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Abstract: When the inverse finite element method (inverse FEM) is used to reconstruct the deformation
field of a multi-element structure with strain measurements, strain measurement errors can lower
the reconstruction accuracy of the deformation field. Furthermore, the calibration ability of a
self-structuring fuzzy network (SSFN) is weak when few strain samples are used to train the SSFN.
To solve this problem, a novel two-step calibration method for improving the reconstruction accuracy
of the inverse FEM method is proposed in this paper. Initially, the errors derived from measured
displacements and reconstructed displacements are distributed to the degrees of freedom (DOFs)
of nodes. Then, the DOFs of nodes are used as knots, in order to produce non-uniform rational
B-spline (NURBS) curves, such that the sample size employed to train the SSFN can be enriched. Next,
the SSFN model is used to determine the relationship between the measured strain and the DOFs of
the end nodes. A loading deformation experiment using a three-element structure demonstrates that
the proposed algorithm can significantly improve the accuracy of reconstruction displacement.

Keywords: non-uniform rational B-spline; inverse finite element; deformation reconstruction;
fuzzy network

1. Introduction

With the development of health monitoring and intelligent structures, structural deformation
sensing technology based on strain measurement data has become increasingly important [1].
The accurate deformation reconstruction of plates, beams, and other structures provides a basis for
ensuring the safe operations of aircraft. As a result, it is of great significance to achieve high-precision
structural deformation reconstruction.

The key to deformation reconstruction is constructing a relationship between the structural
deformation and strain measurements. Many research methods have been proposed by domestic
and foreign scholars for this purpose, such as the modal transformation method, the Ko method,
and inverse FEM. Among them, the inverse FEM is an accurate and effective method for deformation
reconstruction. The inverse FEM was first proposed by Tessler et al., who employed a variational
principle based on a least-squares functional [2,3]. The modal transformation method can accurately
reconstruct the deformation of a plate and beam structure [4], but it needs an accurate finite element
model. The Ko method is based on the classical Euler–Bernoulli beam theory [5]. It integrates
discrete surface strain measurements with piecewise-continuous polynomials to achieve high-precision
reconstruction of a beam element in a one-dimensional direction. The triangle element inverse FEM
method was proposed to reconstruct the structural deformation in real-time by measuring the strain,
based on the first-order shear deformation theory [6,7], and it solved the problem of the Ko and
modal methods, in that they cannot adapt to complex topological structures and boundary conditions.
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Compared with the Ko method and the modal transformation method, the triangular element inverse
FEM method has high reconstruction accuracy without considering the material properties and load
information of the structure, and it can quickly reconstruct the structure deformation. However,
this method presents pathological behavior, which has been labeled as shear-locking, in membrane
reconstruction. Subsequently, the inverse FEM of the quadrilateral elements method was proposed
by Kefal and Oterkus et al. [8,9]. The proposed method considers the degree of freedom of rotation
in the Z direction, thus avoiding singular matrices during the inversion process and overcoming the
shear-locking phenomenon in the deformation reconstruction of membranes. However, in engineering,
with the application of composite structures, the inverse finite element method based on shear
deformation theory was not suitable for the deformation reconstruction of composite structures.
Cerracchio et al. improved the original inverse FEM formulation by adding the kinematic assumptions
of the Refined Zigzag Theory [10]. This method is suitable for the displacement monitoring of
multi-layer composite materials and sandwich structures with high anisotropy and heterogeneity.
Meanwhile, Gherlone et al. proposed the inverse FEM of beams, considering the problems of beam
stretching, bending, and torsional deformation [11,12].

In practical engineering, the installation position of the sensor greatly affects the reconstruction
accuracy. In [13], a model update method was proposed based on the measured values of sensors
installed at arbitrary positions and orientations. This method can establish the model independently,
regardless of the position of the sensor, but it requires more model information. In [14,15], an optimized
sensor layout model based on eigenvalue analysis was proposed, in order to improve the robustness
of the reconstruction model. In [16], Islam et al. proposed a robust object tracking method based on
a dynamic learning rate. This method uses a transformation filter based on the kernel correlation
function filter, which improves the robustness of the model. In [17], a double objective optimization
model was established, considering both accuracy and robustness in the reconstruction of beams by
using the inverse finite element method. It improved the reconstruction accuracy and robustness.
In [18], Kim et al. proposed a sequential framework for improving the recognition ability of FEM
models. The proposed method could update the initial FE model accurately and improve the reliability
of prediction performance. In [19], Khatir et al. proposed an effective target recognition method that
used the Jaya algorithm to improve the training of artificial neural network parameters and improved
the accuracy of target data prediction. However, this method has the risk of losing information. In [20],
Pan approximated the relationship between the measured strain and the inverse solution strain by
using the SSFN. Using 13 sets of working condition data, the fuzzy calibration network was established.
Then, the calibration strain was used to solve for the deformation displacement of the frame. In [21],
a fuzzy calibration network with support vectors was proposed, training 10 sets of working condition
data. However, in the above literature, only a small amount of data was used to train the correction
network, which directly affects the accuracy of the network for insufficiently covered information in
the established network.

In this paper, a two-step calibration method is proposed for shape sensing with small sample
features. The proposed method is used to calibrate the reconstruction displacement and improve the
accuracy of deformation reconstruction.

Briefly, this paper is organized as follows: In Section 2, two problems in deformation reconstruction
are explained. One is that the displacement of the end element of a multi-element structure is affected
by the angle deflection of the front element, which can lead to a large reconstruction error. Second,
if the different working condition data that can be collected has a small sample size, the reconstruction
accuracy can be seriously affected. In Section 3, the reconstruction displacement is separated, and the
error distribution is processed. Then, the sample data are expanded by the NURBS method and
used to construct SSFN. Finally, in Section 4, experiments are performed on a three-element frame,
in order to verify the effect of the proposed calibration algorithm on improving the accuracy of
deformation reconstruction.
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2. Multi-Element Displacement Analysis

Strain sensors are placed on the surface of a multi-element frame to measure its surface strain,
as shown in Figure 1. Then, inverse FEM can be used to reconstruct the structural deformation
displacement of the multi-element frame, using the collected strain. The displacements are composed
of two parts: one is elastic displacement, and the other is the projection displacement, which is caused
by rotation of the first element.
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The structural deformation can be expressed as

d = dI + dII, (1)

where d represents the structural deformation displacement; dI denotes the projected displacement,
which is independent of strain measurement and related to rotation; and dII is the elastic displacement
of the structure, which is determined only by the strain. Closer to the end of the frame, the proportion
of elastic displacement in the frame displacement decreases rapidly, such that the final element’s
displacement is almost composed solely of the projected displacement (as shown in Figure 1). This makes
direct calibration poor. In addition, in some special experimental environments, less experimental data
can be collected, such that calibration capability of the SSFN algorithm is decreased.

The source of the reconstruction error can be analyzed. On the one hand, inaccurately placed
strain sensor positions can cause installation errors; on the other hand, the strain measurement
system can induce measurement errors. Together, these factors cause strain errors which, in turn,
affect the reconstruction accuracy. Therefore, calibration plays an important role in high-precision
deformation reconstruction.

3. Establishing a Small Sample Fuzzy Calibration Model

The calibration process is divided into three parts: initially, the elastic displacement is separated,
according to inverse FEM knowledge, and the elastic displacement errors are assigned to the kinematics

variables ue =
[
u, v, w,θx,θy,θz

]T
.

Then, the kinematics variables are used to solve the NURBS curve, such that the sample size of strain
errors is expanded. Finally, the SSFN model is established using the extended data, which approximates
the relationship between the measured strain and the corrected displacement, in order to improve the
accuracy of deformation reconstruction.

3.1. The First Step of Calibration: Deformation Separation and Error Distribution

Consider the phenomenon that the closer the evaluated position is to the fixed end, the smaller the
elastic displacement is; the elastic displacement is separated for correction in each element in this paper.
According to the inverse FEM theory, the strain–displacement relationship can be presented as follows:

KU = F, (2)
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where the matrix K is determined by the measured position of the strain and is independent of the
strain data, F resembles the load vector, and U comprises the nodal degrees of freedom [22]. Equation
(2) can be partitioned as: 

K11 K12 K13

K21 K22 K23

K31 K32 K33




U1

U2

UO

 =


F1

F2

F3

, (3)

where U1 is the degree of freedom of the starting point, U2 is the degree of freedom of the end node,
and UO is the vector of internal degrees of freedom. For a cantilever beam, according to Equation (3),
the reconstructed elastic displacement (dII

iFEM) of the end point is

dII
iFEM = U2 = (K22 −K23K−1

13 K12)
−1[

F2 +
(
K23K−1

13 K11 −K21
)
U1 −K23K−1

13 F1
]
. (4)

When the starting point degree of freedom is U1 = 0, Equation (4) is suitable for solving the elastic
displacement of the first element; when U1 is not equal to 0, it is suitable for other elements.

In addition, when F1 = F2 = F3 = 0, the resulting projection displacement dI can be calculated by
Equation (3):

dI = U′2 = (K22 −K23K−1
13 K12)

−1(
K23K−1

13 K11 −K21
)
U1. (5)

When the starting point degree of freedom is U1 = 0, Equation (5) is suitable for solving the
projection displacement of the first element; when U1 is not equal to 0, it is suitable for other elements.

Then, in the actual experimental measurements, the measured displacement can be denoted by d.
So, we can use Equation (5) to calculate the actual elastic displacement (dII

act) as

dII
act = d− dI. (6)

Therefore, the elastic displacement reconstruction errors can be obtained as
∆ux(xi, yi, zi) = dII

actx
(xi, yi, zi) − dII

iFEMx
(xi, yi, zi)

∆uy(xi, yi, zi) = dII
acty

(xi, yi, zi) − dII
iFEMy

(xi, yi, zi)

∆uz(xi, yi, zi) = dII
actz

(xi, yi, zi) − dII
iFEMz

(xi, yi, zi),
(7)

where ∆ux(xi, yi, zi), ∆uy(xi, yi, zi), and ∆uz(xi, yi, zi) represent the elastic displacement errors in the X,
Y, and Z directions at the end point (xi, yi, zi), respectively. In the same way, the elastic displacement
errors ∆uox(xo, yo, zo), ∆uoy(xo, yo, zo), and ∆uoz(xo, yo, zo) of an internal node can be obtained.

Next, the error distribution can be derived. During the reconstruction process, the displacement
of any point in an element can be defined by the displacement of the nodes (the end node and an
internal node) and the shape function (see Appendix A). Therefore, when the elastic displacement is
calibrated, the displacement error needs to be distributed to two nodes. According to the inverse finite
element deformation field theory [23,24], the node displacement errors can be distributed as follows:

∆ux(xi, yi, zi) = ∆u(xi) + zi∆θy(xi) − yi∆θz(xi)

∆uy(xi, yi, zi) = ∆v(xi) − zi∆θx(xi)

∆uz(xi, yi, zi) = ∆w(xi) + yi∆θx(xi),
(8)

where, ∆u(xi), ∆v(xi), ∆w(xi), ∆θx(xi), ∆θy(xi), and ∆θz(xi) represent the error distribution values
of the six kinematic variables of the end node (i.e., the solution values of the distribution algorithm).
In the same way, the error distribution results of internal nodes ∆uo(xo), ∆vo(xo), ∆wo(xo), ∆θox(xo),
∆θoy(xo), and ∆θoz(xo) can be obtained.
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The principle of error distribution is defined as follows:
∆v(xi) =

j
100 ∆uy(xi, yi, zi)

∆u(xi) =
m

100 ∆ux(xi, yi, zi)

∆θy(xi) =
n

100zi
∆ux(xi, yi, zi),

(9)

where j, m, n ∈ [0, 100]. Then, according to Equation (8), ∆θx(xi), ∆w(xi), and ∆θz(xi) can be obtained:
∆θx(xi) =

j−100
100zi

∆uy(xi, yi, zi)

∆w(xi) = ∆uz(xi, yi, zi) +
100− j
100zi

∆uy(xi, yi, zi)

∆θz(xi) = (m + n− 1000)∆ux(xi,yi,zi)
100yi

.

(10)

When a set of values ( j, m, n) is arbitrarily combined into Equations (9) and (10), a set of
corrected node displacements can be obtained, and the displacement can be further obtained using the
displacement shape function. In order to further evaluate the accuracy of the calibrated displacement,
the root mean square error (RMSE) is used as the evaluation index:

RMSE1 =

2

√√√√ n∑
i=1

(dII
act(xi, yi, zi) − dII

mod(xi, yi, zi))
2

n
, (11)

where dII
mod(xi, yi, zi) is the corrected value of the elastic displacement.

In order to better describe the error distribution process, the form of pseudo code is adopted, as
shown in Algorithm 1.

3.2. Sample Extension

In the self-structuring fuzzy network calibration algorithm, the sample size used for network
training affects the accuracy of the calibration network. Therefore, it is of great significance to improve
the network calibration results by expanding the data sample size. Based on the Timoshenko beam
theory, a non-linear relationship is shown between the measured strain and the node displacement.
Therefore, the B-spline function is employed in this paper, in order to expand the sample size. It can
realize the fitting of the relationship curve from a small amount of data, where the expansion of the
sample capacity can be achieved by interpolation.

A B-spline curve of order p is defined as [25]

C(u) =
n∑

i=0

Ni,p(u)Pi, (12)

where 0 ≤ u ≤ 1, Pi is the control point, Ni,p(u) is a B-spline basis function of order p, and the domain
is a non-periodic node vector U. Its value is non-zero in the interval

[
ui, ui+p+1

)
. The basic functions

are calculated as

Ni,0(u) =
{

1 ui ≤ u ≤ ui+1,
0 otherwise,

(13)

Ni,p(u) =
u− ui

ui+p − ui
Ni,p−1(u) +

ui+p+1 − u
ui+p+1 − ui+1

Ni+1,p−1(u). (14)

A B-spline curve of order p is interpolated using a given set of points
{
Qk

}
(k = 0, 1, · · · , n).

These points are the basic points of the curve, as shown in Figure 2.
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Algorithm 1. Error distribution algorithm.

Input: (1) Elastic displacement error ∆u(xi, yi, zi), ∆uy(xi, yi, zi), ∆uz(xi, yi, zi), ∆u0x(xo, yo, zo)

(2) Actual elastic displacement dII
act(xi, yi, zi)

Output: Error distribution result ∆u(xi),∆v(xi), ∆w(xi), ∆θx(xi), ∆θy(xi), ∆θz(xi), θ0y(xo), θ0z(xo)

01: Begin
02: Input ∆ux(xi, yi, zi), ∆uy(xi, yi, zi), ∆uz(xi, yi, zi), dII

act(xi, yi, zi)

03: Initial j = 0, m = 0, n = 0, RMSE1_min = 100,000
04: for j = 0 to 100 step 1
05: ∆v(xi) = ( j/100)∆uy(xi, yi, zi)

06: ∆θx(xi) =
(
∆uy(xi, yi, zi) − ∆v(xi)

)
/(−zi)

07: ∆w(xi)=∆uz(xi, yi, zi) − yi · ∆θx(xi)

08: for m = 0 to 100 step 1
09: ∆u(xi)=(m/100)· ∆ux(xi, yi, zi)

10: for n = 0 to 100 step 1
11: ∆θy(xi)=((n/100)· ∆ux(xi, yi, zi))/zi
12: ∆θy(xi)=((n/100)· ∆ux(xi, yi, zi))/zi
13: ∆θz(xi)=((n + m− 100)· ∆ux(xi, yi, zi))/(100 · yi)

14: ∆θoy(xi)=((n/100)· ∆uox(xi, yi, zi))/zi
15: ∆θoz(xi)=((n + m− 100)· ∆uox(xi, yi, zi))/(100 · yi)

16: dII
mod(xi, yi, zi)

Shape function
←−−−−−−−−−−−− [∆u(xi), ∆v(xi), ∆w(xi), ∆θx(xi), ∆θy(xi), ∆θz(xi)]

17: RMSE1 =

2

√
n∑

i=1
(dII

act(xi,yi,zi)−dII
mod(xi,yi,zi))

2

n

18: if RMSE1 < RMSE1_min
19: RMSE1_min← RMSE1

20: result← [∆u(xi), ∆v(xi), ∆w(xi), ∆θx(xi), ∆θy(xi), ∆θz(xi), θ0y(xo), θ0z(xo)]
21: end
22: Next n
23: Next m
24: Next j
25: Return result
26: EndSensors 2020, 20, x FOR PEER REVIEW 7 of 16 
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Figure 2. B-spline curve control polygon diagram.

After the first step of calibrating the reconstructed displacement, the data are composed of
6 measured strains and 8 kinematic variable error distribution values. Therefore, it can be regarded as a
point in a 14-dimensional space

{
Qk

}
=

{
(ε1, ε2, ε3, ε4, ε5, ε6)k, (∆u, ∆v, ∆w, ∆θx, ∆θy, ∆θz, ∆θoy, ∆θoz)k

}
(k = 0, 1, · · · , n), where ε represents the measured strain. Each point Qk is assigned a parameter value
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uk, and the node vector U = {u0, u1, · · · , um} is assigned a suitable value. Then, the following linear
equations can be established:

Qk = C(uk) =
n∑

i=0

Ni,p(uk)Pi. (15)

The parameter value is obtained with the method of uniform parameterization. Let u0 = 0 and
un = 1. Then,

uk =
k
n
(k = 1, 2, . . . n− 1). (16)

Then, we determine the node vector by taking the average method, and the intermediate node
vector is obtained by Equation (17):

u j+p =
1
p

j+p−1∑
i= j

ui( j = 1, 2, · · · , n− p). (17)

Next, the control point Pi can be obtained according to Formula (18), in order to fit the corresponding
B-spline curve: 

P0

P1

· · ·

P7

 =


N0,3(u0) N1,3(u0)

N0,3(u1) N1,3(u1)

· · · N7,3(u0)

· · · N7,3(u1)

· · · · · ·

N0,3(u7) N1,3(u7)

· · · · · ·

· · · N7,3(u7)


−1

Q0
Q1
· · ·

Q7

. (18)

After obtaining the B-spline curve, let uk take a value from 0 to 1 in a certain step and bring uk
into Equation (15), in order to obtain a large number of data points,

{
Q′k

}
, to achieve data expansion.

3.3. The Second Step of Calibration: Self-Structuring Fuzzy Network Calibration

In view of the reconstruction error caused by sensor installation and subsequent measurement,
we use the SSFN method to calibrate the error in this paper. The membership function (MF) and
rules of the SSFN can be increased and adjusted independently, in order to improve the fuzzy system
structure in the self-structuring fuzzy network. The SSFN algorithm undergoes the following three
phases: (1) Adding MF and generating rules; (2) Adaptive follow-up of fuzzy rules; and (3) Saving the
fuzzy network [26]. The algorithm flowchart is shown in Figure 3.

3.3.1. Add MF and Generation Rules

(1) Error criterion
RMSE2 is used to describe the system error, which is given as follows:

RMSE2 =

√√√√√ N∑
k=1

(y(k) − yd(k))
2

N
, (19)

where y(k) represents the output value of the SSFN and yd(k) represents the node displacement after
the first calibration. Er represents the error threshold in the training stage. If RMSE2 > Er, it means
that the MF needs to be increased.

(2) Completeness criteria
For any input variable x j(k) in the interval, at least one MF can be activated. The maximum value

of membership degree µm
(
x j(k)

)
cannot be less than a pre-set value β. If µm

(
x j(k)

)
< β, the MF needs

to be increased; otherwise, it is not increased.
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3.3.2. Self-Adaptation Rules

Based on the RMSE2 in the SSFN, the consequent parameter of the rule is adjusted. At the current
time k, the specific expression of adjusting the follower α j(k) of the jth rule is as follows:

∆α j(k) = γ · µ j(k− 1) · (r(k− 1) − y(k)), (20)

where µ j(k− 1) represents the activation degree of the jth rule at time k − 1, r(k− 1) represents the
estimated displacement input into the network at the last moment, and y(k) is the node displacement
after the second calibration step of the output of the SSFN at the current moment. The value of γ is
artificially adjusted to change the speed of the rule’s self-adaptation process.

3.3.3. Save the Rules to Get the Fuzzy Network

After many iterations, the error of the SSFN system tends to converge. If RMSE2 < Er, it means
that the SSFN system is stable and the fuzzy rule base has been formed.

After expanding the strain and error distribution results, the extended samples are used to train the
SSFN. The measured strain (ε1, ε2, ε3, ε4, ε5, ε6) is input into the SSFN, and the error distribution results(
∆u, ∆v, ∆w, ∆θx, ∆θy, ∆θz, ∆θoy, ∆θoz

)
are obtained. Then, the elastic displacement after calibration

can be obtained. The error e can be calculated by the calibration displacement and the separated
elastic displacement dII. When e reaches a set standard, the existing SSFN is saved, completing the
establishment of the fuzzy calibration network. The calibration algorithm block diagram is shown in
Figure 4.
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4. Experimental Examples

In this section, a three-element frame subject to static loading is used as an example, in order to
demonstrate the efficiency and accuracy of the proposed method. The frame model is composed of
two identical thin-walled beams and several thin-walled plates, while the model material is aluminum
alloy. The length and thickness of each beam are 2 m and 1.5 mm, respectively, and the outer radius is
13 mm. The frame model can be divided into three parts, as shown in Figure 5a. The first element
is near the fixed position, the second element is the middle part, and the third element is at the end.
The length of each element is 660 mm.

In order to realize the deformation reconstruction of the frame, six fiber grating strain sensors are
arranged on the surface of each element, in order to measure the surface strains [24]. The arrangement
positions are shown in Table 1, where xk represents the relative position within the element and (θ,β)
indicates that the sensor is placed at a circumferential angle. In the experiment, the strain data were
obtained from a strain measurement system, which was composed of Fiber Bragg Grating (FBG) strain
sensors (FBG; os1100, Micron Optics, Atlanta, GA, USA) and the FBG interrogator (Optical Sensing
Instrument; Si 155, Micron Optics, Atlanta, GA, USA).
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Table 1. Strain sensor locations.

Axial Position xk 0.3 L1 0.7 L1 0.3 L2 0.7 L2 0.3 L3 0.7 L3

(θ1,β1) (0,0) (0,45) (0,0) (120,0) (0,0) (0,45)
(θ2,β2) (120,0) (−120,0) (−120,0) (−120,0) (−120,0) (−120,0)
(θ3,β3) (−120,0) (120,0) (120,0) (120,0) (120,0) (120,0)

Displacement measurements were performed at different locations along the beam with position
sensors (see Figure 5b). The infrared light captured by the position sensor was detected by a
three-dimensional dynamic displacement measurement instrument (NDI Optrotrak Certus, NDI,
Canada; shown in Figure 5c), and the deformation of the frame was measured by the position sensor.
The accuracy of NDI was 0.1 mm within its measurement range. The positions of the position
sensors (xm, ym, zm) are shown in Table 2. The sensors numbered 5, 11, and 16 were used to measure
the displacement of the end of each element, and the sensors numbered 3, 8, and 14 corresponded
to the internal node positions of the three elements, respectively. When the strain measurement
system collected strain data, the NDI collected displacement information at the same time. The entire
experimental system is shown in Figure 6.

Table 2. Position of position sensors.

Number Position (mm) Number Position (mm)

1 (0,0,0) 9 (938.43,0,0)
2 (84.52,0,0) 10 (1017.57,0,0)
3 (179.42,0,0) 11 (1165.29,0,0)
4 (339.21,0,0) 12 (1232.87,0,0)
5 (525.25,0,0) 13 (1299.48,0,0)
6 (639.74,0,0) 14 (1474.19,0,0)
7 (780.89,0,0) 15 (1595.75,0,0)
8 (823.99,0,0) 16 (1725.31,0,0)
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The error calibration adopted the principle of separately calibrating each element. A coordinate
system was established, as shown in Figure 5a. At the end of the third element, static loading was
performed diagonally upward (see Figures 6 and 7). The loaded weights under different working
conditions are shown in Table 3. The data from working conditions (1–8) were used to train the SSFN,
and the data from working conditions (9–16) were used to verify the calibration accuracy of the SSFN.
In working conditions (1–8), the dI and dII

iFEM of the node under each loading condition were obtained
according to Equations (6) and (7). Combined with the displacement d measured by displacement
measuring instrument, the elastic displacement dII was obtained using Equation (8). According to the
Formula (9), the reconstruction error of elastic displacement

(
∆ux, ∆uy, ∆uz

)
was calculated using the dII
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and dII
iFEM values. Then, the errors were distributed to the six kinematic variables of the node, through

the error distribution algorithm, in order to achieve the first step of calibration. The strain and error
distribution data of each element were obtained under eight working conditions. The non-uniform
rational B-spline interpolation algorithm was used to expand the 8 sets of data to 251 sets of data,
providing a data set for SSFN training.
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Table 3. Loading weight in different working conditions.

Number Weight (kg) Number Weight (kg)

1 1.5 9 6
2 2.5 10 7
3 3.5 11 7.5
4 6.5 12 8.5
5 8 13 9.5
6 9 14 10
7 11 15 10.5
8 12 16 11.5

The working conditions (9–16) in Table 3 were used to verify the calibration accuracy of the trained
SSFN. Inputting the measured strain into the trained SSFN, the kinematic variables after the second
step calibration could be obtained. Then, the elastic displacements after two-step calibration were
obtained by the inverse FEM and the projected displacement was added in order to obtain the final
displacement calibration value of the node. The displacement at any point could be obtained through
the node displacement and shape function (see Appendix A). In practical applications, the SSFN
obtained by training can be used to perform calibration. This process can be performed 1000 times per
second, from input strain to acquiring displacement after calibration.

In order to evaluate the calibration effect, the RMSE and relative root mean square error (RRMSE)
were used as the measurement error indices. Their expressions are as follows:

RMSE3 =

2

√√√√ n∑
i=1

(dispNDI(xi) − dispmodi f y(xi))
2

n
, (21)

RRMSE =
RMSE3

Max(dispNDI)
× 100%, (22)

where disp(xi) is the deformation displacement in one direction along the centroid axis. The superscript
‘NDI’ refers to the deformation values captured by the NDI; ‘modify’ refers to the displacement values
after two-step calibration of the reconstruction deformation. RRMSE stands for relative root mean
square error, which is the ratio of RMSE3 to the maximum deformation value captured by NDI in the
element. When the maximum loading (12 kg) was loaded, the deformation reconstruction values of the
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frame ends in the x, y, and z directions were 1.40 mm, 37.87 mm, and 19.81 mm, respectively. It can be
seen that y and z were the main deformation directions. The calibration results of the first and second
elements are shown in Tables 4 and 5, respectively. In the table, RMSE is used as the error index in the
x direction, while RRMSE is used as the error index in the y and z directions; the superscript ‘IFEM’
indicates the error between the inverse finite element method reconstruction displacement and the
NDI capture displacement; while ‘modify’ indicates the error between the NDI capture displacement
and the reconstruction displacement after the two-step calibration.

Table 4. Errors in the x, y, and z directions under different loads in the first element.

Load 6 kg 7 kg 7.5 kg 8.5 kg 9.5 kg 10 kg 10.5 kg 11.5 kg

RMSEIFEM
X (mm) 0.15 0.17 0.22 0.25 0.28 0.30 0.31 0.35

RMSEmodi f y
X (mm) 0.12 0.15 0.15 0.17 0.14 0.18 0.19 0.18

RRMSEIFEM
Y 11.96% 12.62% 8.67% 9.78% 10.45% 10.37% 10.47% 10.74%

RRMSEmodi f y
Y

5.23% 5.57% 4.12% 2.20% 4.92% 1.78% 1.83% 2.43%

RRMSEIFEM
Z 12.58% 12.74% 13.77% 13.22% 13.03% 12.88% 13.02% 12.79%

RRMSEmodi f y
Z

6.44% 7.86% 7.68% 9.01% 12.5% 8.32% 7.90% 11.4%

Table 5. Errors in the x, y, and z directions under different loads in the second element.

Load 6 kg 7 kg 7.5 kg 8.5 kg 9.5 kg 10 kg 10.5 kg 11.5 kg

RMSEIFEM
X (mm) 0.21 0.25 0.32 0.38 0.45 0.49 0.51 0.59

RMSEmodi f y
X (mm) 0.15 0.19 0.20 0.23 0.31 0.31 0.32 0.25

RRMSEIFEM
Y 3.52% 2.99% 5.92% 4.21% 3.25% 3.11% 2.93% 2.56%

RRMSEmodi f y
Y

1.31% 1.18% 2.07% 0.87% 0.87% 0.95% 1.21% 1.49%

RRMSEIFEM
Z 7.31% 6.30% 13.19% 11.59% 10.70% 10.67% 10.50% 9.97%

RRMSEmodi f y
Z

6.07% 3.69% 9.57% 7.41% 9.77% 10.16% 8.71% 8.85%

It can be seen from Table 4 that the maximum RMSE in the x direction was reduced from 0.35
to 0.18 mm after the first element calibration; the maximum RRMSE in the y direction was reduced
from 12.62% to 5.57%; and the maximum RRMSE in the z direction was reduced from 13.77% to 7.68%.
In the eight working conditions, the displacement errors in the x, y, and z directions of the first element
after calibration were all reduced.

It can be discovered from Table 5 that after the second element was calibrated, the maximum
RMSE in the x direction decreased from 0.59 to 0.25 mm, the maximum relative RMSE error in the y
direction decreased from 5.92% to 2.07%, and the maximum relative RMSE error in the z direction
decreased from 13.19% to 9.57%. Moreover, in all working conditions, the displacement errors in the x,
y, and z directions of the second element after calibration were reduced.

To explore the influence of the number of training samples on the calibration accuracy of the
SSFN, the initial 8 sets of data and the expanded 251 sets of data were used to train the SSFN separately.
The calibration results of the two networks are shown in Figure 8.

It can be seen from Figure 8b,c that for the reconstructed displacement errors in the y and z
directions of the frame, the ‘initial calibration’ method achieved the effect of reducing errors in only a
few working conditions; while according toFigure 8a–c, it can be seen that after using the ‘extended
calibration’ method, all displacement errors were greatly reduced in the x, y, and z directions.

Based on the above calibration experiments on multi-element frame reconstruction displacements,
the two-step calibration method proposed in this paper has good error calibration capabilities, with the
sample expansion step making the calibration network more robust and accurate.
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5. Conclusions

In actual engineering, sensor installation and strain measurement errors are inevitable, which
affect the reconstruction accuracy of FEM. Therefore, in this paper, a two-step calibration method
for FEM with small sample features was proposed in order to improve the reconstruction accuracy.
Following experimental tests, the results showed that the reconstruction accuracy in the x, y, and z
directions was significantly improved, regardless of whether the whole structure was calibrated or
each element of a multi-element structure was individually calibrated. In particular, after calibrating
the y-direction displacement of the first element, the maximum relative root mean square error was
reduced from 12.62% to 5.57%. In addition, the experimental results showed that using the NURBS
method to expand the sample data effectively improved the calibration effect of SSFN. Thus, this article
provides an effective solution to the problem of small data samples.
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Appendix A

According to the inverse finite element method proposed by Gherlone et al., the relationship
expression of strain displacement can be obtained for any element of a structure:

KU = F, (A1)

where K =
6∑

k=1
wkLe

[
BT

x (x)Bk(x)
]
, which is determined by the measurement position of the strain and

is independent of the strain data; F =
6∑

k=1
wkLe

[
BT

x (x)eεk
]
(k = 1, . . . , 6) is determined by the measured

surface strain; U is the displacement of the first and last ends of the beam; x(0 ≤ x ≤ Le) represents
the coordinates of the cross-section where the strain is measured; wk(k = 1, . . . , 6) represents the
gravity weighting coefficient; and Le, B(x), and eε represent the element length, deformation function,
and actual measured section strain of the element, respectively. Therefore, for the unknown node
deformation, it can be obtained for any cross-sectional strain; that is, U = K−1F. For any certain unit,
K−1 remains unchanged and does not change with the change of working conditions.

According to the expression for F and Formula (A1), the relationship between the strain at any
point in an element and the node displacement can be determined. For any point in the element,
the displacement can be determined by the node displacement and the shape function:

u(ξ) =
∑

i=1,2

L(1)
i (ξ)ui, (A2)

v(ξ) =
∑

i=1,2

L(1)
i (ξ)vi −

∑
i=1,r,2

N(3)
j (ξ)θzj, (A3)

w(ξ) =
∑

i=1,2

L(1)
i (ξ)wi −

∑
i=1,r,2

N(3)
j (ξ)θyj, (A4)

θx(ξ) =
∑

i=1,r,2

L(1)
i (ξ)θxi, (A5)

θy(ξ) =
∑

j=1,r,2

L(2)
j (ξ)θyj, (A6)

θy(ξ) =
∑

j=1,r,2

L(2)
i (ξ)θzj, (A7)

where u(ξ), v(ξ), w(ξ), θx(ξ), θy(ξ), and θz(ξ) represent the displacement components at any
point in the element; ξ =

(
2x
Le − 1

)
∈ [−1, 1] is a dimensionless coordinate indicating the position

of the displacement point within the element;
∑

i=1,2
L(1)

i (ξ) and
∑

i=1,r,2
L(2)

i (ξ) represent linear and

quadratic Lagrange polynomial shape functions, respectively;
∑

i=1,r,2
N(3)

i (ξ) represents the cubic

Lagrange polynomial shape function;
∑

i=1,2
ui,

∑
i=1,2

vi,
∑

i=1,2
wi,

∑
i=1,2

θxi,
∑

i=1,2
θyi, and

∑
i=1,2

θzi represent

the displacement components of the nodes at both ends in the element; and
∑

i=1,r,2
θyi and

∑
i=1,r,2

θzi

represent the displacement components of the two nodes and the intermediate points in the element.
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