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Purpose: Clinical decisions on treatment are usually based on short-term records of
consecutive measurements of structure and function. Useful models for analyzing
average trends and a description of statistical methods for classifying individual
subjects on the basis of subject-specific trend progressions are presented.

Methods: Random effects trend models allow intercepts and slopes of the trend
regression to vary across subjects around group-specific mean intercepts and mean
slopes. Model results assess whether average intercepts and slopes and subject
variability in intercepts and slopes are the same across groups. Fisher’s discriminant
functions are used for classification.

Results: Methods are presented and illustrated on structural visual data from a
multiyear perimetry study. Average thickness of the ganglion cell layer from the
optical coherence tomography macula scan and of the retinal nerve fiber layer from
the optic disc scan for both glaucoma patients on optimal treatment and normal
subjects are analyzed. The random effects trend model shows that average intercepts
of glaucoma patients and normal subjects are quite different, but that average slopes
are the same, and that the subject variability in both intercepts and slopes is larger for
the glaucoma group. These findings explain why the subject-specific trend
progression is not a good classifier; it is the level of the measurement (intercept or
baseline value) that carries useful information in this particular cohort example.

Translational Relevance: Clinicians base decisions on short-term records of
consecutive measurements and need simple statistical tools to analyze the
information. This paper discusses useful methods for analyzing short time series
data. Model results assess whether there exist significant trends and whether average
trends are different across groups. The paper discusses whether clinical measures
classify patients reliably into disease groups, given their variability. With ever more
available data, classification plays a central role of personalized medicine.

Introduction

Clinicians study the progression (i.e., the changes) of

functional and structural characteristics over time and
need to know how to analyze the resulting data with the

appropriate statistical methods. This paper has two
objectives: (1) Discuss useful statistical approaches for

analyzing groups of short time series and for classifying
individual subjects on the basis of subject-specific trend

progressions. (2) Illustrate the methodology by analyz-

ing structural optical coherence tomography (OCT)
data collected during a multiyear perimetry study
conducted at the University of Iowa.

Methods

The Linear Trend Model for Observations on
an Individual Subject

For each patient, n consecutive measurements Yt

are obtained at times Time1 ,Time2 , :::,Timen.
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Times are typically expressed in years, and there is no
requirement that times are spaced equally. Times are
often expressed relative to the time of the initial visit.
For example, Time1 ¼ 0, Time2 ¼ 0:5, Time3 ¼ 1:0,
Time4 ¼ 1:25, . . ., Time8 ¼ 4:14 expresses that eight
observations are obtained—at the start of the study,
after 6 months, after 12 months, after 15 months, . . . ,
and after 4 years and 365(0.14) ¼ 51 days since the
start of the study.

The following trend regression model is considered
for the progression of the measurements

Yt ¼ aþ bTimet þ et: ð1Þ
The parameter a represents the expected baseline

measurement at the time a subject enters the study.
The parameter b reflects the expected change in the
measurement for a unit change in time (which, in our
illustration, is 1 year). The model in equation (1)
assumes linearity; the mean change over the first year
is the same as the mean change in the second year,
and so on. The measurement errors et are indepen-
dent, homoscedastic (that is, with constant variance;
if the variation increases with the level, a log
transformation of the response will stabilize the
variance), and normally distributed. Under these
assumptions one can obtain the best (least squares)
estimates of the parameters, their SEs, confidence
intervals, and tests of hypotheses. Least squares
estimates of the slope and the baseline are given by

b ¼
Pn

t¼1 ðTimet�TimeÞYtPn

t¼1 ðTimet�TimeÞ2
and a ¼ �Y� bTime where Y ¼

ð1=nÞ
Pn

t¼1 Yt and Time ¼ ð1=nÞ
Pn

t¼1 Timet. The es-

timated SEs are given by seðbÞ ¼ sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

t¼1 ðTime�TimeÞ2
q

a n d seðaÞ ¼ s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
nþ

ðTimeÞ2Pn

t¼1 ðTimet�TimeÞ2

r
, w h e r e s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

t¼1 ½Yt�ðaþbTimetÞ�2

n�2

r
is the unbiased estimate of the

measurement variability.
These results can be found in most regression texts;

see, for example, Sections 2.2 to 2.5 of Abraham and
Ledolter.1

The Random Effects Trend Model: Modeling
Linear Trends for Several Subjects From
More Than One Group

Typically, there is not just one single subject, but
there are several subjects, which are observed at
possibly different times and with different sample
sizes. And, typically there is not just a single group of

subjects, but several groups. For example, a group of
normal/healthy subjects and a group (or groups) of
subjects with a certain disease (such as glaucoma in
the example in the Results section, or a blast injury
when studying traumatic brain injury).

We denote the observation on the ith subject in

group j (j¼ 1 for normal, j¼ 2 for disease) at time t with

Y
ðjÞ
it and the time at which the observation is obtained as

Time
ðjÞ
it , with Time

ðjÞ
i1 ¼ 0 when time is measured from

the first visit at the clinic. The model in equation (2)

allows for subject variability in the baselines and the

slopes. The model

Y
ðjÞ
it ¼ ðaðjÞ þ ~aðjÞi Þ þ ðbðjÞ þ ~bðjÞi ÞTime

ðjÞ
it þ eðjÞit ð2Þ

includes group-specific average baselines and slopes (the

fixed effects, aðjÞand bðjÞ) and subject-specific random

effects for the baselines and slopes. The random effects
~aðjÞi and ~bðjÞi are independent across subjects, with zero

means and group-specific standard deviations rðjÞa and

rðjÞb . The model allows for correlation among baseline

and slope, qðjÞ
~a~b
¼ Corrð~aðjÞi ; ~bðjÞi Þ, in case there is reason

to believe that a subject’s slope changes with the

baseline. The measurement errors eðjÞit are independent

across time and subjects, with group-specific standard

deviations rðjÞe :
For two groups (in our example, the groups of

normal and glaucoma patients), the model in equa-
tion (2) can equivalently be written as

Y
ðjÞ
it ¼ ½aþ a�INDðGlaucomaÞðjÞit þ ~aðjÞi �

þ ½bþ b�INDðGlaucomaÞðjÞit þ ~bðjÞi �Time
ðjÞ
it þ eðjÞit

ð3Þ
where INDðGlaucomaÞðjÞit is an indicator variable with
value 0 when subject i is from the normal group
(j ¼ 1) and value 1 when subject i is from the
glaucoma group (j ¼ 2). The parameter a� expresses
the difference in the average baselines of glaucoma
and normal subjects. The parameter b� expresses the
difference in the average slopes of glaucoma and
normal subjects.

The models in equations (2) and (3) are known as
repeated measurements or mixed linear regression
models. They are studied in detail by Searle2 and
Searle et al.3 Estimation of such models can be carried
out with the PROC MIXED procedure of the SAS
Statistical Software,4 or with the R Statistical
Software5 through its libraries nlme and lme4.
Parameter estimates are usually obtained through
restricted maximum likelihood (REML).
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The parameter a� expresses the difference between
the average baselines of the two groups while the
parameter b� assesses whether the average slopes of the
two groups are the same. The model is very general,
and not all parameters may be needed. Slopes and
baselines may be uncorrelated if subject trend changes
are unrelated to baselines; that is, qð1Þ

~a~b
¼ qð2Þ

~a~b
¼ 0.

Subject-variability among baseline intercepts, and
also among slopes, may be the same for the two
groups; that is, rð1Þa ¼ rð2Þa and rð1Þb ¼ rð2Þb . And, the
measurement variability for the two groups may be
the same; that is, rð1Þe ¼ rð2Þe .

Time series data for n1 subjects from the normal
group and n2 subjects from the disease/experimental
group are available to estimate the model. The model
with the general covariance structure and models with
restricted covariance structure and equality con-
straints among the variances can be compared and
assessed using either the traditional log-likelihood
ratio test or the Bayesian (BIC) or Akaike (AIC)
information criteria, which penalize the likelihoods
for the number of parameters; see Chapter 3 of
Verbeke and Molenberghs.6

Random effects models allow us to address
important questions. A comparison of the average
trend of normal subjects with the average trend of
subjects from a comparison group (subjects with a
certain disease) is often the main objective of a study,
and this objective is addressed by testing the
hypothesis whether or not b� ¼ 0. Another question
of interest is whether the variability of slopes in the
normal group is the same as the variability of slopes
in the disease group, and this question can be
answered by testing whether rð1Þb ¼ rð2Þb . Hypotheses
about baselines (whether average baselines are the
same across groups, and whether subject variability of
baselines are the same across groups) can be assessed
similarly.

Classifying Subjects Into One of Two (or
More) Groups

Another important objective of medical studies is
classification. That is, how to use characteristics (such
as the slope in a trend regression) to classify a new
subject into either one (the healthy) or the other (the
disease) group. There may be strong evidence that the
difference between the average slopes of the two
groups is statistically significant, especially if the
sample sizes in the two groups are large. But with
large subject variability among the slopes and with
considerable overlap of the slopes from the two

groups, it will be difficult to classify subjects; the
misclassification errors (classifying a true healthy
subject as diseased or a diseased subject as healthy)
will most likely be unacceptable. Establishing statis-
tical significance of a difference of average slopes is, in
general, much easier than the classification of subjects
into one or the other group.

In order to carry out the classification, we adopt a
two-step approach that (1) estimates the baseline
measurement and slope for each subject and (2)
compares and uses for classification the estimated
baseline measurements and slopes of all subjects from
the two groups. Least squares estimates of the
baseline and of the slope of the trend regression are
calculated for each subject. This leads to estimates

ðað1Þ1 ; b
ð1Þ
1 Þ; ða

ð1Þ
2 ; b

ð1Þ
2 Þ; :::; ða

ð1Þ
n1 ; b

ð1Þ
n1 Þ for subjects in

group 1 and estimates ðað2Þ1 ; b
ð2Þ
1 Þ; ða

ð2Þ
2 ; b

ð2Þ
2 Þ; :::; ða

ð2Þ
n2 ;

b
ð2Þ
n2 Þ for subjects in group 2. The reliability of the least

squares estimates depends on the number and the
time-spacing of the observations. One may want to
omit estimates from subjects with only few measure-
ments to make the estimates across subjects compa-
rable.

In general, each subject is characterized by k
features, and information about group membership
(healthy group and diseased group) is available on
each subject (that is, one deals with supervised
learning). If the slope of the progression is the only
feature to be considered, then k ¼ 1. If the baseline
and the slope of the trend model are used to describe
the state of a subject, then k¼ 2. The baseline may be
a useful feature as it measures the subject’s starting
level of the measured characteristic. The Fisher7 linear
discriminant analysis classifies a patient with feature
vector x into group 2 (disease) if

ðl1 � l2ÞTR�1x,ð1=2Þðl1 � l2ÞTR�1ðl1 þ l2Þ: ð4Þ
The superscript T stands for the vector (matrix)

transpose. Here l1 and l2 are the mean vectors (of
dimension k) for group 1 (healthy) and group 2
(diseased), and they are estimated with the sample
mean vectors of features for subjects in groups 1 and 2.
The common covariance matrix of the features R (a
matrix of dimension [k 3 k]) is estimated with the

pooled covariance matrix ðn1�1ÞS1þðn2�1ÞS2

ðn1þn2�2Þ , where S1 and

S2 are the covariance matrices for group 1 and group 2,
respectively. The linear discriminant function minimiz-
es the expected cost of misclassification if the features
have normal distributions with group mean vectors l1

and l2 and identical group covariance matrices, equal
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prior probabilities, and equal misclassification costs.
See, for example, Chapter 11 of Johnson and Wichern8

and Chapter 12 of Ledolter.9 If k ¼ 1, Fisher’s linear
discriminant analysis classifies a subject with feature x
into the group with the closest mean.

The optimal discriminant function becomes qua-
dratic if the covariance matrices for groups 1 and 2
are not the same. The Fisher7 quadratic discriminant
function classifies a subject with feature vector x into
group 2 (disease) if

�ð1=2ÞxTðR�11 � R�12 Þxþ ðlT
1R�11 � lT

2R�12 Þx

,
1

2
ln
jR1j
jR2j
þ 1

2
ðlT

1R�11 l1 � lT
2R�12 l2Þ; ð5Þ

with mean and variances estimated by their respective
sample estimates.

Classification uses the known label (that is, the
known group association) when constructing the
classification rules. Misclassification errors (i.e., the
number of times an observation from group 1 is
classified into group 2 and the number of times an
observation from group 2 is classified into group 1,
expressed as a fraction of the number of items
classified) can be calculated. Within-sample and out-
of-sample misclassification errors can be obtained. For
within-sample errors, the data are used ‘‘twice’’—first
for developing the classification rules and then for
evaluating the performance. For out-of-sample errors,
a subset of the data is used to develop the classification
rules while a different subset is used in the evaluation.

Fisher’s discriminant analysis method is one of the
simplest approaches to classification. It makes the
assumption that the k-variate distributions are
normal—an assumption that is often violated. Several
nonparametric classification approaches that do not
rely on normality are available, among them the
Support Vector Machine (SVM) approach. We refer
the interested reader to the contributions by Boser et
al.10 and Christianini and Shawe-Taylor,11 and
readily available computer software such as Package
e1071 in the R Statistical Software5 and LIBSVM, an
extensive library for SVMs.

Iowa Ophthalmology Patients: Normal
Subjects and Glaucoma Patients

Data on Iowa 105 glaucoma patients and 55 normal
subjects are analyzed. Subjects were participants in a
multiyear Variability in Perimetry (VIP) study directed
by Michael Wall, MD, and funded by the Veterans
Administration Rehabilitation Research and Develop-
ment Division. Adult patients with glaucoma were

recruited from the glaucoma clinic at the University of
Iowa Department of Ophthalmology and Visual
Sciences. The research was approved by the University
of Iowa and Veterans Affairs institutional review
boards, and informed consent was obtained from all
patients after an explanation of the study. Inclusion
criteria for cases were as follows: (1) the clinical
diagnosis of glaucoma determined by the presence of
glaucomatous optic disc changes confirmed through the
examination of fundus images and (2) the presence of
visual field defects (mean deviation [MD] between �2
and�20 dB on standard automated perimetry, as well
as either three adjacent locations in a clinically
suspicious area falling outside the deviation limits
compared with normative data at P , 0.05 [fifth
percentile] or two adjacent locations at P , 0.01 [first
percentile]). Cases were not required to have elevated
intraocular pressure, but they were excluded if there
were cataracts causing visual acuity worse than 20/30,
they were younger than 19 years, or they had a pupil
size of less than 2.5 mm. If both eyes qualified, one eye
was randomly selected for inclusion in the study.

Healthy adults (controls) were recruited using
advertisements inviting participation in a research
study. Inclusion criteria for controls were as follows:
(1) no history of eye disease, (2) refractive error within a
65-diopter sphere and 62-diopter cylinder, (3) no
history of diabetes mellitus or systemic arterial
hypertension, and (4) a normal ophthalmologic exam-
ination result, including 20/30 or better visual acuity.
An examination by an ophthalmologist on the day of
testing or the results of a complete eye examination
within 2 years of the testing date was used to confirm
normal ocular health. One eye was randomly selected
for the study. If a control subject developed a pattern of
visual loss leading to an ophthalmologic diagnosis
other than refractive error, the individual was not
included in the analysis. This research adhered to the
tenets of the Declaration of Helsinki.

Visual field testing was performed with automated
threshold perimetry (Humphrey Visual Field 24-2
SITA Standard test with size III, Zeiss-Meditec,
Dublin, CA). Field test results were excluded from
the analysis if they were unreliable as defined by
excessive false-positive (.10%), false-negative
(.33%), or fixation losses (.33%).

All glaucoma patients were being adequately
treated and monitored by the glaucoma service at
the University of Iowa Department of Ophthalmol-
ogy and Visual Sciences during the course of the
study. In addition to measurement of visual field
sensitivity in one eye with various perimetry testing
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methods, all subjects underwent spectral domain OCT
testing (Cirrus, Zeiss-Meditec) on the same day. A 200
3 200 volume scan of the macula and disc were
obtained at each test date and were included if a
signal-to-noise ratio was at least 7:10. The thickness
of the average ganglion cell layer (GCL) complex
derived from the macula scan and the average retinal
nerve fiber layer (RNFL) derived from the optic disc
scan were measured and analyzed over time. We
omitted subjects with three or fewer observations. In
addition, we omitted eight glaucoma patients with
unreliable segmentation of the GCL. The median
number of observations per subject was 10 (mean ¼
9.01; minimum¼ 4; maximum¼ 11) for the glaucoma
group and 11 (mean¼ 10.38; minimum¼ 5; maximum
¼ 12) for the normal group. The median time span
from the first to the last visit (range) per subject was
3.99 years (mean¼ 3.65; SD¼ 0.90) for the glaucoma
group and 4.12 years (mean¼ 4.00; SD¼ 0.80) for the
normal group. The median time between consecutive
visits was 0.50 years (mean ¼ 0.46, SD ¼ 0.20) for
glaucoma patients and 0.48 years (mean¼ 0.43, SD¼
0.23) for normal subjects.

Results

The Random Effects Trend Model

The model in equation (3) is estimated for RNFL
and GCL, and the results are shown in Table 1. The
assumption of uncorrelated errors is appropriate for
this particular data set as the autocorrelations of the
errors in the trend regression are all small (average lag
1 autocorrelation �0.19 for RNFL and �0.15 for
GCL). The estimation results (model M1) for RNFL
show that the measurement variability is about the
same in each group, but that the subject-variability
among the baselines and also the slopes is larger in the
glaucoma group than in the normal group. The
average baseline (RNFL thickness, intercept) in the
glaucoma group is significantly thinner (by 25.87
micron units) than the average baseline in the normal
group. There is evidence for a negative average slope
in the normal group (0.145 micron unit reduction per
year, with SE¼ 0.089; P¼ 0.107). The average rate of
change for the glaucoma group is actually smaller
(0.145 – 0.089¼0.056 micron unit reduction per year),

Table 1. Estimation Results

Intercept Slope
Measurement

Error

a a� ðrðjÞa Þ2 b b� ðrðjÞb Þ
2 ðrðjÞe Þ2

GCL
M1 78.16 (N) �15.85 (G)

SE ¼ 1.23
PV , 0.001

36.15 (N)
88.19 (G)

�0.291 (N)
SE ¼ 0.041
PV , 0.001

�0.027 (G)
SE ¼ 0.083
PV ¼ 0.749

0.054 (N)
0.451 (G)

0.659 (N)
0.953 (G)

M2 78.68 (N) �15.86 (G)
SE ¼ 1.23

PV , 0.001

36.15 (N)
88.19 (G)

�0.297
SE ¼ 0.035
PV , 0.001

0.054 (N)
0.447 (G)

0.659 (N)
0.953 (G)

RNFL
M1 90.14 (N) �25.87 (G)

SE ¼ 1.53
PV , 0.001

71.46 (N)
106.56 (G)

�0.145 (N)
SE ¼ 0.089
PV ¼ 0.107

þ0.089 (G)
SE ¼ 0.141
PV ¼ 0.527

0.207 (N)
0.894 (G)

4.390 (N)
4.078 (G)

M2 90.10 (N) �25.81 (G)
SE ¼ 1.53

PV , 0.001

71.44 (N)
106.56 (G)

�0.109
SE ¼ 0.069
PV ¼ 0.116

0.205 (N)
0.892 (G)

4.391 (N)
4.077 (G)

E s t i m a t i o n r e s u l t s f o r t h e g e n e r a l r a n d o m e f f e c t s m o d e l i n E q u a t i o n ( 3 ) ,
Y
ðjÞ
it ¼ ½aþ a�INDðGlaucomaÞðjÞit þ ~aðjÞi � þ ½bþ b�INDðGlaucomaÞðjÞit þ ~bðjÞi �Time

ðjÞ
it þ eðjÞit , are listed under model M1. G,

glaucoma; N, normal. The expressions SE and PV denote the standard error and the probability value of the estimate.
Significant results, with probability value smaller than 0.05, are shown in bold. The correlation between the random
intercept and slope is small, and qð1Þ

~a~b
and qð2Þ

~a~b
are set to zero. Estimation results for model M2 assume that the average

slopes of the glaucoma and normal groups are the same. This restriction is appropriate because the estimate of b� in model
M1 is insignificant (P values 0.749 and 0.527, respectively).
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but the difference is not statistically significant. The
second model M2 with a common average slope
implies a reduction of 0.109 units per year (SE ¼
0.069; P¼0.11). In summary, we find that the average
RNFL baseline of the glaucoma group is considerably
thinner than the average RNFL baseline of the
normal group (as expected), some evidence for an
overall average reduction over time (probability value
around 0.10), no statistically significant difference
between the average slopes in the normal and the
glaucoma groups, and larger subject variability
among the slopes in the glaucoma group.

The estimation results (model M1) for GCL
show that the measurement variability is roughly
the same in each group, but that the subject-
variability among the baselines and also the slopes
is larger in the glaucoma group than in the normal
group. The average baseline of GCL thickness in
the glaucoma group is significantly thinner (by
15.85 micron units) than the one in the normal
group. We find statistically significant evidence for
a negative average slope in the normal group (0.291
micron unit reduction per year, with SE ¼ 0.041).
The average rate of change for the glaucoma group
is slightly larger (0.291 þ 0.027 ¼ 0.318 micron unit
reduction per year), but the difference is not
statistically significant. In summary, we find the
average GCL baseline in the glaucoma group very
much and significantly smaller than the average
GCL baseline of the normal group, evidence for a
significant overall average reduction over time
(0.297 per year), but no statistically significant
difference between the average slopes in the normal
and the glaucoma groups. Furthermore, we find
larger subject variability among the slopes in the
glaucoma group.

The results—no difference in the average slopes
across the two groups and larger variability in the
glaucoma group—imply that a strategy that uses just
slopes will be unsuccessful in classifying subjects into
either the normal or the glaucoma groups. The only
distinguishing feature that reliably classifies subjects
into one of these two groups is the baseline
measurement at the start of the study.

Classification Using Subject-Specific Least
Squares Estimates

We use data on 104 glaucoma patients (we omitted
one glaucoma patient with missing GCL measure-
ments) and 55 normal subjects that have been
analyzed above. Least squares estimates of baselines

and slopes from the regression model in equation (1)
are used to obtain the Fisher linear and quadratic
discriminant functions (discussed in the Methods
section) for classification. Scatter plots of baselines
and slopes, for GCL and RFNL, are shown in
Figures 1 and 2. Normal subjects are shown as red
dots and glaucoma subjects are shown as blue dots.
Subjects that are misclassified by the linear (quadrat-
ic) discriminant function are displayed with an open
circle in a color that reflects the incorrect classifica-
tion. A red dot with a blue circle indicates a normal
subject incorrectly classified as coming from the
glaucoma group. A blue dot with a red circle indicates
a glaucoma patient incorrectly classified as coming
from the normal group.

The cross-classification matrix and the misclassifi-
cation rates of linear and quadratic discriminant
functions are summarized in Table 2. Quadratic
discriminant functions perform best. The misclassifi-
cation rates are 10.7% for GCL and 6.9% for RNFL.
It is the baseline that helps classify subjects. Quadratic
discriminant classification on just the baseline leads to
misclassification rates of 9.4% (for both GCL and
RNFL), while the misclassification rates when using
just slopes are 48.8% (for both GCL and RFNL). For
this particular group of treated glaucoma subjects and
the group of the age-matched normal subjects, it is the
baseline that best classifies the subjects, and not the
slope.

The estimated slopes cannot distinguish the two
groups. This is because the average slopes are not
significantly different (see results in Table 1), and
there is no separation between the two distributions.
However, the clinician may not be interested in such
classification. Instead, he may be interested in
identifying known glaucoma subjects with a reduction
in either RNFL or GCL (progressive worsening in
retinal structure) that is larger than what is expected
for the normal group. Results in Table 1 show that
the standard deviation of the slopes in the glaucoma
group is about twice as large as the standard deviation
of the slopes in the normal group. A rule that uses the
10th percentile of the normal slope distribution as the
cutoff will certainly identify more than 10% of
glaucoma patients with slopes smaller than that cutoff
(negative slope, which then can be targeted for
treatment).

Discussion

Clinicians base decisions on short records of
consecutive measurements. This paper discusses
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Figure 1. Scatter plots of intercepts and slopes for GCL. Normal subjects are shown as red dots and glaucoma subjects are shown as blue
dots. Subjects that are misclassified by the linear (quadratic) discriminant function are displayed with an open circle in a color that reflects
the incorrect classification. A red dot with a blue circle indicates a normal subject incorrectly classified as coming from the glaucoma
group. A blue dot with a red circle indicates a glaucoma patient incorrectly classified as coming from the normal group.
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Figure 2. Scatter plots of intercepts and slopes for RNFL. Normal subjects are shown as red dots and glaucoma subjects are shown as
blue dots. Subjects that are misclassified by the linear (quadratic) discriminant function are displayed with an open circle in a color that
reflects the incorrect classification. A red dot with a blue circle indicates a normal subject incorrectly classified as coming from the
glaucoma group. A blue dot with a red circle indicates a glaucoma patient incorrectly classified as coming from the normal group.
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useful methods for analyzing such data. Random
effects trend models have been applied previously to
clinical data sets where progression of disease is the
focus, such as glaucoma.17–22 Model results assess
whether there exist significant trends and whether
average trends are different across groups.

The paper also discusses whether clinical measures,
such as the baseline and the change of the OCT
thickness of the RNFL and the retinal GCL, classify
patients reliably into disease groups, given their
variability. Interestingly, the glaucoma data set from
the Iowa glaucoma study used as an example here did
not show a significant change (slope) in structure over
time compared to the normal group. This was not
unexpected, since the glaucoma patients enrolled were
already on maximal treatment and were being
carefully monitored in the glaucoma clinic over the
study period. An untreated (or not adequately treated
sample) would be expected to have very different
results, showing more subjects with a significant,
negative slope.

In this study, it was also found that more than 10%
of the glaucoma patients enrolled showed slopes
larger than the 90th percentile of the normal slope
distribution (positive slope, or increasing retinal layer
thickness over time). This was an unexpected result,

since the thickness of the inner retinal layers is usually
stable with glaucoma treatment or becomes less over
time in the case of progression and is not traditionally
expected to increase in thickness over time in
glaucoma. However, this concept may need to be
reconsidered. Although measurement variability of
retinal layer thickness can occur due to factors that
influence segmentation of the retinal layers by
software (e.g., signal strength, blood vessels), such
factors would not fully explain trend changes
resulting in systematic increases in the retinal layer
thickness over time (resulting in an increase in slope),
which was greater in the glaucoma group compared to
age-matched normal subjects. The retinal layers are
not static; the retinal GCL complex contains the cell
bodies of retinal ganglion cells and dendritic connec-
tions. Structural changes associated with neuroplas-
ticity in response to the glaucomatous process may
include dendritic sprouting and changes in cytoplasm
content and could conceivably cause an increase in
thickness.12 Similarly, the RNFL contains the axons
of the retinal ganglion cells, and their axoplasmic
contents may be influenced by the characteristics of
axoplasmic flow and status of the axon,12–16 which in
turn may cause dynamic changes in the thickness of
this layer. The present analysis raises important
questions about the increase in variance of the
distribution of slopes of the GCL and RNFL in
glaucoma patients compared to normal subjects.
Specifically, future investigation is warranted to
better understand the reason why some subjects with
glaucoma show an increase in thickness of the layers
of the inner retina over time that the normal group
does not.

The statistical approach presented in this study
could also be applied to visual field metrics collected
at baseline and monitored over time. The example
presented here for classification of individual subjects
into the diseased group (glaucoma in this case) or
normal group could be applied to visual field data as
well as the combination of functional and structural
data features for a variety of disorders in addition to
glaucoma. A similar approach could also be used to
classify patients into a progression versus a non-
progression group. With ever more available data,
classification plays a central role of personalized
medicine. Classification requires more than signifi-
cant differences among average trends across groups
as the subject variability in the trend progression
determines whether the classification will be success-
ful.

Table 2. Cross-Classification Matrix and Misclassi-
fication Rates of Linear and Quadratic Discriminant
Functions

Classified
as Normal

Classified as
Glaucoma

GCL
Linear discriminant function

Normal 49 6
Glaucoma 20 84
Overall misclassification rate: 26/159 ¼ 0.164

Quadratic discriminant function
Normal 51 4
Glaucoma 13 91
Overall misclassification rate: 17/159 ¼ 0.107

RNFL
Linear discriminant function

Normal 51 4
Glaucoma 13 91
Overall misclassification rate: 17/159 ¼ 0.107

Quadratic discriminant function
Normal 52 3
Glaucoma 8 96
Overall misclassification rate: 11/159 ¼ 0.069
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