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Deep learning using convolutional neural networks (CNNs) is a distinguished tool for many image classification tasks. Due to its
outstanding robustness and generalization, it is also expected to play a key role to facilitate advanced computer-aided diagnosis
(CAD) for pathology images. However, the shortage of well-annotated pathology image data for training deep neural networks has
become a major issue at present because of the high-cost annotation upon pathologist’s professional observation. Faced with this
problem, transfer learning techniques are generally used to reinforcing the capacity of deep neural networks. In order to further
boost the performance of the state-of-the-art deep neural networks and alleviate insufficiency of well-annotated data, this paper
presents a novel stepwise fine-tuning-based deep learning scheme for gastric pathology image classification and establishes a new
type of target-correlative intermediate datasets. Our proposed scheme is deemed capable of making the deep neural network
imitating the pathologist’s perception manner and of acquiring pathology-related knowledge in advance, but with very limited
extra cost in data annotation. -e experiments are conducted with both well-annotated gastric pathology data and the proposed
target-correlative intermediate data on several state-of-the-art deep neural networks. -e results congruously demonstrate the
feasibility and superiority of our proposed scheme for boosting the classification performance.

1. Introduction

Cancer is acknowledged as one of the top threats to human
health. According to the International Agency for Research
on Cancer (IARC), in 2012, there were approximately 14.1
million new cancer cases and 8.2 million deaths around the
world [1]. -is number is estimated to increase to 24 million
by 2035, and the deaths will continually rise. Within the
diagnostic methods, although advanced image diagnosis
devices (computed tomography (CT), magnetic resonance
imaging (MRI), ultrasound (US)) are evolving rapidly, for
many kinds of cancers, pathological diagnosis is still realized
as the gold standard to assess cancer’s presence or absence,
type, and malignance degree. However, the shortage of
pathologists represents as great restriction to pathological

diagnosis and causes social problems. In the United States,
the lack of pathologist workforce is become more and more
concerned [2]. In Japan, the number of pathologist nor-
malized by the general population is even smaller than one-
third of that in the United States (one pathologist per 19,000
people) [3]. -e situation is even more severe in China. As
reported, China has approximately one pathologist per
74,000 people [4]. Such severe shortage is now consequently
leading to immense working burden on pathologists and
possible errors and oversights in diagnosis. Compared with
2005, the number of all pathological diagnosis cases and
intraoperative pathological diagnosis cases in Japan has,
respectively, risen up to 1.7 times and 3 times by 2012. New
technologies such as digital pathology has widely spread and
facilitated faster and cheaper diagnosis since more than
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a decade ago, due to its operational ease enabled by virtual
microscopy [5, 6]. Nevertheless, since diagnosis correctness
and pathologist workload alleviation remain challenges,
further assistance based on advanced image classification
technologies is expected to play a key role to facilitate more
advanced computer-aided pathology diagnosis.

In earlier periods, conventional classification methods
for pathology images including specified histologically
concerned features or generalized texture image features are
commonly adopted. -e specific histologically concerned
features, such as nuclei’s area and nuclear-cytoplasmic ratio
(N/C), are subtly calculated from unknown images [7].
-ese features are compared with predefined criteria to
judge whether the target image is benign or malignant.
Unfortunately, such process usually meets a big issue that it
is a hard task to make adequate definition for the mor-
phological characteristics, because cancerous cells usually
lack control for regular division. -us, shape extraction
failures for cells could become a direct reason for classifi-
cation failures. In contrast, the schemes using generalized
texture image features appear to sustain more robustness to
various cancerous appearances. As a customary way, many
of the previous studies taking advantage of generalized
texture feature have demonstrated their capability for re-
spective tasks. One of the focused texture feature is grey-level
co-occurrence matrix (GLCM). For example, Esgiar et al. [8]
employed GLCM to obtain texture features corresponding to
contrast, entropy, angular second moment, dissimilarity,
and correlation from colon biopsy and employed linear
discriminate analysis (LDA) and k-nearest neighbour al-
gorithm (KNN) to realize the categorization of normal and
cancerous colon mucosa. Likely, Diamond et al. [9]
employed Haralick features (a kind of texture features de-
veloped from GLCM) for identifying tissue abnormalities in
prostate pathology images. Another mighty rival is local
binary patterns (LBPs). In the study of Masood and Rajpoot
[10], a scheme consisting of LBP and support vector ma-
chines (SVMs) is proposed and demonstrated effective for
colon pathology images. In another work, Sertel et al. [11]
developed classification methods for neuroblastoma H&E-
stained whole-slide images, using co-occurrence statistics
and local binary patterns similar to the above study. A recent
report by Kather et al. [12] gave a relatively comprehensive
investigation of texture analysis for colorectal cancer histology
image. Besides LBP and GLCM, lower-order and higher-
order histogram features, Gabor filters, and perception-like
features are involved as well. In our earlier studies [13],
another texture features called higher-order local autocor-
relation (HLAC) bonded with linear statistical models such as
principal component analysis (PCA)-based subspace method
were also demonstrated capable of indicating the anomaly
degree of gastric pathology images. Apart from straightfor-
ward benign/malignant classification, some other methods in
pathology image domain have been put forward with texture
features as well, to settle similar classification-correlative tasks
such as gland segmentation and grade estimation [14–19].

While all of these texture-feature-based approaches
shown promising feasibility, intractable issues still existed
between the research and practical application. One particular

instance is that confirming how suitable the hand-crafted
geometric features are for certain tasks is quite difficult [20].
Meanwhile, the uneven H&E staining among images brings
adverse impact on classification performance so that it makes
the tasks more challenging [21–23]. Since the dominative
victory of the team using deep learning at ImageNet Large
Scale Visual Recognition Competition (ILSVRC) 2012, many
of the image recognition techniques have been replaced by
deep learning using convolutional neural networks (CNNs)
[24]. Due to more domain agnostic approach combining both
feature discovery and implementation to maximally dis-
criminate between the classes of interest [25], deep learning
shows unprecedented adaptability for various kinds of images
[26–28]. Accordingly, high hope is placed on deep learning to
exert great power in pathology image and other medical
image analysis fields [29–33]. Specifically within the pa-
thology image domain, in addition to aspiration for more
precise classification and segmentation [22, 34–38], deep
learning has also been inspired for new patulous applications,
such as stain normalization [39], assessment of tumor pro-
liferation [40], and comprehensive multimodal mapping
between medical images and diagnostic reports [30].

In comparison with computer vision for natural images,
scarcity of training data along with accurate annotations in
the medical image field has currently become a primary
issue. Due to the necessity of medical doctor’s knowledge
and collaboration, acquisition procedures usually cost both
expensive financial resources and workload. In consider-
ation to this problem, many of the studies have evidenced
that transfer learning using fine-tuning techniques for deep
neural networks can boost the performance and alleviate the
scarcity of training data in some degree by transferring
a general neural network pretrained by large-scale image
datasets (such as ImageNet), to a more specified one cor-
responding to more complicated target tasks [22, 41–43].
However, since pretraining image datasets possess fixed
categories of contents and image size, the coefficient effi-
ciency of the datasets and deep neural network is generally
suboptimal for problems encountered in specific image
classification domain [44]. In many cases, there are still gaps
between the knowledge gained from pretrained tasks and
different specified target domains.

Hence, in this paper, aiming to further alleviate the
scarcity of well-annotated training data for gastric pathology
image classification and enhance the performance in a ra-
tional way, we have proposed a novel scheme adopting
two-stage fine-tuning approach for CNNs and introduced
a new type of target-correlative intermediate datasets (called
“medium-level” datasets, hereinafter). In addition to the
“low-level” large-scale pretraining datasets owning enor-
mous amount but little target specificity, and the “high-level”
well-annotated pathology datasets directly related to the
target task, the proposed “medium-level” datasets are pro-
duced based on tissue-wise and cell-wise information within
pathology image domain. With the “medium-level” datasets,
our scheme is supposed capable of making the deep neural
networks imitating the perception manner of pathologists
and acquiring pathology-related knowledge in advance,
but with very limited extra cost in data annotation. In the
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following parts, we will give the detailedmaterials of both the
stepwise fine-tuning scheme and the datasets. After that,
experiments will be organized to evidence our proposed
scheme.

2. Materials and Methods

-is section will be unfolded to several subtopics. Firstly, we
will make a brief instruction of convolutional neural net-
works (CNNs) and the architectures adopted in this paper.
Secondly, we will give some details about the proposed
stepwise fine-tuning scheme (Figure 1) to clarify how it
helps to improve CNN’s performance and alleviate the in-
sufficiency of well-annotated pathology training data.
-irdly, we will represent a feasible tissue-wise “medium-
level” dataset including classes of background, epithelium,
and stroma, which can be semiprofessionally annotated
based on fundamental pathological knowledge with little
pathologist’s workload. Lastly, supposing to minimize the
annotation cost and give an alternative solution to extremely
insufficient annotating workforce, we are further inspired to
put forward a solution by implementing full-automatic
production of the cell-wise “medium-level” datasets which

are yielded upon nuclei measurement and unsupervised
clustering.

2.1. Convolutional Neural Network (CNN) Architecture.
Among various approaches which have been studied in the
field of image recognition and computer vision, convolu-
tional neural network (CNN) is currently the most re-
markable success. -e prototype of CNN can be found in
neocognitron [45] devised based on the neurophysiological
findings on the visual cortex of living organism’s brain. It is
a neural network that alternately arranges a convolution
layer corresponding to the cells for feature extraction and
a pooling layer corresponding to the cells having a function
to allow positional deviation hierarchically. Intuitively, it can
be interpreted as a network that takes co-occurrence of
adjacent features on different scales little by little and se-
lectively gives information effective for identification to
upper layers. Practically, refinement of such information is
usually implemented by minimizing the cost function:
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Figure 1: -e proposed stepwise fine-tuning architecture. Apart from “low-level” pretraining datasets and well-annotated “high-level”
datasets, “medium-level” data including tissue-wise data and cell-wise data are involved as well. In CNN models corresponding to training
step t� 0, t� 1, and t� 2, blue nodes coloured darker denote more specified (deeper) representation for the pathology image classification
task.
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In (1), while L(W) indicates the total cost (difference
between prediction upon current configuration and the
ground truth) over a dataset of N training samples, cor-
responding to weights W. yi denotes the label of training
data xi. y(xi; W) is the predicted label of xi, while l is the lost
function. Practically, in order to evaluate the efficacy and
generalization of the proposed stepwise fine-tuning scheme,
in this paper, we employ several state-of-the-art CNN ar-
chitectures including VGG-16 [28], AlexNet [24], and
GoogLeNet (Inception V3, hereinafter) [46].

2.2. Making CNN Learn Pathology by Stepwise Fine-Tuning.
-e fine-tuning approach, which generally indicates
retraining the pretrained CNN with the dataset corre-
sponding to the target task, is widely adopted in image
classification domain [47–52]. Since training a CNN
strongly depends on initial parameters, it is significant to
obtain appropriate parameter initialization as much as
possible in order to prevent overfitted learning. Generally,
the early layers within a CNN are in charge of acquiring
relatively universal image features, which are considered
analogous to the conventional texture features and appli-
cable to many of related tasks, while the later layers are
involving more specific information corresponding to the
target task. -erefore, if the distributional difference be-
tween the datasets for pretraining and target is sufficiently
correlated, one may fine-tune part of or all the layers to yield
more desired results than those train from full scratch in
many cases. However, in other situations if target tasks
possess much different distribution compared with the
pretraining datasets, effectiveness of initialization and fine-
tuning may be largely restricted. Such issue is exactly posed
in pathology image classification. In light of human’s per-
ception, pathology images usually have more complicated
appearances than natural images (included in the pre-
training dataset) since it is difficult to figure out the intui-
tionistic difference between benign and malignant images
due to their color uniformity by H&E stain. From this
perspective, we believe that it is necessary to make some
substantial effort to fill up the “gap” between the tasks of
pretraining dataset and well-annotated pathology dataset.

-erefore, in this paper, a novel conception is proposed if
it is possible to make deep neural networks learn to un-
derstand pathology images in pathologist’s way. With regard
to the perception manner and learning progress of a pa-
thologist, before drawing conclusions of benign or malignant
for a pathology image, the pathologist should understand the
difference of basic tissue-wise structures beforehand. -en,
the pathologist may concentrate more on the detailed mor-
phological characteristics, including but not limited to the
spreading status and density of cells, degree of nucleus dis-
tortion, nucleus size, and nuclear-cytoplasmic ratio. On ac-
count of all of the above observations, the pathologist can
finally make a benign ormalignant judgement. To realize such
conception, we build up a stepwise fine-tuning scheme to
impart the intellectual pathology knowledge on deep neural
networks, and introduce a new type of target-correlative
“medium-level” dataset. Rather than directly driving the

deep neural networks to learn how to identify benign or
malignant, making it gain fundamental pathological knowl-
edge from the “medium-level” datasets probably contributes
to the task of higher difficulty. -erefore, based upon the in-
being framework, training with the “medium-level” datasets is
placed in the middle of the stepwise fine-tuning scheme [53].
As shown in Figure 1, at the beginning of the training progress
t� 0, we have a pretrained network as initialization. -e
following step t� 1 is fine-tuning the network with our
proposed “medium-level” dataset. After this step, the deep
neural network is considered to possess more pathology-
related weights. Finally, well-annotated benign/malignant
images are used for the second time (t� 2) fine-tuning. In
the lower part of the figure, corresponding to training step
t� 0, t� 1, and t� 2, blue nodes coloured darker in CNN
models denote more specified (deeper) representation for the
pathology image classification task. When the number of
output classes changes, definitely, the network architecture
needs to be adjusted accordingly.

2.3. Building Up a Low-Cost “Medium-Level” Dataset. As for
the “medium-level” datasets, it is supposed necessary to
meeting the prerequisite requirement that they could be
acquired at much lower cost than the datasets annotated by
pathologists and meanwhile charged with fundamental pa-
thology related knowledge. -erefore, we firstly pay attention
to seeking for a kind of pathology image datasets which can be
made by “nonprofessional” workforce. In this paper, we
present a feasible stroma-epithelium datasets which can be
made by ourselves with only a little pathologist’s direction.
Epithelium and stroma are two tissue types that can be found
in every organ [54]. In gastric pathology domain, epithelial
tissues line the outer surfaces of gastric mucosa, while stroma
tissue locates right under epithelium. Since cancer metastasis
between epithelium and stroma is deemed as inextricable to
cancer’s progression [55], both of the two types of tissue are
usually extracted during biopsy examinations and revealed in
the pathology images. Although it is quite difficult to identify
if the two types of tissue are in order for nonprofessional
workers, actually, we find that stating the visual difference
between them is quite an undemanding work. As shown in
Figure 2, the upper area encircled by dashed contour indicates
epithelium tissue, while the remaining lower area denotes

Stroma

Epithelium

Figure 2: Stroma tissue and epithelium tissue appear in gastric
pathology image.
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stroma tissue. Because of their respective functions, obviously,
epithelium tissue appears as organized arrangement, but
stroma tissue seems scattered and disordered. Such distinct
difference is considered quite beneficial to our “non-
professional” work. Without pathologist’s expensive anno-
tation, it would be encouraging if these epithelium and stroma
images can impart the pathology knowledge to the deep
neural networks on the basis of our assumption. Practically,
we have managed to collect a large amount of images in-
cluding epithelium and stroma, segment them with stroma
area and epithelium and manually, and separate into three
classes (epithelium, stroma, and background).

2.4. Automatically Generating a “Medium-Level” Dataset.
In this section, this paper moves one step further and
presents another full-automatic “medium-level” dataset
generating approach, corresponding to the situation when
data annotation workforce is extremely insufficient. -e
proposed approach firstly applies a string of image pro-
cessing techniques, before extracting low-dimension feature
vectors indexing the measurement of morphological status
of nuclei. Finally, we perform unsupervised clustering in
order to form the “medium-level” dataset.

In order to realize the measurement of nuclei, it is nec-
essary to generate a binary nuclei image instead of the original
one. -us, the first step is to implement color deconvolution
to separate H&E- (hematoxylin and eosin-) stained pathology
image into H and E component, since nuclei are usually richly
visualized in H component. -is paper adopts the algorithm
proposed by Ruifrok and Johnston [56]. According to their
work, although relative intensity in each of RGB channels
depends on the concentration of stain in a nonlinear way, the
optical density, ODc � −log10(Ic/I0, c) � A∗bc (c is any of
the RGB channels), is linear with the concentration of amount
of stain A with absorption factor bc and therefore can be used
for separation of the contribution of multiple stains. Practi-
cally, Ic is the intensity of one of RGB channels and I0, c is
valued 1. -en, with the deconvolution matrix D denoted as
(2), combination of hematoxylin, eosin, and DAB can be
calculated as C � D[y], where [y] indicates vector of optical
density in RGB space:

D �

1.88 −0.07 −0.60

−1.02 1.13 −0.48

−0.55 −0.13 1.57

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (2)

Next, we perform binarization on H (hematoxylin)
channel, with the auto local threshold algorithm presented
by Phansalkar et al. [57]. In this method, the threshold T is
computed as

T � μ∗ 1 + p
∗
e
−q∗μ

+ k
∗ σ

r
􏼒 􏼓− 1􏼒 􏼓􏼒 􏼓. (3)

In (3), μ and σ are the local mean and standard deviation,
respectively. k� 0.25, r� 0.5, p� 2, and q� 10 are constants
with their recommended values. -e image on the right in
Figure 3 shows the result after banalization.

Afterwards, our proposed method adopted watershed
algorithm for separating the conjoined or partly overlapped
nuclei and then the contour detection method was
employed, developed by Suzuki and Abe [58], in order to
acquire a two-dimensional vector of total area and number
of nuclei from each pathology image. After all, unsupervised
K-means clustering is utilized to separate images into two
classes. -e clustered images are directly used as “medium-
level” training data in the first time fine-tuning. Compared
with tissue-wise dataset, the automatically generated dataset
concentrates on cell-wise characteristics.

3. Results and Discussion

3.1. Experimental Procedures. In order to evaluate the ef-
fectiveness of our proposed stepwise fine-tuning scheme and
the low-cost “medium-level” datasets, the experiments are
progressively arranged in the following order. (1) We firstly
give discussion on the performances of the two-stage fine-
tuning scheme based on different CNN architectures when
tissue-wise dataset is employed. (2) We then replace the
tissue-wise dataset with automatically generated cell-wise
dataset and validate the proposed scheme in the same way
as (1). Separately in (1) and (2), we will further talk over
how our proposed two-stage scheme performs upon

Original image

Color
deconvolution

E stain

Auto local
threshold

Binary nuclei imageH stain

Figure 3: Image processing for making binary nuclei images.
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well-annotated datasets in different sizes, in order to pro-
duce more evidence to support our conception.

3.2. Datasets. -is paper employs three types of data in-
cluding “low-level,” “medium-level,” and “high-level” data
(Figure 1), respectively, used for the initialization, the first-
stage fine-tuning, and the second-stage fine-tuning. In
practice, ImageNet data [59] containing approximately 1.2
million images in 1,000 separate categories are customary
utilized to initialize the CNNmodels. As to gastric pathology

images, all the datasets utilized are illustrated in Table 1. By
depicting maps of epithelium and stroma, we succeeded in
collecting 48,000 tissue-wise patches (256× 256) separated
into “background,” “epithelium,” and “stroma” categories
(Figure 4). In each category, 15,000 patches are used as
training data, while the remained 1,000 patches are used for
validation. From this dataset, we further obtained auto-
matically generated cell-wise dataset in line with nuclei
measurement. -e cell-wise dataset consists of 7,672 and
6,457 patches in two clusters (Figure 5), after excluded those
having too few nuclei or difficult to be extracted due to stain

Table 1: Datasets used in experiments.

Data type Category Training Validation Test

Tissue-wise data
Background 15,000 1,000 —
Epithelium 15,000 1,000 —
Stroma 15,000 1,000 —

Cell-wise (nuclei) data Cluster 1 6,905 767 —
Cluster 2 5,811 646 —

Well-augmented data Small 540 + 540 1620 + 1620 2,700 + 2,700Large 5400 + 5400

(a) (b) (c)

Figure 4: “Nonprofessionally” annotated tissue-wise datasets. (a) Background. (b) Epithelium. (c) Stroma.

(a) (b)

Figure 5: Full-automatically generated cell-wise (nuclei) datasets. (a) Cluster 1. (b) Cluster 2.
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inconformity. Experimentally, 90% of patches out of each
cluster are used for training and the rest are used for val-
idation. As shown in Figure 5, according to rough obser-
vation, the cluster on the left appears to have larger and
fewer nuclei, while the cluster on the right side seems op-
posite withmore but smaller nuclei. As to the well-annotated
“high-level” datasets, in order to evaluate the efficacy and
generalization of the proposed two-stage scheme, we have
prepared well-annotated datasets in two different sizes. One
is a small train dataset including 540 benign and 540 ma-
lignant patches. Another one is a nonaugmented large
dataset of 5,400 benign and 5,400 malignant patches within
which the small dataset is included. Except from the former
datasets, we additionally use a validation dataset including
1,620 benign and 1,620 malignant patches to select the best
model configuration, and a test dataset of 2,700 benign and
2,700 malignant patches to finally evaluate the performance
in each optional case. It is noteworthy that there is no
overlap between the “medium-level” datasets and the “high-
level” datasets and no overlap among the training, valida-
tion, and test datasets.

4. Experimental Results

4.1. Stepwise Fine-Tuning Using Tissue-Wise Data. In this
part, we will specifically discuss about our proposed stepwise
fine-tuning when tissue-wise data are employed for the first-
stage fine-tuning and well-annotated datasets are used for
the second-stage fine-tuning.-e performances are collected
from the experiments performed with well-annotated pa-
thology image datasets in different sizes and different deep
neural network architectures. In this paper, we concurrently
adopt AUC, ACC, precision, and recall as the evaluation
criteria [60].

In Table 2, notably, in all of the couples of rival schemes,
our proposed two-stage fine-tuning using tissue-wise data
has yield promotion. Specifically, in the results of small data
group, AUC value is raised by 0.035, 0.016, and 0.039, when
we adopt CNN architectures VGG-16, AlexNet, and In-
ception V3, respectively. In the large data group, the cor-
responding AUC values are raised by 0.027, 0.053, and 0.053.
Although the performance using smaller training data is
expected to be more boosted, according to AUC values, we
find that our proposed scheme has actually brought slightly
more benefit to the large well-annotated dataset groups.
Meanwhile, if we focus on ACC values, we are aware of the
fact that the greatest improvement happens when our
proposed scheme using Inception V3 is adopted upon the

large dataset. -e accuracy has remarkably increased from
0.779 to 0.862. Besides, precision and recall, which are
commonly used for medical image classification, are
appearing with the similar trend to AUC and ACC. As more
intuitively illustrated in Figure 6, three CNN architectures
combined with two datasets have produced six ROC Figures.
-e red curve denotes the two-stage scheme using tissue-
wise “medium-level” dataset, while the green curve denotes
the conventional one-stage scheme. It is clear at a glance, in
each figure, that our proposed scheme possesses over-
whelming area all along both the false-positive rate axis and
true-positive rate axis. -ese results have proved that our
proposed scheme is adaptable and rarely dependent on the
amount of well-annotated data. In addition, a set of filtered
response images exported by the stepwise trained network
are displayed in Figure 7. Considering the practical and
intuitive facility, we investigate on VGG-16 model and
obtain some of the outcomes of the first convolutional layers
from all of the convolutional blocks as shown.

In line with the common sense, larger training data yield
larger absolute AUC value. Nevertheless, if we make com-
parison between the data size crosswise, we can observe that
when we use the proposed two-stage scheme with the small
dataset, our scheme has actually boosted the performance up
to the level approaching to that when only one-stage fine-
tuning is implemented with the large dataset which is 10
times that of the small one. By viewing the two rows “Small-
Two stage (tissue)”and “Large-One stage” (right the two
rows in the middle of Table 2), it is not hard to see that the
differences of AUC values between the two rows are no
larger than 0.023 (AlexNet), while the largest difference of
ACC values is only 0.033 (AlexNet). -ese results can fully
prove that the introduction of tissue-wise information has
indeed contributed to making the deep neural networks
“understand” pathology images better. Hence, it is reasoned
to infer that our proposed two-stage fine-tuning scheme can
be used as an alternative method to boost the performance
when the number of well-annotated pathology image data is
limited, but “nonprofessional” annotation is practicable in
some degree.

4.2. Stepwise Fine-Tuning Using Cell-Wise Data. In the next
step, we will follow the same procedures as above but
substitute the cell-wise data which have been generated by
our proposed automatic clustering approach for the tissue-
wise data. To make a comprehensive comparison of the rival
schemes, again in Table 3, we list up the results of the two
schemes covering two sizes of well-annotated datasets and

Table 2: Performances of the proposed two-stage fine-tuning using tissue-wise data.

Data size Scheme
CNN architecture

VGG-16 AlexNet GoogLeNet (Inception V3)
AUC ACC Precision Recall AUC ACC Precision Recall AUC ACC Precision Recall

Small One stage 0.879 0.793 0.863 0.695 0.828 0.723 0.74 0.72 0.838 0.753 0.75 0.75
Two stage (tissue) 0.914 0.829 0.865 0.781 0.844 0.761 0.76 0.76 0.877 0.772 0.79 0.77

Large One stage 0.936 0.836 0.957 0.703 0.867 0.794 0.80 0.79 0.881 0.779 0.79 0.78
Two stage (tissue) 0.963 0.881 0.869 0.898 0.920 0.837 0.84 0.84 0.934 0.862 0.86 0.86
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three types of CNN architectures. From Table 3, we can find
that the proposed stepwise fine-tuning scheme using cell-
wise (nuclei) datasets as well governs all couples of results.
According to the AUC values, when small well-annotated
dataset is employed, the fine-tuning by nuclei datasets has
led to improvement by 0.023 (VGG-16), 0.024 (AlexNet),
and 0.034 (Inception V3), respectively, along the horizontal
direction. In the large data group, AUC values for the three
networks are separately elevated by 0.029 (VGG-16), 0.048
(AlexNet), and 0.052 (Inception V3). In agreement with
AUC values, ACC values have been largely raised after we
introduce the nuclei dataset into the first fine-tuning stage,
with whichever CNN architecture and well-annotated

dataset. As to the indexes precision and recall, in each
couple of the small data group, our proposed scheme yields
enhancement for both precision and recall. However, the
results depicted in the large dataset group show decline of
precision, but on the contrary, substantial increase of recall
as offset. In line with the definitions, a larger recall indicates
less undetected anomaly (false negative), while a larger
prevision indicates less overdetection (false positive).
Practically, due to the high risk of undetected anomaly,
a high recall is acceptable rather than a loss of it. In Figure 8,
the ROC performances of the two-stage fine-tuning using
nuclei “medium-level” dataset are presented. Likewise, we
notice that our proposed two-stage stepwise fine-tuning
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Figure 6: Performances of the proposed two-stage fine-tuning using tissue-wise data presented by ROC. (a) VGG-16 + small data. (b) VGG-
16 + big data. (c) AlexNet + small data. (d) AlexNet + big data. (e) Inception V3+ small data. (f ) Inception V3 + big data.
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scheme oversteps the state-of-the-art one-stage fine-tuning
approach regardless of the scale of “high-level” dataset. By
implementing the two-stage fine-tuning scheme, the per-
formances of the state-of-the-art deep neural networks are
all boosted up to a competitive level close to those achieved
by the usual one-stage fine-tuning with a much larger well-
annotated “high-level” dataset.

Moreover, if we compare with the two types of “me-
dium-level” datasets utilized in the first-stage fine-tuning,
there are actually hardly apparent differences observed
between them. When we have a small well-annotated
dataset, tissue-wise data seem to promote more for VGG-
16 and Inception V3 models, while the AlexNet seems to
profit more from the cell-wise data. Correspondingly, when
we have a large well-annotated dataset, AlexNet and In-
ception V3 are both reinforced more effectively. -erefore,
to sum up, all of these results have demonstrated that the

proposed stepwise fine-tuning employing either of the
tissue-wise dataset or the cell-wise dataset has successfully
boosted the performance of the pretrained neural networks
for gastric pathology image classification in various
situations.

5. Conclusions

In this paper, aiming to alleviate the insufficient well-
annotated training data for pathology image classification,
we proposed a novel stepwise fine-tuning scheme and a kind
of low-cost target-correlative intermediate data with which
the deep neural networks are supposed able to acquire
fundamental pathological knowledge in accordance with
pathologist’s perception manner. To match the demand of
different data production capabilities, we proposed two
practical approaches to build up the intermediate data. Both

(a)

(b)

(c)

(d)

(e)

Figure 7: A set of filtered response images outputted by the stepwise trained VGG-16model. (a) Block 1, Convl. (b) Block 2, Convl. (c) Block 3,
Convl. (d) Block 4, Convl. (e) Block 5, Convl.

Table 3: Performances of the proposed two-stage fine-tuning using cell-wise (nuclei) data.

Data size Scheme
CNN architecture

VGG-16 AlexNet GoogLeNet (Inception V3)
AUC ACC Precision Recall AUC ACC Precision Recall AUC ACC Precision Recall

Small One stage 0.879 0.793 0.863 0.695 0.828 0.723 0.74 0.72 0.838 0.753 0.75 0.75
Two stage (nuclei) 0.902 0.815 0.873 0.730 0.852 0.777 0.78 0.78 0.872 0.784 0.78 0.78

Large One stage 0.936 0.836 0.957 0.703 0.867 0.794 0.80 0.79 0.881 0.779 0.79 0.78
Two stage (nuclei) 0.965 0.89 0.881 0.901 0.915 0.834 0.84 0.83 0.933 0.862 0.86 0.86
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of the two approaches incur no additional pathologist’s
workload. In the experiments, our proposed scheme exerted
adequate efficacy for boosting the classification performance
in respect of different possession situations of well-
annotated pathology image data, and revealed high appli-
cability for different state-of-the-art CNN architectures.

Last but not least, in this paper we regarded the final
classification performance as the only assessment standard.
To be objective, the effectiveness of the target-correlative
intermediate data applied to the deep neural networks is
expected to be concretely evaluated in the future work.
Moreover, there is still necessity to discuss about the dif-
ference between the training framework using fine-tuning

and other promising techniques such as multitask learning.
Taking the proposed scheme as seed, we are looking forward
to seeing that such kind of training scheme using low-cost
target-correlative data can suggest solutions for more
medical image classification tasks.

Data Availability

-e data used in this paper were provided by Toho University
SakuraMedical Center and are now currently managed by the
National Institute of Advanced Industrial Science and
Technology (AIST). However, as to the agreement on data
usage, Toho University Sakura Medical Center only gained
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Figure 8: Performances of the proposed two-stage fine-tuning using cell-wise data presented by ROC. (a) VGG-16 + small data. (b) VGG-
16 + big data. (c) AlexNet + small data. (d) AlexNet + big data. (e) Inception V3+ small data. (f ) Inception V3 + big data.
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consent from the patients “-e anonymized image data are
provided to AIST and can be used for image analysis ex-
periments”, which indicates only the right “to use.” Mean-
while, at Toho University Sakura Medical Center, a research
plan to provide data only to AIST was approved, so it is not
permissible to provide data from AIST to the outside under
the existing agreement framework. In order to provide data to
a third-party organization in any way, after acquiring consent
from the patients and preparing an experiment plan speci-
fying the provision of providing data to the outside, it is
necessary to obtain the approval of the Ethics Review
Committee of both institutions. Since it is difficult to carry out
all of these procedures this time, unfortunately, we cannot
make the data publicly available in the prescribed form.
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