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Javier Cuitavi , Jesús David Lorente , Yolanda Campos-Jurado, Ana Polache
and Lucı́a Hipólito*

Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Burjassot, Spain

Evidence concerning the role of alcohol-induced neuroinflammation in alcohol intake and
relapse has increased in the last few years. It is also proven that mu-opioid receptors
(MORs) mediate the reinforcing properties of alcohol and, interestingly, previous research
suggests that neuroinflammation and MORs could be related. Our objective is to study
neuroinflammatory states and microglial activation, together with adaptations on MOR
expression in the mesocorticolimbic system (MCLS) during the abstinence and relapse
phases. To do so, we have used a sex-dependent rat model of complete Freund’s
adjuvant (CFA)-induced alcohol deprivation effect (ADE). Firstly, our results confirm that
only CFA-treated female rats, the only experimental group that showed relapse-like
behavior, exhibited specific alterations in the expression of phosphorylated NFkB,
iNOS, and COX2 in the PFC and VTA. More interestingly, the analysis of the IBA1
expression revealed a decrease of the microglial activation in PFC during abstinence and
an increase of its expression in the relapse phase, together with an augmentation of this
activation in the NAc in both phases that only occur in female CFA-treated rats.
Additionally, the expression of IL1b also evidenced these dynamic changes through
these two phases following similar expression patterns in both areas. Furthermore, the
expression of the cytokine IL10 showed a different profile than that of IL1b, indicating anti-
inflammatory processes occurring only during abstinence in the PFC of CFA-female rats
but neither during the reintroduction phase in PFC nor in the NAc. These data indicate a
downregulation of microglial activation and pro-inflammatory processes during
abstinence in the PFC, whereas an upregulation can be observed in the NAc during
abstinence that is maintained during the reintroduction phase only in CFA-female rats.
Secondly, our data reveal a correlation between the alterations observed in IL1b, IBA1
levels, and MOR levels in the PFC and NAc of CFA-treated female rats. Although
premature, our data suggest that neuroinflammatory processes, together with neural
org September 2021 | Volume 12 | Article 6894531
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adaptations involving MOR, might play an important role in alcohol relapse in female rats,
so further investigations are warranted.
Keywords: mu-opioid receptor, alcohol, pain, alcohol deprivation effect, microglia, neuroinflammation
1 INTRODUCTION

Chronic alcohol intake is the third cause of death in developed
countries (1, 2), and it is related to many medical conditions,
since it is one of the most harmful drugs (3). Alcohol use disorder
(AUD) is a recurrent pathological condition that is characterized
by repeated relapse episodes after periods of prolonged
abstinence (4). Nowadays, pharmacotherapeutic strategies to
prevent alcohol relapse have not always shown a great rate of
success, probably because there are different aspects (i.e., stress,
co-occurrence of other pathologies) that can be developed during
abstinence and might impact the efficacy of the anti-relapse
pharmacological treatments (5–7). This point is crucial because a
better knowledge of neurochemical adaptations occurring during
the abstinence and the relapse phases in the presence of different
factors (i.e., gender, genetic, contextual, environmental) might
help us to develop better therapeutical strategies tailored to the
characteristics of the patients.

Mu-opioid receptor (MOR) antagonists (naltrexone and
nalmefene) are one of the selected anti-relapse treatments.
These medications help reduce the risk of relapse and promote
less hazardous drinking (8). Their use is based on the
involvement of these receptors in the rewarding and
reinforcing properties of alcohol. MORs located in different
areas of the mesocorticolimbic system (MCLS) such as the
ventral tegmental area (VTA), the nucleus accumbens (NAc),
and the prefrontal cortex (PFC) are activated by alcohol-induced
endorphin release (9) or alcohol metabolism derivatives (10) to
indirectly increase dopaminergic neurons activity and, finally,
drive some of the behavioral consequences of alcohol
administration. Very interestingly, a variety of literature has
revealed a relationship between MOR activation and
neuroinflammatory events. On the one hand, MORs on
microglia seem to enhance the release of neuroinflammatory
mediators, cytokines, and chemokines after their activation (11,
12). On the other hand, pro-inflammatory cytokines such as
IL1b, IL6, and TNFa can regulate MOR expression on some
immune cells and neurons (13–16). Although this relationship is
still not fully understood, cross talk between Toll-like receptor 4
(TLR4) and MORs at the intracellular level seems to participate,
as has been recently explained in a revision (17, 18).

Alcohol has also shown to trigger neuroinflammatory events
through the TLR4 pathway. In fact, Guerri’s laboratory has
shown in the last decade that alcohol intermittent
administration induces proinflammatory cytokine release
through the activation of TLR4, promoting neuronal
adaptations (19–23). The reported results by this and other
groups have shown that neuroinflammatory events appeared
during alcohol administration and early abstinence but might
also play an important role in alcohol relapse. In this sense,
org 2
Ezquer and colleagues have shown very recently that
the prevention of alcohol-induced oxidative stress and
neuroinflammation in key brain areas of the MCLS through
the intranasal administration of exosomes from human
mesenquimal cells decreased alcohol intake and blunted
alcohol relapse-like binge drinking in female rats bred as
alcohol consumers (24).

We hypothesize that, during the abstinence and relapse
phases, specific adaptations of the neuroinflammatory state
and changes in MOR expression can be developed in selected
brain areas of the MCLS of the rats showing relapse-like
behavior. To further investigate this hypothesis, we selected a
sex-dependent inflammatory pain-induced alcohol deprivation
effect (ADE) rat model developed recently by our laboratory
based on the complete Freund’s adjuvant (CFA) (25). In this
model, inflammatory pain could act as a risk factor toward
alcohol relapse only in female rats, which were the only group
that manifested the ADE (25). It is interesting to note that other
animal models to investigate the relapse phenomenon induce
alcohol-relapse-like behavior per se (i.e., four-bottle choice ADE
paradigm), making the investigation of the biochemical
adaptation occurring during abstinence in relapsing and non-
relapsing individuals difficult. The use of the model proposed
here allows us to do this since males and control females do not
develop ADE, and the only group showing a significant increase
of alcohol intake is the female rats suffering from inflammatory
pain. Our objective here, by using this model, is to explore
neuroinflammation (measuring phosphorylated NFkB, iNOS,
COX2 expression), the activation of microglia (through the
expression of IBA1), and cytokine (IL1b and IL10) expression
in the abstinence and the reintroduction relapse phases in males
and females with or without inflammatory pain in parallel to the
expression of the MORs in selected areas of the MCLS.
2 METHODS

2.1 Animals
One hundred fourteen Sprague Dawley adult rats, females and
males, were used (Envigo®, Barcelona, Spain). All the animals
were kept in inverted light/dark (12/12 h, light on at 22:00)
controlled cycles, temperature 23 ± 1°C, and 60% humidity. Each
animal was individually housed in a standard plastic cage (42 ×
27 × 18 cm3) with food and tap water provided ad libitum
throughout the experimental period. Rats were housed in the
animal facilities of the University of Valencia. Animal protocols
followed in this work were approved by the Animal Care
Committee of University of Valencia and were strictly adhered
to in compliance with the EEC Council Directive 63/2010 and
Spanish laws (RD 53/2013).
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2.2 Ethanol Intermittent Access Model and
Pain Induction
In this procedure, 40 males and 52 females (total n = 92 rats)
followed the classical ethanol intermittent access (IA) model (26)
shown in Figure 1A in combination with a CFA-based
inflammatory pain model (27–29), as we have previously
described (25). Rats had free access to 20% ethanol solution
and water on Monday, Wednesday, and Friday during 24 h for
8 weeks. After this acquisition period, alcohol was removed for
3 weeks to force a period of abstinence. On the first day of
the third week of abstinence, animals received 0.1 ml of CFA
(Calbiochem), or sterile saline, in the plantar surface of the
hindpaw. The intraplantar injection was made alternately in the
right or left hindpaw of the animals in a counterbalance fashion.
At the end of 3 weeks of forced abstinence, alcohol was
reintroduced following the same IA procedure for five more
sessions. Twenty-four hours after the last alcohol session,
animals were sacrificed by either isoflurane when the brain was
freshly removed or pentobarbital overdose when animals were
Frontiers in Immunology | www.frontiersin.org 3
perfused with paraformaldehyde. Rats belonging to the
abstinence groups were sacrificed in the same way after
completing 3 weeks of abstinence, on the day when alcohol
was supposed to be reintroduced. It is important to notice that
brain tissue obtained from all males and 31 females following this
protocol were obtained from rats used in a previous study (25).
This decision was taken to reduce the number of animals used in
this study in compliance with the 3Rs and animal care
regulations. Nonetheless, to prove the reproducibility in the
animal model first described by Lorente and collaborators (25),
a new batch of 21 females was run. Therefore, we only include
the alcohol consumption data from these females on this paper
(see Inflammatory Pain Induces Alcohol Relapse in Females and
Figure 1). The alcohol consumption data from the males and
from the rest of the females can be found in Lorente et al.
(2021) (25).

In addition to the rats that followed IA, a control group
for the semiquantitative techniques (Western blot and
immunofluorescence) composed of 10 females and 12 males
A

B

DC

FIGURE 1 | Inflammatory pain induces alcohol relapse in female rats. (A) Schematic of the alcohol and inflammatory pain experimental design. (B) Alcohol intake
during the acquisition period. Data are expressed as mean ± SEM of each consumption day (n = 10–11/group) (ANOVA for repeated measures, p > 0.05). (C) Mean ±
SEM (left saline-female and right CFA-female) of total alcohol intake (g/kg/day) of the 5-day pre- (basal, lighter bar) and post-abstinence (darker bars) shown in
gray/black for the saline-treated group (n = 10/group) and in pink/red for the CFA-treated group (n = 11/group) (ANOVA for repeated measures followed by
Bonferroni multiple comparisons, *p < 0.05). (D) Mean ± SEM of total alcohol intake (g/kg/day) of the last 5 consumption days pre-abstinence and the 5
consumption days post-abstinence (n = 10–11/group); saline-females in black and CFA-females in red (ANOVA for repeated measures, p > 0.05).
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(n = 22), only having access to water, was run at the same time.
Half of the animals from this group were sacrificed by isoflurane
when the brain was freshly removed whereas the other half were
sacrificed by pentobarbital overdose when animals were perfused
with paraformaldehyde.

Therefore, 10 experimental groups were organized by sex:

1. Male (n = 52): control group (rats that had access only to
water) and four groups that followed the IA protocol, SAL-A
(rats without pain, sacrificed during abstinence), SAL-R (rats
without pain sacrificed after reintroduction), CFA-A (rats in
pain sacrificed during abstinence), and CFA-R (rats in pain
sacrificed after reintroduction);

2. Female (n = 62): control group and four groups that followed
the IA protocol, SAL-A, SAL-R, CFA-A, and CFA-R.
2.3 Western Blot
This technique was used to measure the expression levels of
phosphorylated-NFkB, iNOS, COX2, IL1b, IL10, and MOR, in
different brain areas from control and IA animals sacrificed by
isoflurane overdose. Freshly removed brains from 30 females (n =
6/condition) and 30 males (n = 6/condition) were immediately
frozen in dry ice and stored at -80°C until the Western blot
experiment was performed. Then, PFC, NAc, and VTA were
dissected in both hemispheres, and the tissues were homogenized
in cold lysis buffer (1% IGEPAL CA-630, 20 mM Tris–HCl pH 8,
130 mM NaCl, 10 mM NaF, and 1% protease inhibitor cocktail,
Sigma, St. Louis), using 0.5 ml of lysis buffer each 250 mg of tissue.
The homogenate extracts were kept in ice for 30 min. Afterward,
samples were immediately centrifuged at 15,000 g for 15 min at
4°C; the supernatant was collected to determine the protein
concentration by using a Bradford protein assay kit (Bio-Rad).
This procedure was adapted from one previously used (30, 31).

Western blot was used to determine the expression levels of
the abovementioned proteins in the homogenate extracts. To do
so, we followed a previously used protocol described by Lorente
and collaborators (25). The following primary antibodies were
used: rabbit IgG anti-MOR (1:1000, Abcam ab134054) (32),
rabbit IgG anti-phosphorylated-NFkB p65 (1:1000, Abcam
ab86299) (33), rabbit IgG anti-iNOS (1:500, Abcam ab204017)
(34), rabbit IgG anti-COX2 (1:1000, Abcam ab52237) (35),
rabbit IgG anti-IL1b (1:2500, Invitrogen PA5-79485), and
rabbit anti-IL10 (1:2500, Abcam ab9969) (36). Goat IgG anti-
rabbit (1:1000, Bio-Rad 1706515) was used as a secondary
antibody. Mouse IgG anti-GAPDH conjugated with HRP
(1:1000, Invitrogen MA5-15738-HRP) (37) was used to detect
GAPDH as a protein loading control. When the membranes
were incubated with more than one primary antibody, before
probing with the second or third antibody, they were treated with
Restore™ Western Blot Stripping Buffer (Thermo Fisher) for
15 min. Finally, the intensity of the bands was expressed as
arbitrary units and normalized to GAPDH band intensity.
Relative protein levels to control were determined by setting
the control group to 100% and calculating the respective
percentages for each band. All samples (20 µg) were run in
duplicate, obtaining an average of the % from control for each
Frontiers in Immunology | www.frontiersin.org 4
sample. A representative image obtained from each group
included in the Western blot analysis is shown on
Supplementary Figure 1.

2.4 Immunofluorescence
Microglial activation was assessed by measuring ionized calcium-
binding adapter molecule 1 (IBA1) expression with an
immunofluorescence assay (38). To do so, control and IA
animals were used. Thirty-two females (control: n = 4; SAL-A,
SAL-R, CFA-A, CFA_R: n = 7/condition) and 22 males (control:
n = 6; SAL-A, SAL-R, CFA-A, CFA-R: n = 4/condition) were
anesthetized by injecting pentobarbital and followed a procedure
of cardiac perfusion with 200 ml paraformaldehyde 0.4% in
phosphate buffer (PB) 0.1 M. Brains were extracted and kept in
the same perfusion solution for 20 h at 4™C. After that, they
were transferred to sucrose 30% in PB 0.1 M for 3 days.
Following this, 40-µm brain slices were obtained in four series
on a freezing microtome and were stored at -80°C in sucrose 30%
in PB 0.1 M until their use. Immunofluorescence was performed
as previously described (25). The rabbit IgG anti-IBA1 (1:2000,
Wako 019-19741) primary antibody (39) and the donkey IgG
anti-rabbit Alexa Fluor® 488 (1:1000, Invitrogen A32790)
secondary antibody were used.

Images from PFC, NAc, and VTA were obtained with a ×20
objective (Leica Biosystems, Germany; images size 441 × 330
µm). We obtained six to eight images (from both hemispheres)
per area, and mean gray intensity (MGI) was analyzed by means
of FIJI software. Results were expressed in percentage of the
control group. A representative microphotography of the DAPI
and IBA1 staining is shown in Supplementary Figures 1 and 2.

2.5 Statistical Analysis
Results are shown as mean ± standard error of the mean (SEM).
To perform the statistical analysis, the 26.0 version of the SPSS
program was used. The Kolmogorov–Smirnov test and Levene’s
test were performed to assess the normality and the homogeneity
of the variance of the data. When an experimental variable (i.e.,
alcohol consumption) was continuously measured (i.e., along the
experimental procedure), an ANOVA for repeated measures was
applied followed by Bonferroni multiple comparisons when
appropriate. For Western blot and immunofluorescence, the
control group (non-treated rats not exposed to alcohol) was
used to allow us to compare the rest of the groups by normalizing
them to control in a percentage. For these experiments, the two-
way ANOVA test was performed followed by Bonferroni
multiple comparisons when significant differences in the main
effects (pain; abstinence) or in the interaction were detected. In
all the statistical tests, a 95% confidence level was set.
3 RESULTS

3.1 Inflammatory Pain Induces Alcohol
Relapse in Female Rats
Figure 1B shows the total alcohol intake rate (g/kg/session) of
the new batch of 21 females run in this study along the days of
September 2021 | Volume 12 | Article 689453
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the acquisition period. Very importantly, no significant
differences were found in alcohol consumption before the
forced abstinence period between females that were afterward
injected with CFA and the ones injected with saline (Figure 1B;
ANOVA repeated measures, F(1,19) = 1.048 p = 0.319).
Figure 1C shows the averages of the alcohol intake levels
during the last 5 days of acquisition and the 5 days of
reintroduction. Interestingly, the repeated-measure ANOVA
showed significant differences (F(1,19) = 4.615 p = 0.045). In
fact, the post-hoc test revealed that CFA-female rats significantly
increased their consumption levels regarding the basal levels
whereas animals injected with saline did not change their
consumption levels (Figure 1D shows single-day data from the
last 5 days of acquisition and the 5 days of reintroduction.
Repeated-measure ANOVA showed that there are no
differences in the ethanol intake between saline and CFA
female rats through time (F(1,19) = 0.858 p = 0.366) but, as
can be observed in the figure, CFA female rats presented higher
levels of ethanol consumption than saline ones after
reintroduction every testing day.

3.2 Biochemical Analysis of
Neuroinflammatory Mediators, IBA-1, IL1b,
IL10, and MOR Expression in PFC, NAc,
and VTA of Saline and CFA-Treated Male
and Female Rats in Abstinence and
Reintroduction Phases
Statistical analysis and values of the F and p for the main effects
pain and abstinence/re-introduction and the interaction are
summarized in the table of the Supplementary Material.

3.2.1 Alcohol-Induced Neuroinflammation in PFC,
NAc, and VTA of CFA-Treated Females Present
Specific Alterations During Abstinence and
Reintroduction Phases
As has previously been shown in the literature, during chronic
alcohol administration and early abstinence (24 h),
neuroinflammatory pathway is activated. Thereby, the levels of
transcriptional factors (as pNFkB) and neuroinflammatory
mediators (such as iNOS and COX2) are increased (20, 40). To
investigate the neuroinflammatory pathway activation in NAc,
PFC, and VTA of saline and CFA rats during abstinence and
relapse, we measured by Western blot the levels of
phosphorylated NFkB, iNOS, and COX2.

The two-way ANOVA performed found statistically
significant differences in main variables and/or its interaction
in PFC from saline- and CFA-treated females and males. On the
one hand, regarding female rats, pNFkB levels were significantly
increased after alcohol reintroduction regardless of the presence
of inflammatory pain (Figure 2A: SAL_A vs. SAL_R, p= 0.03;
CFA_A vs. CFA_R, p = 0.0001). When analyzing iNOS, we
observe the opposite phenomenon since its levels were
significantly decreased after alcohol reintroduction, regardless
of the presence of inflammatory pain (Figure 2D: SAL_A vs.
SAL_R, p = 0.014; CFA_A vs. CFA_R, p = 0.036). Very
interestingly, COX2 was the only neuroinflammatory mediator
Frontiers in Immunology | www.frontiersin.org 5
that significantly increased after reintroduction only in CFA-
females, indicating a specific change derived from the
development of pain during abstinence (Figure 2G, CFA_A vs.
CFA_R, p = 0.0001). On the other hand, regarding male rats, no
significant differences were observed when analyzing the levels of
pNFkB (Figure 2J). However, iNOS and COX2 show statistically
significant alterations between groups. Interestingly, both
proteins are altered only in CFA-males during abstinence since
they have significantly higher levels of those proteins during
abstinence than after reintroduction, which could be a direct
consequence of the presence of inflammatory pain
(Figures 2M, P).

We also observed significant alterations in VTA from females
in our animal model when analyzing pNFkB and iNOS, but we
did not observe any significant changes for COX2 (Figure 2I).
Interestingly, inflammatory pain alters pNFkB levels in a
different pattern during abstinence and after alcohol
reintroduction in comparison with saline-females. Indeed,
CFA-females have higher pNFkB levels than SAL-females
during abstinence (p = 0.0001). Nonetheless, SAL-females
increase their pNFkB levels after alcohol reintroduction (p =
0.0001), whereas CFA-females decrease them (p = 0.007)
(Figure 2C). The two-way ANOVA also found differences for
the main effect pain when analyzing iNOS expression in the VTA
of female rats (Figure 2F). In this case, iNOS expression
increased only in CFA-females after alcohol reintroduction
which was only significant when compared with SAL-females
(p = 0.016).

Finally, the two-way ANOVA tests performed failed to find
any significant differences between groups in NAc for both
females and males when analyzing pNFkB, iNOS, and COX2
(Figure 2B: pNFkB; Figures 2E, N: iNOS, Figures 2H, Q:
COX2). Additionally, we found no significant differences when
comparing groups in VTA from males (Figures 2L, O, R).

3.2.2 IBA1 Expression Is Decreased During
Abstinence and Increased After Reintroduction
of the Alcohol Beverages in the PFC Whereas
Opposed Alterations Are Observed in the NAc
of Only CFA-Treated Female Rats
Neuroinflammatory processes within the brain are partially
regulated by glial cells. Microglia are the immune cells per
excellence in the brain. Therefore, we assessed microglial
activation with IBA1 immunofluorescence in brain areas of the
mesocorticolimbic system, as shown in Figure 3.

The two-way ANOVA tests performed showed significant
differences when comparing groups in female rats for PFC and
NAc, but not for VTA IBA1 staining (Figure 3E). Regarding
PFC, CFA-females show significantly lower levels during
abstinence than after reintroduction (p = 0.004) and when
compared to SAL-females (p = 0.009) during the same period
(Figure 3A). Interestingly, alterations produced by pain in the
NAc were not dependent on the abstinence or relapse-like phase,
indicating a specific change for CFA-treated female rats
(Figure 3B). In fact, inflammatory pain induces microglial
activation in both periods since its expression is significantly
September 2021 | Volume 12 | Article 689453
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FIGURE 2 | Alterations of inflammatory mediators during the abstinence and the alcohol reintroduction periods in the presence or absence of inflammatory pain in
female and male rats. Data are expressed as mean ± SEM of protein levels in % relative to control (n = 4–6/group). Black and red bars represent saline and CFA-
females, respectively, during abstinence (empty bars) and after abstinence (filled bars) periods. Points represent the individual data from each animal from the group.
On top, schematic representations of the punched brain areas harvested to perform the Western blots. Graphs (A–I) gather the protein analysis of female rats and
graphs (J–R) those from male rats; PFC, NAc, and VTA protein analyses are represented in the following order, PFC: (A, D, G, J, M, P); NAc: (B, E, H, K, N, Q);
VTA: (C, F, I, L, O, R). The proteins analyzed are pNFkB (A–C, J–L), iNOS (D–F, M–O), and COX2 (G–I, P–R). Asterisks mark statistically significant differences in
the Bonferroni multiple-comparison test applied when the two-way ANOVA detected significant differences in the main effects or in the interaction (*p < 0.05, **p <
0.01, ***p < 0.005). CFA, complete Freund adjuvant; SAL, saline; A, abstinence period; R, reintroduction period; PRC, prefrontal cortex; NAc, nucleus accumbens;
VTA, ventral tegmental area; pNFkB, phosphorylated nuclear factor kB; iNOS, inducible nitric oxide synthase and COX2, cyclooxygenase 2.
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higher, about 20% higher, for CFA-females than for SAL-females
in both abstinence (p = 0.001 and reintroduction (p = 0. 007).

Very interestingly, no significant changes were observed
when comparing groups in male rats for neither PFC
(Figure 3B), NAc (Figure 3D), nor VTA (Figure 3F).

3.2.3 Downregulation and Upregulation of IL1b and
IL10 in the NAc but Not in the PFC of CFA-Treated
Female Rats Follow a Different Pattern Than That
Observed in Saline-Treated Female Rats
Pro-inflammatory and anti-inflammatory cytokines mainly
regulate the activity of several cells, above all immune cells,
Frontiers in Immunology | www.frontiersin.org 7
promoting cell communication. Since we observed alterations in
microglial activation in PFC and NAc from female rats, we
analyzed the levels of the pro-inflammatory cytokine IL1b and
the anti-inflammatory one IL10 in those areas from females.

On the one hand, regarding PFC, the levels of IL1b were
significantly lower during abstinence than after reintroduction
regardless of the presence of inflammatory pain (Figure 4A.
Bonferroni multiple comparison: SAL_A vs. SAL_R, p = 0.001;
CFA_A vs. CFA_R, p = 0.0001). Interestingly, we observed the
opposite changes in IL10, indicating a different regulation of pro-
and anti-inflammatory events. The levels of IL10 suffered a
decrease after reintroduction of the alcohol beverages
A B

D

E F

C

FIGURE 3 | Alterations of microglial activation measured as IBA1 staining during the abstinence and the alcohol reintroduction periods in the presence or absence
of inflammatory pain in female and male rats. Data are expressed as mean ± SEM of IBA1 levels in % relative to control (n = 4–7/group). Black and red bars
represent saline and CFA-females, respectively, during the abstinence (empty bars) and after abstinence (filled bars) periods. Points represent the individual data from
each animal from the group. On the bottom, brain schematics representing the areas where the pictures were taken (Paxinos and Watson 2006). Graphs (A, C, E)
gather the protein analysis of female rats, and graphs (B, D, F) those from male rats; PFC, NAc, and VTA protein analyses are represented in the following order,
PFC: (A, B); NAc: (C, D); VTA: (E, F) Asterisks mark statistically significant differences in the Bonferroni multiple-comparison test applied when the two-way ANOVA
detected significant differences in the main effects or in the interaction (*p < 0.05, **p < 0.01, ***p < 0.005). CFA, complete Freund adjuvant; SAL, saline; A,
abstinence period; R, reintroduction period; PFC, prefrontal cortex; NAc, nucleus accumbens; VTA, ventral tegmental area; IBA1, ionized calcium-binding adapter
molecule 1.
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regardless of the presence of inflammatory pain (Figure 4B.
Bonferroni multiple comparisons: SAL_A vs. SAL_R, p = 0.037;
CFA_A vs. CFA_R, p = 0.025). On the other hand, in NAc of
CFA-treated female rats, the levels of IL1b significantly increased
after reintroduction (p = 0.006) and also when compared to SAL-
Frontiers in Immunology | www.frontiersin.org 8
animals (p = 0.045). Furthermore, when analyzing the levels of
the anti-inflammatory cytokine IL10, the development of
inflammatory pain significantly decreased the levels of IL10
during abstinence (0.011) and after reintroduction (p = 0.002)
when compared to SAL-females (Figure 4D).
A

B D

E

F

G

I

H

J

C

FIGURE 4 | Alterations of inflammatory mediators during the abstinence and the alcohol reintroduction periods in the presence or absence of inflammatory pain in
female and male rats. Data are expressed as mean ± SEM of protein levels in % relative to control (n = 4–6/group). Black and red bars represent saline and CFA-
females, respectively, during abstinence (empty bars) and after abstinence (filled bars) periods. Points represent the individual data from each animal from the group.
On top, schematic representations of the punched brain areas harvested to perform the western blots. Graphs (A–G) gather the protein analysis of female rats and
graphs (H–J) those from male rats; PFC, NAc, and VTA protein analyses are represented in the following order, PFC: (A, B, E, H); NAc: (C, D, F, I); VTA: (G, J). The
proteins analyzed are IL1b (A, C), IL10 (B, D), and MOR (E–J). Asterisks mark statistically significant differences in the Bonferroni multiple-comparison test applied
when the two-way ANOVA detected significant differences in the main effects or in the interaction (*p < 0.05, **p < 0.01, ***p < 0.005). CFA, complete Freund
adjuvant; SAL, saline; A, abstinence period; R, reintroduction period; PFC, prefrontal cortex; NAc, nucleus accumbens; VTA, ventral tegmental area; IL1b, interleukin
1b; IL10, interleukin 10; MOR, mu-opioid receptor.
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3.2.4 Alcohol and Inflammatory Pain Impacts MOR
Expression Patterns in PFC and NAc During
Abstinence and Reintroduction Phases in Female
Rats: Specific Effect of the Presence of Pain
in the NAc
MOR activation during reintroduction phases in areas of the
MSCL has shown to play a crucial role in alcohol-relapse-like
behavior (41). To investigate dynamic changes of MOR
expression in the MSCL areas of interest in the abstinence and
reintroduction phases of male and female rats in our model, we
measured its relative expression levels by Western blot. Figure 4
shows MOR expression in saline and CFA-treated female rats
during abstinence and after alcohol reintroduction, and in
control females in the same conditions. The two-way ANOVA
tests performed confirmed that MOR levels were altered
depending on the alcohol drinking period, the brain area
studied, and the sex.

No changes were observed in the MOR expression of male
rats in PFC (Figure 4H), NAc (Figure 4I), and VTA (Figure 4J).
Moreover, the expression of MOR in VTA from female rats did
not show any significant alterations between groups (Figure 4G).

Interestingly, MOR levels were significantly lower during
abstinence than after reintroduction regardless of the presence
of inflammatory pain in PFC from female rats (Figure 4E,
Bonferroni multiple comparisons: SAL_A vs. SAL_R, p =
0.0001; CFA_A vs. CFA_R, p = 0.001). Finally, very interesting
data show alterations in the pattern of MOR expression
depending on the presence of pain in the NAc (Figure 4F). In
the case of saline-treated female rats, MOR expression was
reduced after the reintroduction of the alcohol beverages when
compared to the abstinence period (p = 0.018). In addition,
inflammatory pain significantly increases the levels of MORs by
50% in female rats after reintroduction when compared to saline-
treated female rats (p = 0.006).
4 DISCUSSION

Our present results show dynamic alterations of microglial
activation and neuroinflammatory mediator, cytokine, and
MOR expression through the abstinence and reintroduction
phases of a sex-dependent inflammatory pain-induced alcohol
relapse rat model. Some of these alterations demonstrate to be
dependent on the sex, abstinence, or reintroduction to alcohol
drinking, the MCLS areas studied or their interaction providing
new insights into neuroinflammatory properties of alcohol and
its interaction with pain-induced alterations in these areas.
Firstly, our drinking behavior results in female rats confirm
that CFA-treated female rats show ADE, but the saline-treated
ones do not as we have previously described in (25). Moreover,
this group exhibited alterations in pNFkB and COX2, microglial
activation (measured as IBA1 expression), and expression of
IL1b and IL10 together with MOR in the PFC, NAc, and/or
VTA, with those unique changes in NAc being of a special
relevance. Indeed, these results showed a decrease of microglial
Frontiers in Immunology | www.frontiersin.org 9
activation in the PFC only during abstinence, and an
augmentation of the microglial activation in the NAc of CFA-
female rats in both abstinence and reintroduction phases.
Additionally, the expression of pNFkB and IL1b also
evidenced these dynamic changes through these two phases
following similar expression patterns in both areas. As
mentioned, these changes in NAc were observed in the
presence of inflammatory pain only in female rats, which was
the condition that triggered alcohol-relapse-like behavior in our
animal model. Additionally, the expression of cytokine IL10
showed a different profile than the IL1b one, indicating anti-
inflammatory processes occurring only during abstinence in the
PFC of CFA-female rats, but not during the reintroduction phase
in PFC or in the NAc. All in all, these data might indicate a
downregulation of microglial activation and pro-inflammatory
processes during abstinence in the PFC regardless of the presence
of pain, whereas an upregulation can be observed in the NAc
during abstinence that is maintained during the reintroduction
phase only in CFA-treated females. Furthermore, we also
investigated the expression of MORs in the same areas of the
MCLS in the abstinence and reintroduction phases of our animal
model. Notably, the same dynamics were also observed in the
case of the MOR expression, suggesting that the already
described interaction between MORs and neuroinflammation
might also be underlying the adaptations developed during the
abstinence and reintroduction phases.

To our knowledge, this is the first study analyzing
neuroinflammatory mediators, microglial activation, and
cytokines in the abstinence and alcohol relapse phases of a
model that allows to compare sex-dependent behavior. Several
reports have shown that chronic alcohol induces neuro
inflammation, probably through TLR4, to produce release of
diverse pro-inflammatory cytokines (21) and cause neural
damage (22). These effects of alcohol exposure seem to be more
intense in females than in males (42, 43), and, as shown in
Figure 2, although the development of pain itself during
abstinence altered some of these neuroinflammatory mediators
in both male and female rats, our data failed to show increases in
neuroinflammatory mediators in male rats. One plausible
explanation might be related with the experimental protocol
which allows free drinking, instead of forced alcohol intake
shown in other studies (20, 44, 45), or the fact that sacrifices
were carried out 24 h after the last alcohol consumption, allowing
increased neuroinflammatory markers to return to normal levels.
Very interestingly, the effect of inflammatory pain in
neuroinflammation and microglial activation (see Figures 2C,
M, P, 3C) has recently captured the attention of researchers.
Recent publications have shown that systemic inflammation leads
also to the elevated presence of inflammatory mediators in the
brain, which correlates with depressive-like behaviors in patients
but also with negative affective state and alterations in neuronal
excitability of neurons of NAc in mice (46–48). In line with these
data, adaptations derived from the presence of pain might also
account for the neuroinflammatory effects produced by alcohol, as
is shown in our case for some studied proteins in CFA-treated
female rats during abstinence and/or reintroduction phases.
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Increasing evidence involves the innate immune system in
alcohol drinking (49) and alcohol relapse behavior in female rats.
Thus, in a very interesting set of studies, Ezquer and colleagues
showed that administration of the secretome or exosomes from
human mesenchymal cells prevented the increase in alcohol
drinking after a period of abstinence in their female rat model
(24, 50). In accordance with these results, our present data
showed an increase of IBA1 staining in NAc of CFA-treated
female rats during abstinence. Interestingly, in this same
experimental group, IL10 expression in the NAc was
downregulated, suggesting a pro-inflammatory state that might
play a role in promoting ADE since we did not observe these
changes in any of the non-relapsing groups. In addition to that,
when alcohol was reintroduced, and presumably due to the
presence of alcohol, the proinflammatory state was maintained
as data of IBA1, pNFkB, and IL1b expression evidenced.
Contrary to that, in PFC, CFA-treated female rats showed an
anti-inflammatory state during abstinence that was reverted to
pro-inflammatory state after alcohol reintroduction most likely
as a consequence of alcohol intake and regardless of the presence
of pain. In this case, IBA1 staining and the expression of pNFkB
and IL1b were significantly lower, together with significantly
higher levels of IL10 during abstinence. In line with these results,
it has recently been shown that chronic intermittent access to
ethanol and lipopolysaccharide exposure differentially alters PFC
and NAc microglia soma volume 10 h after the end of the alcohol
IA protocol, with microglia from PFC being more affected than
that from NAc (51). These brain-region-dependent alterations
might be a consequence of the presence of different subtypes of
microglia populating in each area (52). It is also very interesting
to observe that these alterations in the expression of IBA1 and
IL1b in NAc of saline-treated females are different from those
observed in CFA-treated females. Altogether, these significantly
different alterations for CFA-treated female rats might be taken
into consideration since they could potentially explain the
inflammatory pain-induced alcohol relapse phenomenon that
we observe in our model with only female rats.

Finally, abstinence and alcohol reintroduction did not
increase microglial activation in VTA which is in accordance
with previous results showing no effect of alcohol on microglial
activation in VTA from postmortem human brains (53). From
all the proteins studied, only pNFkB and iNOS after
reintroduction of alcohol showed significant alterations in the
VTA, but because of the involvement of this transcription factor
in different physiological events, it is difficult to interpret its
significance in the observed behavior. Moreover, we have not
measured the levels of the non-phosphorylated form of NFkB,
which is also a limitation of the study that makes even more
difficult to interpret these results. Further studies should address
the consequences of this increase in the pNFkB observed after
alcohol reintroduction and its differences in saline versus CFA-
treated females.

Interestingly, our results connect microglial activation and the
expression of IL1b with MOR levels in relevant brain areas of
MCLS. This correlation has already been described in a neonatal
alcohol intake model in rats (12). In this report, the authors
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suggested that microglial MOR activation enhances the
neuroinflammatory response, as other papers have also
previously reported (11, 12, 54). In addition, the presence of
neuroinflammation, and, more specifically, the increase of IL-1b,
might influence MOR expression (13–16). In general, our results
support these previous reports showing a bidirectional
relationship between MORs and IL-1b. Nonetheless, it is
interesting to mention that in the NAc, MOR expression remain
unaltered during abstinence and after reintroduction to alcohol in
CFA-female rats, whereas IL1b significantly increases only after
the reintroduction of alcohol. Anyway, IL1b and MOR
expressions are both significantly increased in CFA-treated
females in the reintroduction phase (Figures 4C, F). This lack
of correlation with IL1b in the abstinence period might be a
consequence of different timelines in the expression patterns. In
addition to this, MOR activation can also reduce the levels of anti-
inflammatory cytokines such as IL10 (55, 56), and, as our results
evidence, in NAc and PFC of females, MORs and IL10 expression
levels are opposed along the different phases. The presence of
neuroinflammation, and alterations of MCLS MOR expression,
are suggested to underlie alcohol neurobiological effects and
relapse-like behavior (23, 24, 57–60). All in all, these results
point to neuroinflammation-MOR cross talk as a relevant piece
in the abstinence and relapse neurobiological substrate puzzle.

Collectively, our results suggest that microglial activation and
the resulting neuroinflammation, together with MOR level
alterations in PFC and NAc, are likely to participate in an
inflammatory pain-induced relapse-like behavior in female
rats. Nonetheless, further research to clarify the role of the
glial-neuron cross talk in alcohol relapse is warranted.
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Pavón for her kind provision of her valuable scientific input and
for providing the microscope for immunofluorescence
experiments. We would like to thank Mr. J.L. González-
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Supplementary Figure 1 | Representative images of DAPI and IBA1 staining
from each group in females taken with 20x objective. White scale bars represent
100 mm. Brain schematics represent the areas where the pictures were taken
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(Paxinos and Watson 2006). CFA, complete Freund Adjuvant; SAL, saline; C,
control; A, abstinence period; R, re-introduction period; PFC, prefrontal cortex;
NAc, nucleus accumbens; VTA, ventral tegmental area; IBA1, ionized calcium-
binding adapter molecule 1; DAPI, 4′,6-diamidino-2-phenylindole.

Supplementary Figure 2 | Representative images of DAPI and IBA1staining from
each group in males taken with 20x objective. White scale bars represent 100 mm.
Brain schematics represent the areas where the pictures were taken (Paxinos and
Watson 2006). CFA, Complete Freund Adjuvant; SAL, saline; C, control; A,
abstinence period; R, re-introduction period; PFC, prefrontal cortex; NAc, nucleus
accumbens; VTA, ventral tegmental area; IBA1, ionized calcium-binding adapter
molecule 1; DAPI, 4′,6-diamidino-2-phenylindole.

Supplementary Figure 3 | Representative measured bands obtained in the
western blot from each group and each analysed protein. CFA, Complete Freund
Adjuvant; C, control; SAL, saline; A, abstinence period; R, reintroductionperiod;
PFC, prefrontal cortex; NAc, nucleus accumbens; VTA, ventral tegmental area;
pNF-kB, phosphorylated Nuclear Factor kB; iNOS, inducible Nitric Oxide Synthase;
COX2, Cyclooxygenase 2; IL1b, Interleukin 1b; IL10, Interleukin 10; MOR, Mu-
Opioid Receptor.

Supplementary Table 1 | Statistical analysis for Figures 2–4 (Two-Way ANOVA,
SPSS 26) Partial Eta2: proportion of explained variance, prefrontal cortex (PFC),
nucleus accumbens (NAc), ventral tegmental area (VTA), phosphorylated Nuclear
Factor kB (pNF-kB), inducible Nitric Oxide Synthase (iNOS), Cyclooxygenase 2
(COX2), Interleukin 1b (IL1b), Interleukin 10 (IL10), Mu Opioid Receptor (MOR) and
ionized calcium-binding adapter molecule 1 (IBA1).

Supplementary Table 2 | Summary of the significant changes observed in
the immunofluorescence and western blot analysis. In yellow we present
significant effects in main variable abstinence and re-introduction periods, in
blue significant effects in main effect saline-treated and CFA-treated rats, in green
the significant effects for both and in red no differences. + and - simbols are used to
indicate if the group presents higher (+) or lower (-) levels of the protein of analysis
when compared to another group with the Bonferroni multiple comparisons. In
green cell two simbols are provided, the first one to indicate differences between
abstinence and re-introduction and the second one to indicate differences between
saline- and CFA-treated rats. CFA, Complete Freund Adjuvant; SAL, saline; A,
abstinence period; R, re-introduction period; PFC, prefrontal cortex; NAc, nucleus
accumbens.
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JL, Hipólito L. Kappa Opioid Receptor Blockade in NAc Shell Prevents Sex-
Dependent Alcohol Deprivation Effect Induced by Inflammatory Pain. Pain
(Amsterdam) (2021). doi: 10.1097/j.pain.0000000000002332

26. Carnicella S, Ron D, Barak S. Intermittent Ethanol Access Schedule in Rats as
a Preclinical Model of Alcohol Abuse. Alcohol (Fayetteville NY) (2014)
48:243–52. doi: 10.1016/j.alcohol.2014.01.006

27. Parent AJ, Beaudet N, Beaudry H, Bergeron J, Bérubé P, Drolet G, et al.
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