjarn GH, et al. Large-scale plasma proteomics comparisons
through genetics and disease associations. Nature. 2023;622:348-58.
Sun BB, et al. Plasma proteomic associations with genetics and health
in the UK Biobank. Nature. 2023;622:329-38.

Dhindsa RS, et al. Rare variant associations with plasma protein levels
in the UK Biobank. Nature. 2023;622:339-47.

Birhanu AG. Mass spectrometry-based proteomics as an emerging
tool in clinical laboratories. Clini Proteom. 2023;20:419.

Iwamoto N, Shimada T. Recent advances in mass spectrometry-
based approaches for proteomics and biologics: great contribu-
tion for developing therapeutic antibodies. Pharmacol Ther.
2018;185:147-54.

Rattray NJW, et al. Beyond genomics: understanding exposotypes
through metabolomics. Hum Genom. 2018;12:215.

Patti GJ, Yanes O, Siuzdak G. Innovation: metabolomics: the apogee of
the omics trilogy. Nat Rev Mol Cell Biol. 2012;13:263-9.

Gieger C, et al. Genetics meets metabolomics: a genome-wide
association study of metabolite profiles in human serum. PLoS Genet.
2008;4:52.

Walker DI, et al. High-resolution metabolomics of occupational expo-
sure to trichloroethylene. Int J Epidemiol. 2016;45:1517-27.

van Veldhoven K; et al. Effects of exposure to water disinfection by-
products in a swimming pool: a metabolome-wide association study.
Environ Int. 2018;111:60-70.

124.

125.

126.
127.

128.

129.

136.

137.

138.

139.

140.

141.

144,

145.

146.

147.

148.

149.

151.

Page 25 of 27

Wang, L.etal PATHOL O G Y Human Genetic and Metabolite Variation
Reveals That Methylthioadenosine Is a Prognostic Biomarker and an
Inflammatory Regulator in Sepsis. vol. 4 https://www.science.org.

Chu X, et al. Integration of metabolomics, genomics, and immune
phenotypes reveals the causal roles of metabolites in disease. Genome
Biol. 2021;22:74.

Vineis P, et al. What is new in the exposome? Environ Int. 2020;143:569.
Bononi A, et al. Heterozygous germline BLM mutations increase
susceptibility to asbestos and mesothelioma. Science. 2020. https://doi.
0rg/10.1073/pnas.2019652117/-/DCSupplemental.

Modafferi S, et al. Gene—environment interactions in developmen-

tal neurotoxicity: a case study of synergy between chlorpyrifos and
chd8 knockout in human brainspheres. Environ Health Perspect.
2021;129:1125.

Bakermans-Kranenburg MJ, Van ljzendoorn MH. The hidden efficacy
of interventions: gene x environment experiments from a differential
susceptibility perspective. Annu Rev Psychol. 2015;66:381-409.

Moore R, et al. A linear mixed-model approach to study multivariate
gene-environment interactions. Nat Genet. 2019;51:180-6.

Dahl A, et al. A robust method uncovers significant context-specific
heritability in diverse complex traits. Am J Hum Genet. 2020;106:71-91.
Zhou X, Lee SH. An integrative analysis of genomic and exposomic data
for complex traits and phenotypic prediction. Sci Rep. 2021;11:170.
Motsinger-Reif AA, et al. Gene-environment interactions within a preci-
sion environmental health framework. Cell Genom. 2024,4:214.

Aurich D, Miles O, Schymanski EL. Historical exposomics and high
resolution mass spectrometry. Exposome. 2021;1:14.

Géhin C, Holman SW. Advances in high-resolution mass spectrometry
applied to pharmaceuticals in 2020: a whole new age of information.
Anal Sci Adv. 2021;2:142-56.

Samon SM, Hammel SC, Stapleton HM, Anderson KA. Silicone wrist-
bands as personal passive sampling devices: current knowledge, rec-
ommendations for use, and future directions. Environ Int. 2022;169:214.
Koelmel JP, et al. Exploring the external exposome using wearable pas-
sive samplers-the China BAPE study. Environ Pollut. 2021,270:1459.
Jiang G, et al. Dynamic human environmental exposome revealed by
longitudinal personal monitoring. Cell. 2018;175:277-291.e31.

The All of Us Research Program Investigators. The “All of Us” Research
Program: Special Report. (2019).

Fayet Y, Bonnin T, Canali S, Giroux E. Putting the exposome into practice:
an analysis of the promises, methods and outcomes of the European
human exposome network. Soc Sci Med. 2024;354:147.

Zhang H, et al. Genome-wide association study identifies 32 novel
breast cancer susceptibility loci from overall and subtype-specific
analyses. Nat Genet. 2020;52:572-81.

Allayee H, et al. Systems genetics approaches for understanding com-
plex traits with relevance for human disease. elife. 2023;12:149.
Roadmap Epigenomics Consortium et al. Integrative analysis of 111
reference human epigenomes. Nature 518, 317-329 (2015).

Assum |, et al. Tissue-specific multi-omics analysis of atrial fibrillation.
Nat Commun. 2022;13:119.

Hannon E, et al. Methylation QTLs in the developing brain and their
enrichment in schizophrenia risk loci. Nat Neurosci. 2015;19:48-54.
Trynka G, et al. Disentangling the effects of colocalizing genomic anno-
tations to functionally prioritize non-coding variants within complex-
trait Loci. Am J Hum Genet. 2015;97:139-52.

Pickrell JK. Joint analysis of functional genomic data and genome-
wide association studies of 18 human traits. Am J Hum Genet.
2014,94:559-73.

Schaid DJ, Chen W, Larson NB. From genome-wide associations to
candidate causal variants by statistical fine-mapping. Nat Rev Genet.
2018;19:491-504.

Giambartolomei C, et al. Bayesian test for colocalisation between Pairs
of genetic association studies using summary statistics. PLoS Genet.
2014;10:258.

He X, et al. Sherlock: detecting gene-disease associations by

matching patterns of expression QTL and GWAS. Am J Hum Genet.
2013;92:667-80.

Schwartzentruber J, et al. Genome-wide meta-analysis, fine-mapping
and integrative prioritization implicate new Alzheimer’s disease risk
genes. Nat Genet. 2021;53:392-402.


http://www.springer.com/series/7651
https://www.science.org
https://doi.org/10.1073/pnas.2019652117/-/DCSupplemental
https://doi.org/10.1073/pnas.2019652117/-/DCSupplemental

Alemu et al. Human Genomics

152.

153.

154.

155.

156.

157.

159.

160.

161.

162.

163.

166.

169.

170.

171.

173.

174.

175.

176.

177.

(2025) 19:8

Vanderweele TJ, Tchetgen Tchetgen EJ, Cornelis M, Kraft P. Meth-
odological challenges in Mendelian randomization. Epidemiology.
2014;25:427-35.

Sanderson E, et al. Mendelian randomization. Nat Rev Methods Primers.
2022,2:189.

Richmond RC, Smith GD. Mendelian randomization: concepts and
scope. Cold Spring Harb Perspect Med. 2022;12:172.

Deng YT, et al. Identifying causal genes for depression via integration of
the proteome and transcriptome from brain and blood. Mol Psychiatry.
2022;27:2849-57.

Markozannes G, et al. Systematic review of Mendelian randomization
studies on risk of cancer. BMC Med. 2022;20:145.

Yuan K, et al. Fine-mapping across diverse ancestries drives the discov-
ery of putative causal variants underlying human complex traits and
diseases. Science. 2019;14:856.

Lu Z, et al. Multi-ancestry fine-mapping improves precision to identify
causal genes in transcriptome-wide association studies. Am J Hum
Genet. 2022;109:1388-404.

Wainberg M, et al. Opportunities and challenges for transcriptome-
wide association studies. Nat Genet. 2019;51:592-9.

Fan', et al. Multi-omics analysis reveals aberrant gut-metabolome-
immune network in schizophrenia. Front Immunol. 2022;13:52.
Langfelder P, Horvath S. WGCNA: an R package for weighted correlation
network analysis. BMC Bioinformatics. 2008;9:214.

Sharma A, Lysenko A, Jia S, Boroevich KA, Tsunoda T. Advances in Al and
machine learning for predictive medicine. J Hum Genet. 2024. https://
doi.org/10.1038/510038-024-01231-y.

Camacho DM, Collins KM, Powers RK, Costello JC, Collins JJ. Next-gener-
ation machine learning for biological networks. Cell. 2018;173:1581-92.
Xu H, et al. Multi-omics marker analysis enables early prediction of
breast tumor progression. Front Genet. 2021;12:18.

Huang Q, Zhang X, Hu Z. Application of artificial intelligence modeling
technology based on multi-omics in noninvasive diagnosis of inflam-
matory bowel disease. J Inflamm Res. 2021;14:1933-43.

Malik V, Kalakoti 'Y, Sundar D. Deep learning assisted multi-omics inte-
gration for survival and drug-response prediction in breast cancer. BMC
Genomics. 2021;22:71.

Wang B, et al. Similarity network fusion for aggregating data types on a
genomic scale. Nat Methods. 2014;11:333-7.

Argelaguet R, et al. Multi-Omics Factor Analysis—a framework for
unsupervised integration of multi-omics data sets. Mol Syst Biol.
2018;14:214.

Shen R, Olshen AB, Ladanyi M. Integrative clustering of multiple
genomic data types using a joint latent variable model with applica-
tion to breast and lung cancer subtype analysis. Bioinformatics.
2009;25:2906-12.

Sharifi-Noghabi, H., Zolotareva, O., Collins, C. C. & Ester, M. MOLI: Multi-
omics late integration with deep neural networks for drug response
prediction. in Bioinformatics vol. 35 i501-i509 (Oxford University Press,
2019).

Xu J, et al. A hierarchical integration deep flexible neural forest frame-
work for cancer subtype classification by integrating multi-omics data.
BMC Bioinformatics. 2019;20:96.

Drouard G, et al. Exploring machine learning strategies for predicting
cardiovascular disease risk factors from multi-omic data. BMC Med
Inform Decis Mak. 2024;24:49.

Khadirnaikar S, Shukla S, Prasanna SRM. Integration of pan-cancer
multi-omics data for novel mixed subgroup identification using
machine learning methods. PLoS One. 2023;18:45.

Abbasi EY, et al. A machine learning and deep learning-based
integrated multi-omics technique for leukemia prediction. Heliyon.
2024;10:46.

Yuan M, et al. Epigenetic regulation in major depression and other
stress-related disorders: molecular mechanisms, clinical relevance and
therapeutic potential. Sig Transd Target Ther. 2023;8:59.

Xie Y, et al. Integrated analysis of methylomic and transcriptomic data
to identify potential diagnostic biomarkers for major depressive disor-
der. Genes (Basel). 2021;12:53.

Wang C, Lue W, Kaalia R, Kumar P, Rajapakse JC. Network-based integra-
tion of multi-omics data for clinical outcome prediction in neuroblas-
toma. Sci Rep. 2022;12:96.

178.

179.

180.

188.

189.

190.

192.

193.

194.

195.

196.

197.

198.

199.

200.

201.

202.

203.

204.

205.

Page 26 of 27

Vora LK, et al. Artificial intelligence in pharmaceutical technology and
drug delivery design. Pharmaceutics. 2023;15:214.

Chekroud, A. M. et al. The Promise of Machine Learning in Predicting Treat-
ment Outcomes in Psychiatry.

Joyce JB, et al. Multi-omics driven predictions of response to acute
phase combination antidepressant therapy: a machine learning
approach with cross-trial replication. Transl Psychiatry. 2021;11:41.

D.R. Cox & D. Oakes. Analysis of Survival Data. Compositional Data J.
Aitchison (1984).

Wu M, Huang J, Ma S. Identifying gene-gene interactions using penal-
ized tensor regression. Stat Med. 2018;37:598-610.

Wu M, Zhang Q, Ma S. Structured gene-environment interaction analy-
sis. Biometrics. 2020;76:23-35.

Liu J, et al. Identification of gene-environment interactions in cancer
studies using penalization. Genomics. 2013;102:189-94.

Bien J, Taylor J, Tibshirani R. A lasso for hierarchical interactions. Ann
Stat. 2013;41:1111-41.

Wu M, Ma S. Robust genetic interaction analysis. Brief Bioinform.
2019;20:624-37.

McAllister, K. et al. Current Challenges and New Opportunities for Gene-
Environment Interaction Studies of Complex Diseases. in American
Journal of Epidemiology vol. 186 753-761 (Oxford University Press, 2017).
UK Biobank: Protocol for a Large-Scale Prospective Epidemiological
Resource (AMENDMENT ONE FINAL). (2007).

Kurki MI, et al. FinnGen provides genetic insights from a well-pheno-
typed isolated population. Nature. 2023;613:508-18.

Nam, Y. et al. Harnessing Artificial Intelligence in Multimodal Omics Data
Integration: Paving the Path for the Next Frontier in Precision Medicine.
Annual Review of Biomedical Data Science Downloaded from www.
annualreviews.org. Guest (2024) https://doi.org/10.1146/annurev-bioda
tasci-102523.

Shuni WXYQZSM. Gene—environment interaction analysis via deep
learning. Gen Epidemiol. 2023;5:693.

Madhukar NS, et al. A Bayesian machine learning approach for drug tar-
get identification using diverse data types. Nat Commun. 2019;10:412.
Sun N, WangY, Chu J, Han Q, Shen Y. Bayesian approaches in exploring
gene-environment and gene-gene interactions: a comprehensive
review. Cancer Genom Proteomics. 2023;20:669-78.

Zou F, Huang H, Lee S, Hoeschele I. Nonparametric Bayesian variable
selection with applications to multiple quantitative trait loci map-

ping with epistasis and gene-environment interaction. Genetics.
2010;186:385-94.

Spanbauer C, Sparapani R. Nonparametric machine learning for preci-
sion medicine with longitudinal clinical trials and Bayesian additive
regression trees with mixed models. Stat Med. 2021;40:2665-91.
Alsentzer, E. et al. Publicly Available Clinical BERT Embeddings. (2019).
Lee J, et al. BioBERT: a pre-trained biomedical language representation
model for biomedical text mining. Bioinformatics. 2020;36:1234-40.

Li, C. etal. LLaVA-Med: Training a Large Language-and-Vision Assistant for
Biomedicine in One Day. https://aka.ms/llava-med.

Zuo, X, Yang, X., Dou, Z. & Wen, J. R. MedGPT: Medical Concept Predic-
tion from Clinical Narratives. in 28th Text REtrieval Conference, TREC
2019-Proceedings (National Institute of Standards and Technology
(NIST), 2019). https://doi.org/10.1145/1122445.1122456.

Obermeyer, Z, Powers, B, Vogeli, C. & Mullainathan, S. Dissecting Racial
Bias in an Algorithm Used to Manage the Health of Populations. https://
www.science.org.

Rudin C. Stop explaining black box machine learning models for high
stakes decisions and use interpretable models instead. Nat Mach Intell.
2019;1:206-15.

Dwork C, Roth A. The algorithmic foundations of differential privacy.
Found Trends Theor Comput Sci. 2013;9:211-487.

Mills MC, Rahal C. The GWAS Diversity Monitor tracks diversity by
disease in real time. Nat Genet. 2020;2:963.

Privé F, et al. Portability of 245 polygenic scores when derived from the
UK Biobank and applied to 9 ancestry groups from the same cohort.
Am J Hum Genet. 2022;109:12-23.

Metspalu M, et al. Shared and unique components of human popula-
tion structure and genome-wide signals of positive selection in South
Asia. Am J Hum Genet. 2011;89:731-44.


https://doi.org/10.1038/s10038-024-01231-y
https://doi.org/10.1038/s10038-024-01231-y
http://www.annualreviews.org
http://www.annualreviews.org
https://doi.org/10.1146/annurev-biodatasci-102523
https://doi.org/10.1146/annurev-biodatasci-102523
https://aka.ms/llava-med
https://doi.org/10.1145/1122445.1122456
https://www.science.org
https://www.science.org

Alemu et al. Human Genomics

206.

207.

208.

209.

210.

211,

212.

213.

216.

217.

220.

221,

222.

223.

224.

225.

226.

227.

228.

229.

230.

231.

232.

233.

(2025) 19:8

Gomez F, Hirbo J, Tishkoff SA. Genetic variation and adaptation in
Africa: Implications for human evolution and disease. Cold Spring Harb
Perspect Biol. 2014,6:13.

Genovese G, et al. A risk allele for focal segmental glomerulosclerosis
in African Americans is located within a region containing APOL1 and
MYHO. Kidney Int. 2010;78:698-704.

Rotimi CN, et al. The genomic landscape of African populations in
health and disease. Hum Mol Genet. 2017;26:225-36.

Cohen J, et al. Low LDL cholesterol in individuals of African descent
resulting from frequent nonsense mutations in PCSK9. Nat Genet.
2005;37:161-5.

Breeze CE, Beck S, Berndt Sl, Franceschini N. The missing diversity in
human epigenomic studies. Nat Genet. 2022;54:737-9.

Dlamini SN, et al. Associations Between CYP17A1 and SERPINAG/

A1 polymorphisms, and cardiometabolic risk factors in Black South
Africans. Front Genet. 2021;12:148.

Rotimi C, et al. Research capacity. Enabling the genomic revolution in
Africa. Science. 2014;344:1346-8.

Aron S, et al. The development of a sustainable bioinformatics training
environment within the H3Africa bioinformatics network (H3ABioNet).
Front Educ (Lausanne). 2021;6:459.

Chen C, et al. Applications of multi-omics analysis in human diseases.
MedComm. 2023;4:63.

Krassowski M, Das V, Sahu SK, Misra BB. State of the field in multi-omics
research: from computational needs to data mining and sharing. Front
Genet. 2020;11:52.

Bioinformatics Methods in Clinical Research. vol. 593 (Humana Press,
Totowa, 2010).

Prosperi M, Min JS, Bian J, Modave F. Big data hurdles in precision
medicine and precision public health. BMC Med Inform Decis Mak.
2018;18:214.

Kreitmaier P, Katsoula G, Zeggini E. Insights from multi-omics integra-
tion in complex disease primary tissues. Trends Genet. 2023;39:46-58.
DuY, Fan K, Lu X, Wu C. Integrating multi-omics data for gene-environ-
ment interactions. BioTech. 2021;10:56.

Kanai M, et al. Meta-analysis fine-mapping is often miscalibrated at
single-variant resolution. Cell Genom. 2022;2:459.

Lusis AJ, et al. The hybrid mouse diversity panel: a resource for systems
genetics analyses of metabolic and cardiovascular traits. J Lipid Res.
2016;,57:925-42.

Hayman, G. T, Smith, J. R. & Dwinell, M. R. Rat Genomics. http://www.
springer.com/series/7651.

MacKay TFC, et al. The drosophila melanogaster genetic reference
panel. Nature. 2012;482:173-8.

Le Goff A, Louvel S, Boullier H, Allard P. Toxicoepigenetics for risk
assessment: bridging the gap between basic and regulatory science.
Epigenetics Insights. 2022;15:214.

Hsu L, et al. Powerful cocktail methods for detecting genome-wide
gene-environment interaction. Genet Epidemiol. 2012;36:183-94.
David W. Threadgill, Darla R. Miller, Gary A. Churchill & Fernando Pardo-
Manuel de Villena. The Collaborative Cross-A Recombinant Inbred
Mouse Population for the Systems Genetic Era.

Bogue MA, Churchill GA, Chesler EJ. Collaborative cross and diversity
outbred data resources in the mouse phenome database. Mammalian
Genome. 2015;26:511-20.

Cheung M, Testa JR. BAP1, a tumor suppressor gene driving malignant
mesothelioma. Transl Lung Cancer Res. 2017;6:270-8.

Akhtari FS, et al. High-throughput screening and genome-wide analy-
ses of 44 anticancer drugs in the 1000 Genomes cell lines reveals an
association of the NQO1 gene with the response of multiple anticancer
drugs. PLoS Genet. 2021;17:245.

Balik-Meisner M, et al. Elucidating gene-by-environment interactions
associated with differential susceptibility to chemical exposure. Environ
Health Perspect. 2018;126:410.

Wu H, Eckhardt CM, Baccarelli AA. Molecular mechanisms of environ-
mental exposures and human disease. Nat Rev Genet. 2023;24:332-44.
Perlman RL. Mouse models of human disease: an evolutionary perspec-
tive. Evol Med Public Health. 2016;2:14.

Ritchie, M. D. et al. Incorporation of Biological Knowledge into the Study
of Gene-Environment Interactions. in American Journal of Epidemiology
vol. 186, pp 771-777 (Oxford University Press, 2017).

234,

235.

236.

237.

238.

239.

240.

241.

242.

243.

244,

245.

246.

247.

248.

249.

250.

251,

252.

253.

254.

255.

256.

Page 27 of 27

Dunham |, et al. An integrated encyclopedia of DNA elements in the
human genome. Nature. 2012;489:57-74.

The GTEx Consortium. The Genotype-Tissue Expression (GTEx) Pilot Analy-
sis: Multitissue Gene Regulation in Humans. https:.//www.science.org.
Shalem O, Sanjana NE, Zhang F. High-throughput functional genomics
using CRISPR-Cas9. Nat Rev Genet. 2015;16:299-311.

Tian R, et al. Genome-wide CRISPRi/a screens in human neurons link
lysosomal failure to ferroptosis. Nat Neurosci. 2021;24:1020-34.

Baye TM, Abebe T, Wilke RA. Genotype-environment interactions and
their translational implications. Personal Med. 2011;8:59-70.

Elbaz A, et al. CYP2D6 polymorphism, pesticide exposure, and Parkin-
son'’s disease. Ann Neurol. 2004;55:430-4.

Lewis SJ, Smith GD. Alcohol, ALDH2, and esophageal cancer: a
meta-analysis which illustrates the potentials and limitations of a
Mendelian randomization approach. Cancer Epidemiol Biomark Prev.
2005;14:1967-71.

The International Warfarin Pharmacogenetics Consortium. Estimation
of the Warfarin dose with clinical and pharmacogenetic data. N Engl J
Med. 2009;360:753-64.

Zhou S. Clinical pharmacogenomics of thiopurine S-methyltransferase.
Curr Clini Pharmacol. 2006;1:258.

Olopade Ol, Grushko TA, Nanda R, Huo D. Advances in breast cancer:
pathways to personalized medicine. Clini Cancer Res. 2008;14:7988-99.
McAllister, K. et al. Current Challenges and New Opportunities for Gene-
Environment Interaction Studies of Complex Diseases. in American
Journal of Epidemiology vol. 186 753-761 (Oxford University Press, 2017).
Gref A, et al. Genome-wide interaction analysis of air pollution exposure
and childhood asthma with functional follow-up. Am J Respir Crit Care
Med. 2017;195:1373-83.

Bentley AR, et al. Multi-ancestry genome-wide gene-smoking interac-
tion study of 387,272 individuals identifies new loci associated with
serum lipids. Nat Genet. 2019;51:636-48.

Kilpeldinen TO, et al. Multi-ancestry study of blood lipid levels identifies
four loci interacting with physical activity. Nat Commun. 2019;10:245.
Ortega-Azorin C, et al. Associations of the FTO rs9939609 and the MC4R
rs17782313 polymorphisms with type 2 diabetes are modulated by
diet, being higher when adherence to the Mediterranean diet pattern
is low. Cardiovasc Diabetol. 2012;11:89.

Fisher E, et al. Whole-grain consumption and transcription factor-7-like
2 (TCF7L2) rs7903146: Gene-diet interaction in modulating type 2
diabetes risk. Br J Nutr. 2009;101:478-81.

Figueiredo JC, et al. Genome-wide diet-gene interaction analyses for
risk of colorectal cancer. PLoS Genet. 2014;10:490.

Hoang T, Cho S, Choi JY, Kang D, Shin A. Genome-wide interaction
study of dietary intake and colorectal cancer risk in the UK Biobank.
JAMA Netw Open. 2024;7:e240465.

Anand A, Koller DL, Lawson WB, Gershon ES, Nurnberger JI. Genetic and
childhood trauma interaction effect on age of onset in bipolar disorder:
an exploratory analysis. J Affect Disord. 2015;179:1-5.

Dunn EC, et al. Genome-wide association study (GWAS) and genome-
wide by environment interaction study (GWEIS) of depressive
symptoms in African American and Hispanic/Latina Women. Depress
Anxiety. 2016;33:265-80.

Vaucher J, et al. Cannabis use and risk of schizophrenia: a Mendelian
randomization study. Mol Psychiatry. 2018;23:1287-92.

Schaffner SL, et al. Genetic variation and pesticide exposure influence
blood DNA methylation signatures in females with early-stage Parkin-
son's disease. NPJ Parkinsons Dis. 2024;10:120.

Ngo KJ, et al. Lysosomal genes contribute to Parkinson’s disease near
agriculture with high intensity pesticide use. NPJ Parkinsons Dis.
2024;10:149.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


http://www.springer.com/series/7651
http://www.springer.com/series/7651
https://www.science.org

	Multi-omics approaches for understanding gene-environment interactions in noncommunicable diseases: techniques, translation, and equity issues
	Abstract 
	Introduction
	Omics technologies for unraveling GxE interactions in NCDs
	Genomics
	Transcriptomics
	Epigenomics
	Proteomics
	Metabolomics
	Exposomics

	Electronic health records (EHRs)
	Advances in multi-omics integration techniques
	Post-GWAS multi-omics integration approaches
	Enrichment-based methods
	Statistical fine-mapping methods
	Imputation-based methods

	AImachine-learning-based method
	Diagnostic classification
	Clinical outcome (Risk) prediction
	Treatment response prediction
	Estimating GxE interactions

	Current challenges and opportunities
	Diversity of omics and multi-omics datasets
	Measuring exposomes
	Establishing and maintaining biobanks
	Multi-omics data and integration methods
	Validation of GxE interactions and translational applications


	Summary and concluding remarks
	Acknowledgements
	References


