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Dimethyl fumarate treatment alters
circulating T helper cell subsets in multiple
sclerosis

ABSTRACT

Objective: To evaluate the effect of dimethyl fumarate (DMF; Tecfidera, Biogen, Weston, MA) on
CD41 and CD81 T cell subsets in patients with multiple sclerosis (MS).

Methods: Peripheral lymphocyte subsets, including CD41 and CD81 memory cells and T helper
(TH) cells TH1, TH2, TH17, and peripheral regulatory T cell (pTreg) subpopulations were analyzed
before and 6 months after onset of DMF treatment.

Results: CD41 and CD81 memory T cells were preferentially decreased compared to naive CD41

and CD81 T cell populations. Within the CD41 memory T cell population, frequencies of TH1 cells
were decreased, whereas those of TH2 cells were increased and those of TH17 cells remained
unaltered. Accordingly, we observed decreased production of interferon g, granulocyte-
macrophage colony-stimulating factor, tumor necrosis factor a, and interleukin (IL)-22 by CD41

T cells under DMF treatment, whereas the frequency of IL-4- and IL-17A-producing CD41 T cells
remained unchanged. With regard to regulatory T cells, proportions of pTreg increased following
DMF treatment.

Conclusion: Our data demonstrate that DMF treatment of patients with MS affects predomi-
nantly memory T cells accompanied by a shift in TH cell populations, resulting in a shift toward
anti-inflammatory responses. These findings indicate that monitoring of memory subsets might
enhance vigilance of impaired antiviral immunity and that patients with TH1-driven disease might
preferentially benefit from DMF treatment.

Classification of Evidence: This study provides Class IV evidence that DMF might preferentially
reduce CD41 and CD81 memory T cells in MS. Neurol Neuroimmunol Neuroinflamm 2016;3:e183;

doi: 10.1212/NXI.0000000000000183

GLOSSARY
DMF 5 dimethyl fumarate; EDTA 5 ethylenediaminetetraacetic acid; IFN 5 interferon; IL 5 interleukin; MS 5 multiple
sclerosis; Nrf2 5 nuclear factor erythroid 2-related factor 2; PBMC5 peripheral blood mononuclear cell; PML5 progressive
multifocal leukoencephalopathy; pTreg 5 peripheral regulatory T cell; RRMS 5 relapsing-remitting multiple sclerosis; SOP 5
standard operating procedure; TH 5 T helper cell; TNFa 5 tumor necrosis factor a.

Delayed-release dimethyl fumarate (DMF; Tecfidera, Biogen, Weston, MA) is a newly approved
immune-modulatory drug for treatment of relapsing-remitting multiple sclerosis (RRMS) whose
mechanism of action has not been fully resolved.1,2 Anti-inflammatory and neuroprotective
effects of DMF have been documented, including a reduction in lymphocyte cytokine produc-
tion, a reduction in lymphocyte counts presumably by an apoptosis-related mechanism, a
downregulation of the migratory activity of immune cells at the blood-brain-barrier, and
activation of the nuclear factor erythroid 2-related factor 2 (Nrf2) transcriptional pathway
mediating antioxidative and potentially neuroprotective effects.3–7

Immunologic data from patients with RRMS treated with DMF are still sparse. In the clinical
study program, a mean reduction in lymphocyte counts of about 50% after 1 year of treatment
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has been described,1,2 which could be repli-
cated by others.8 The reason a more pro-
nounced reduction in lymphocytes occurs in
about 6% of individuals9 remains unclear but
should be highlighted because lymphopenia in
the context of fumaric ester treatment has
been associated with rare cases of progressive
multifocal leukoencephalopathy (PML) in
both patients with psoriasis and RRMS.9–13

Recently, it has been observed that CD81 T
cells are more affected by DMF treatment–
induced lymphopenia than CD41 T cells.8

However, a detailed analysis of lymphocyte
subset changes under DMF treatment in pa-
tients with RRMS has not been provided. We
therefore aimed to provide a detailed charac-
terization of changes in lymphocyte subset
composition as a consequence of DMF treat-
ment in order to increase our knowledge of
DMF-mediated immune alterations in the
context of MS.

METHODS Patients. All patients were recruited at the

Department of Neurology at the University Hospital Münster,

Germany. Fifteen stable patients with RRMS (ages 24–54 years,

mean age 40.7 years; 7 female, 8 male) were included and treated

with a standard treatment regimen of DMF for 6 months. Forty-

six percent of the patients were treatment naive, whereas 27%

each had been previously treated with glatiramer acetate or

interferon (IFN) a. All patients switching from glatiramer

acetate or IFN-a underwent a washout period of at least 4 weeks.

Standard protocol approvals, registrations, and patient
consents. This study was performed according to the Declara-

tion of Helsinki and was approved by the local ethics committee

(# 2010-236-f-S). All patients gave written informed consent.

Cells. Ethylenediaminetetraacetic acid (EDTA) blood was taken

from each patient immediately before the first dose of DMF as well

as after 6 months of therapy. Peripheral blood mononuclear cells

(PBMCs) were isolated and stored in liquid nitrogen according to

our standard operating procedure (SOP).14 Samples from baseline

and after 6 months of therapy were thawed following our SOP.14

Cell culture. For cytokine stimulation assays, freshly thawed

PBMCs were centrifuged at 300g for 5 minutes, resuspended in

X-Vivo 156 10 mL/mL Leukocyte Activation Cocktail (phorbol

12-myristate 13-acetate, ionomycin, and Brefeldin A; BD

Biosciences, Franklin Lakes, NJ) at a concentration of 5 Χ 106

PBMC/mL, and incubated at 37°C/5% CO2 for 6 hours. Finally,

PBMCs were washed and stained for flow cytometry.

Flow cytometry. Freshly thawed or stimulated PBMCs were

centrifuged at 300g for 5 minutes, resuspended in phosphate-

buffered saline (Sigma-Aldrich, St. Louis, MO) supplemented

with 2% heat-inactivated fetal bovine serum (GE Healthcare/

PAA, Little Chalfont, UK) and 2 mM EDTA (Sigma-Aldrich)

with fluorochrome-conjugated antibodies at the indicated

working concentrations (see table e-1 at Neurology.org/nn)

or isotype-matched controls, and incubated at 4°C for

30 minutes. Staining of chemokine receptors was performed at

37°C for 30 minutes. Subsequently, cells were washed twice and

either analyzed by flow cytometry (Navios; Beckman Coulter,

Brea, CA) or stained for intracellular proteins with fixation/

permeabilization solution (eBioscience, San Diego, CA)

following the manufacturer’s instructions. Resulting data were

analyzed using Kaluza Flow Cytometry Analysis software

version 1.2 (Beckman Coulter) and Prism software version 5.04

(GraphPad, La Jolla, CA).

Gating strategy. CD142 lymphocytes were selected in a CD14

vs side scatter plot. Lymphocytes were then displayed in a CD3 vs

CD56 plot and CD31CD562 T cells were selected. T cells were

further divided into CD41CD82 and CD81CD42 subsets using

a CD4 vs CD8 plot. Naive T cells were defined as

CD45RO2CD271, whereas memory T cells were defined as

CD45RO1 CD4 or CD8 T cells and distinguished by expres-

sion of CCR4/CD194, CCR6/CD196, and CXCR3/CD183

into CCR42CCR62CXCR31 T helper (TH)1 cells,

CCR41CCR62CXCR32 TH2 cells, and CCR41CCR61CXCR32

TH17 cells according to the literature.15 Peripheral regulatory

T cells (pTreg) were defined as CD127lowCD25highFoxP31Helios2

CD4 T cells.16,17

RESULTS Six months of DMF treatment did not
alter the proportion of CD31CD562 T cells within
the lymphocyte population (figure 1A, left), whereas
it resulted in a significant decrease in CD81 T cells
within the T cell subpopulation (figure 1B, left,
19.39%, p 5 0.024), in accordance with an earlier
study.8 Further analysis revealed that memory T cells
(CD45RO1) were predominantly affected within the
CD41 and the CD81 T cell population, resulting in a
highly significant reduction in CD81 as well as CD41

memory T cells (figure 1B; 29.90%, p5 0.0079 and
31.13%, p 5 0.0002, respectively). Of note, DMF
resulted in a decrease of both CD45RO1CD271 cen-
tral memory as well as CD45RO1CD272 effector
memory cells (data not shown). In contrast, percen-
tages of naive (CD45RO2CD271) CD41 and CD81

T cell subsets increased under DMF treatment
(19.26%, p 5 0.001 and 18.26%, p 5 0.0035,
respectively).

We further addressed the impact of DMF treat-
ment on distinct CD41 T cell subsets (figure 2A).
Whereas proportions of TH1 and TH17 cells were
significantly reduced at 6 months after onset of
DMF treatment (36.77%, p 5 0.0045 and
32.10%, p 5 0.0059, respectively), the proportion
of TH2 cells was not altered (figure 2A, top). Because
DMF treatment decreased CD4 memory T cells in
general (figure 1B, bottom), we also analyzed DMF-
induced alterations within the cytokine-producing
CD4 memory subset (figure 2A, middle). We
observed a significant decrease of TH1 cells
(17.02%, p 5 0.035) accompanied by an increase
of TH2 cells (53.67%, p 5 0.0003), whereas TH17
cells remained unchanged. With regard to the regu-
latory subsets, the proportion of pTreg cells was sig-
nificantly increased (24.6%, p 5 0.0087). As a
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consequence, DMF treatment resulted in a significant
reduction of the TH1/pTreg (52.14%, p 5 0.0029)
and TH17/pTreg (48.21%, p 5 0.002) ratios (figure
2A, bottom).

Based on these findings, we investigated the func-
tional capacity of CD41 T cells to produce different
cytokines upon ex vivo stimulation (figure 2B). We
observed that in patients treated with DMF, the per-
centage of CD41 T cells producing tumor necrosis
factor a (TNFa) (reduction of 14.21%, p5 0.0231),
IFN-g (47.71%, p 5 0.0014), interleukin (IL)-22
(24.41%, p 5 0.0244), and granulocyte-
macrophage colony-stimulating factor (GM-CSF)
(48.05%, p 5 0.0008) was significantly reduced
when compared to baseline (figure 2, B and C). In

contrast, production of IL-17A and IL-4 was not
affected.

DISCUSSION Inhibitory effects of fumaric esters, in
particular DMF, on lymphocyte counts are well
known and have already been described as frequent
adverse events in phase 3 clinical trials in patients
with RRMS.1,3 DMF-related lymphopenia has been
a recent area of focus, as it is suspected to be associated
with rare cases of PML in patients receiving fumaric
esters for different indications.10–13 However, the
underlying cause of such lymphopenia and the
impact on different lymphocyte subpopulations have
not been addressed in great detail. Recently, it was
described that this effect preferentially affects CD81

T cells rather than CD41 T cells.8 We now extend
these investigations by demonstrating that DMF
treatment in patients with RRMS causes distinct and
reciprocal alterations of different CD41 T cell subsets,
characterized by reduced TH1 and TH17 cells and
increased pTreg cell populations. The composition of
CD4 memory T cells was skewed from TH1 toward
TH2 cells by DMF treatment. These changes in subset
composition were paralleled by a change in the CD41

T cell cytokine secretion pattern, with decreased IFN-g,
GM-CSF, and TNFa production.

This study addresses the impact of in vivo DMF
treatment on different effector vs regulatory T cell
subsets in RRMS. We demonstrated that the impact
of DMF treatment on antigen-experienced memory
CD41 and CD81 T cells is more pronounced com-
pared to total CD41 and CD81 T cells. Although the
reason for this preferential effect still needs to be elu-
cidated, our study revealed that additional analysis of
these populations is important not only with regard to
the mechanisms of DMF-mediated immune regula-
tion but also with regard to immune vigilance aspects
such as lymphopenia-associated PML,13,18,19 because
memory T cell subsets are particularly relevant for
maintenance of antiviral immunity.20

In order to elucidate the potential impact of
in vivo DMF treatment on different CD41 T cell
subpopulations in more detail, we used established
strategies to determine TH1, TH2, TH17,15 and
pTreg

16 subpopulations via multicolor flow cytometry
without further manipulation of cells by short-term
culturing and stimulation of cells. Our analysis re-
vealed a distinct and reciprocal regulation of different
subsets. This interesting observation has 2 important
implications. First, it indicates a rather selective effect
of DMF treatment on distinct subsets rather than a
broad suppressive activity on all T cells, as suggested
by several authors.5,21 Second, it might reflect a nor-
malization of disturbed effector vs regulatory T cell
subpopulations in MS. Such a disturbance character-
ized by augmented proinflammatory TH1 or TH17

Figure 1 Effect of DMF therapy on T cell subsets

Peripheral blood mononuclear cells from 12 patients with relapsing-remitting multiple scle-
rosis (RRMS) at baseline (0M) and after 6 months of therapy (6M) with dimethyl fumarate
(DMF; Tecfidera, Biogen, Weston, MA) were thawed and analyzed by flow cytometry for
changes in the T cell compartment. (A) Left: CD31CD562 T cells as percentage of total
lymphocytes; right: ratio of CD41 to CD81 T cells. (B) DMF-induced changes in CD81 T cells
(top left: CD81CD42 T cells as percentage of total T cells; top center: CD81CD45RO2 naive
T cells as percentage of total CD81 T cells; top right: CD81CD45RO1 memory T cells as
percentage of total CD81 T cells) and in CD41 T cells (bottom left: CD41CD82 T cells as
percentage of total T cells; bottom center: CD41CD45RO2 naive T cells as percentage of
total CD41 T cells; bottom right: CD41CD45RO1 memory T cells as percentage of total
CD41 T cells). Statistical analysis was done by paired Student t test, *p , 0.05, **p ,

0.01, ***p , 0.001.
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responses, impaired regulatory T cell functions, and
an association of disease remission with pronounced
TH2 responses has already been proposed by several
studies in the context of MS.22–28

With regard to the impact of DMF treatment on
T cell functions in vivo, only 1 pilot study comprising
10 patients with RRMS, of whom only 6 completed
the study, showed enhanced production of IL-10 by
restimulated CD41 T cells at different time points
after onset of DMF treatment, whereas IFN-g pro-
duction was found to be unchanged.29 The small
sample size might explain the discrepancy compared
to our data with regard to IFN-g production. Other
studies investigated the impact of in vitro DMF or
mycophenolate mofetil exposure on cytokine produc-
tion by human T cells. Some of these studies observed
reduced proinflammatory cytokine production (i.e.,
IFN-g or TNFa) with DMF exposure,21,30 whereas
others did not observe such reductions.31 It is

interesting that at least a few studies also suggested
an enhancement of anti-inflammatory cytokine pro-
duction with DMF,29–32 which is in line with our
finding of enhanced TH2 and pTreg frequencies in
patients treated with DMF. Together, these data sup-
port the notion that DMF exerts differential effects
on T cell cytokine production, although the different
experimental settings in these in vitro studies did not
reveal a conclusive picture of DMF-induced cytokine
changes and did not take into account the impact of
MS-specific immunologic characteristics. Hence, our
study extends these findings by providing data on
DMF-induced changes in T cell cytokine production
in a defined and larger cohort of patients with MS. It
has been shown that DMF acts on different intracellular
pathways, such as interference with nuclear factor
kB–mediated transcription of proinflammatory genes,33

induction of Nrf2 antioxidant pathways,34 and induc-
tion of alternatively activated anti-inflammatory

Figure 2 Effect of DMF therapy on the T helper cell repertoire and cytokine production

Peripheral blood mononuclear cells (PBMCs) from patients at baseline (0M) and after 6 months of therapy (6M) with dimethyl fumarate (DMF) were analyzed
by flow cytometry for changes in the T cell compartment with focus on helper T (TH) cells (A, n5 14) and their cytokine production (B, C, n5 15). (A) TH1 (left),
TH2 (center), and TH17 cells (right) as percentage of CD41 T cells (top) and memory CD41 T cells (middle) at baseline and after 6 months of treatment;
bottom: peripheral regulatory T cells (pTreg) as percentage of total CD41 T cells (left) and TH1 aswell as TH17 (in percent of CD41 T cells) cells as ratio to pTreg

(center and right). (B) PBMCs were stimulated with Leukocyte Activation Cocktail for 6 hours and analyzed by flow cytometry for the intracellular amount of
interferon (IFN)-g (top left), granulocyte-macrophage colony-stimulating factor (GM-CSF) (top center), tumor necrosis factor a (TNF-a) (top right), interleukin
(IL)-4 (bottom left), IL-17A (bottom center), and IL-22 (bottom right). The given results are the percentage of total CD41 T cells. (C) CD41 memory cells and
data from (B) depicted as percentage relative to baseline after 6 months of treatment. Red bars indicate the median, and the gray line marks the median
reduction of CD41 memory T cells. Statistical analysis was done by paired Student t test for matched samples and Wilcoxon signed rank test for the
comparison of the median cytokine production to baseline, *p , 0.05, **p , 0.01, ***p , 0.001.
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microglial cells through activation of the hydroxycar-
boxylic acid receptor 2.35 Future studies will reveal
whether these important transcriptional pathways
might be differentially affected in different TH cell sub-
sets during DMF treatment in patients with RRMS.

We are aware that interpretation of this confined
immunologic pilot study is limited by several aspects.
First, we cannot distinguish between direct DMF-
mediated effects on T cells (e.g., during differentia-
tion) and indirect DMF effects via influence on
antigen-presenting cells, which has already been sug-
gested in 2 studies, albeit not involving immune cells
from patients treated with DMF.36,37 Second, we
were able to address effects on peripheral blood–
derived immune cells but not on immune cells within
the CNS or CSF from patients treated with DMF.
Third, because our observational period was limited
to 6 months after treatment onset, a correlation with
the treatment response was not possible.

Our study demonstrates distinct effects of DMF
treatment on different T cell subsets in patients with
MS, with a pronounced reduction of memory subsets
and a differential effect on TH cell subsets with a shift
toward anti-inflammatory subsets. Our findings suggest
that closer monitoring of memory T cell populations
might enhance vigilance toward immune-mediated side
effects such as PML and that patients with more TH1-
driven disease might preferentially benefit from DMF
treatment compared to those with TH17-driven disease.
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