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One of the major causes of death among females in Saudi Arabia is breast cancer. Newly diagnosed cases of breast cancer among the
female population in Saudi Arabia is 19.5%. With this high incidence, it is crucial that we explore the determinants associated with
breast cancer among the Saudi Arabia populace—the focus of this current study. The total sample size for this study is 8312 (8172
females and about 140 representing 1.68% males) patients that were diagnosed with advanced breast cancer. These are facility-based
cross-sectional data collected over a 9-year period (2004 to 2013) from a routine health information system database. The data were
obtained from the Saudi Cancer Registry (SCR). Both descriptive and inferential (Cox with log-normal and gamma frailties) statistics
were conducted. The deviance information criterion (DIC), Watanabe-Akaike information criterion (WAIC), Bayesian information
criterion (BIC), and Akaike information criterion were used to evaluate or discriminate between models. For all the six models fitted,
the models which combined the fixed and random effects performed better than those with only the fixed effects. This is so because
those models had smaller AIC and BIC values. The analyses were done using R and the INLA statistical software. There are evident
disparities by regions with Riyadh, Makkah, and Eastern Province having the highest number of cancer patients at 28%, 26%, and
20% respectively. Grade II (46%) and Grade III (45%) are the most common cancer grades. Left paired site laterality (51%) and
regional extent (52%) were also most common characteristics. Overall marital status, grade, and cancer extent increased the risk of a
cancer patient dying. Those that were married had a hazard ratio of 1.36 (95% CI: 1.03-1.80) while widowed had a hazard ratio of 1.57
(95% CI: 1.14-2.18). Both the married and widowed were at higher risk of dying with cancer relative to respondents who had
divorced. For grade, the risk was higher for all the levels, that is, Grade I (Well diff) (HR=7.11, 95% CI: 3.32-15.23), Grade II (Mod
diff) (HR =7.89, 95% CI: 3.88-16.06), Grade III (Poor diff) (HR =5.90, 95% CI (2.91-11.96), and Grade IV (Undiff) (HR = 5.44, 95%
(2.48-11.9), relative to B-cell. These findings provide empirical evidence that information about individual patients and their region
of residence is an important contributor in understanding the inequalities in cancer mortalities and that the application of robust
statistical methodologies is also needed to better understand these issues well.

1. Introduction

Cancer of the breast known as breast cancer occurs when
cells that are in the breast grow out of control, usually
forming a tumour that can be detected by X-ray or felt as a
lump. Malignant tumours can metastasize to invade sur-
rounding tissues or spread to distant areas of the body,
including the blood and lymph system. Several studies have

identified breast cancer as one of the causes of death that
occur in the Western world [1]. It is also observed as one of
the common malignancies among the people of Saudi
Arabia, where it affects 21.8% of women. The Saudi Cancer
Registry at the King Faisal Specialist Hospital and Research
Centre stipulates that about 930 cancer cases are diagnosed
yearly in Saudi Arabia or around 19.5% of Saudi and non-
Saudi women.
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Al-Qahtani [2] found breast cancer to be among the top two
common malignancies among Saudi Arabia women. In 2010, it
was estimated to be the 9™ most common cause of women
mortality in the Kingdom of Saudi. About 27.4% (1,473 out of
5,378) newly diagnosed cancers were female breast cancers
[3, 4]. Ibrahim et al. [5] predicted that in the next decade, there
will be an increase due to population growth and aging.

The 2012 report (annual) of the Saudi National Cancer
Registry recorded about 26.4% of women less than 40 years
compared to 6.5% the United States of America. The di-
agnoses of breast cancer before age 40 are linked to poorer
prognoses, more aggressive cancers, and higher mortality
and recurrence rates than diagnoses after age 40 [6, 7].
Anders et al. [8] found that seven percent of female breast
cancer are diagnosed before they reach the age of 40. Also,
survival rates among the younger women are much worse
than that for the elderly. They also found that the incidence
of breast cancer among the male population was estimated at
1/100™ of the rate for females.

Few studies have investigated factors that influence
cancer progression among women in the Saudi population.
Those that have done so have used mostly standard survival
models such as Cox without considering dependencies of the
data collected neither do they account for variations that
may exist among participants with either similar or different
characteristics. Though this approach may be viewed as
being complex, it is necessary to help in determining sig-
nificant factors of breast cancer.

2. Methods

2.1. Data Source and Variables. We used data from the Saudi
Cancer Registry (SCR) to conduct our study. The Saudi
Cancer Registry (SCR) is responsible for cancer data col-
lected across the cancer registries from all the administrative
regions in the Kingdom. These regions include Riyadh, the
Eastern and Northern regions, Makkah, Madinah, Qassim,
Hail, Jouf, Tabouk, Najran, Baha, Asir, and Jezan. These
regions contain information of the people in the country.
The data obtained and used in this analysis are from all the
hospitals under the Ministry of Health and also from the
private hospitals, clinics, and laboratories. The data are
abstracted from patients who are categorised as cancer
patients via clinical, histopathological, and radiological di-
agnoses. The SCR supervises all its offices across the regions
to ensure accuracy and quality controls for data collection.

The current data contain information on 8,312 patients
(8,172 women and 140 men). These patients were diagnosed
with advanced breast cancer between the years 2004 and
2013. Data collected include patients’ survival time, cen-
sorship, sex of participant, age of the participant, marital
status of the participant, address of the participant, na-
tionality of the participant, and tumour details of the par-
ticipant, such as laterality (primary site), behaviour, grade,
stage (extent), and topography of the participant. The pri-
mary site (topography) and histology (morphology) of the
malignancies were identified using the International Clas-
sification of Diseases for Oncology 3rd Edition (World
Health Organization, 2000).
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Data entry was carried out using CanReg 4 (IACR)
software. After removing 2,880 patients due to missing
information, the remaining 5,432 patients were analyzed.
We conducted a serious of steps, including verifying sites,
morphologies, and staging, to ensure data quality and ac-
curacy for all regions. We also verified case linkage (tumour
and patient) and performed data consolidation. Other data
collected included personal identification, demographic
information, and tumour details.

The outcome variable was defined as survival time in
years for all the patients who were diagnosed with breast
cancer. Those who died as a result of breast cancer were the
patients classified as having had the event and assigned the
number 1. Patients who either dropped out of the study, did
not die within the study period, or died from other diseases
unrelated to breast cancer were censored (using right cen-
soring mechanism as illustrated in equation (8)) and
assigned the number 0.

2.2. Statistical Approach. Series of Weibull models were
fitted, using both Bayesian and frequentist frameworks. The
standard Weibull model was fitted first and denoted as
Model 1. Random terms were added to capture variation at
the regional level (Model 2), and extent was captured as
Model 3. The decision to use the Weibull regression model
was premise on the bases of previous knowledge on the
distribution of breast cancer deaths [9]. The Weibull model
[10] is a well-established model appropriate for modelling
hazards that are either monotonically decreasing or in-
creasing [11]. Application of parametric survival models to
model breast cancer has been carried out [9, 12] and
elaborated on the advantages of using this model to account
for censoring in data from administrative and historical
databases [11]. Based on the model formulated by Nasejje
et al. [13], which was parameterized from Martino et al. [14],
we utilized the proportional hazards model of the form:
h;(t) = hy(t)exp(n,), t>0, where the baseline hazard is
represented by ki (-) and the predictors by #;. In this analysis,
we assume that the data follow the right censoring mech-
anism, where individuals who die as a result of breast cancer
are said to have had the event and all others (death not
related to breast cancer, dropouts, and lost to follow-up) are
said to have censored (have not had the event of interest). If
we specify a Weibull model for the baseline hazard, then we
have h, (t) = M*!, 1 >0, while log likelihood for the ob-
servation (t;, d;) taking into consideration the right censored
approach can be further formulated as

I=4logh(t;) - J; h(u)du, (1)

I =¢log(A; + (A — Dlogt; +n; — exp (n;)t;. (2)

Following the definition of Martino et al. [14], we let the
predictors to be represented by #;, which assumes an ad-
ditive structured form. We extend equation (2) to the
Weibull regression model. Expressing the latent field x, in
terms of the predictor #;, the standard Weibull regression is
expressed as
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h; = M exp (1),

1

(3)

n=9
1; :/30+Z/3ixj, i=1,...,9,
i=1

where 5, ~ N(0,0.01"!) and f={fSex, j,Lat,p;Top,p,
Marita, 3;Grade, BExt, ,Cause, fgAddressCode} = N (0, I).

We specify a Gaussian distribution with hyper-
parameters 0 = (0,,0,) as priors for the Weibull regression
coefficients and the gamma distribution I'(a,b), with
mean = a/b and variance = a/b> as priors for A. Flat priors
were also assigned to 7=T(1,1).

2.3. Conditional Survival Models (Gamma and Log-Normal
Frailty Models). Implementing standard survival method-
ologies without accounting for the correlational structure
has methodological and practical implications. These ap-
proaches methodologically ignore the clustering effect
among communities within the same region which has the
potential to bias the estimation due to violations of the
statistical assumptions of independence. It is for this reason
that conditional (frailty) models which allow for the cor-
relational survival experiences of patients and therefore
provide better estimates of the coefficients and their stan-
dard errors were developed. Broadly, the importance of
frailty models cannot be overemphasized as they are used to
estimate the effect of unmeasured factors on the risk of
cancer deaths. The frailty term in survival models is con-
sidered a random variable over/of the population and
constitutes a frailty distribution.

In this work, we extend marginal survival models that
have been extensively applied in modelling breast cancer risk
factors elsewhere [15, 16] by including the random effect (the
frailty) which is acting multiplicatively on the hazards
function, as demonstrated elsewhere [14, 17-20].

In conditional survival models, it is argued that indi-
vidual risk of death is a function of the measured factors and
that of a random perturbation on the baseline hazard as a
result of the unobserved effects. In this work, the standard
Weibull function was extended to include the frailty term,
which was constructed as described below.

Let £;; be the survival time for the j™ cancer patient in the
region. In this work, say patients” j, where j = 1,...,n, are
nested within regions (address code), thatis, i = 1,...,s. We
further assumed that these t;; follow the Weibull regression
model. The Weibull model can mathematically be expressed as

t;; = Weibull(1, #;;). (4)

ith

We conditioned the hazard function of t;; on the pa-
rameter 7;; and the Weibull scale parameter A. This is
mathematically expressed as

(e |p2) = A6 exp[ ). (5)

where 7;; = By + Zzﬂ in which f is a px1 vector of re-
gression coefficients, f, is the intercept, and z;; is a px 1
covariate vector.

A frailty model that is expressed in a univariate case
introduces what is referred to as an unobserved multipli-
cative effect on the hazard [21] such that it can be condi-
tioned on the frailty as

h<tij | ijp s ‘/’i) = ! exP[ﬂij]‘//i’ (6)

where y; (for the i group) is taking to be a random positive
quantity which has a mean of 1 and variance say, 0. Indi-
viduals with the frailty parameter of y; > 1 are said to be frail
and with an increased risk of failure (breast cancer mortality)
due to unexplained reasons by the covariates while indi-
viduals with y; <1 are said to be less frail and with a de-
creased risk of failure (tern to leave longer). Due to the
multiplicative nature of y;, one can think of a frailty as
representing the cumulative effect of one or more omitted
covariates as illustrated in equation (6) (for details on frailty
modelling, refer to [22-27] and [28]).

Using the Laplace approximation modelling technique
as detailed in Martino et al. [14] and Martino and Rue [29],
we formulate the Weibull regression with the frailty pa-
rameter as

nij = Po + PSex + B,Lat + B, Top + p,Marita + f;Grade

+ BsExt + 3,Cause + y;,
(7)

where y; = log(y;) ~ N(0,t™!) with completed likelihood
assuming a right censoring mechanism given by

L@AID) = [ [T (A" exp ()" exp(-exp(n, )ei) )
i=1 j=1
(8)

Log-normal frailty was used to establish the association
that exists between survival times that maybe related to
patients from the same region. Normal priors were assigned
to the regression coeflicients (betas) while flat priors were
assigned to 7 and A parameters.

We allowed §;; to represent censoring with a value 1 if
the j™ patient in the i region dies and 0 otherwise with
D = (t,x,6,v).

However, fitting gamma frailty models in INLA, which is
based on the Gaussian Markov field, requires employing a
different technique. Thus, we reparametrized the Weibull
function as advised by Martins and Rue [30]. Parameteri-
zation of the Weibull survival model to include gamma
frailty was achieved by imposing restrictions on the non-
Gaussian components of the latent field so that this dis-
tribution could be very well approximated by a Gaussian
density. This correction is appropriate, especially in light of
adding flexibility around a Gaussian distribution, as advised
by Martins and Rue [30].

Using equation (7), with #;; representing the linear
predictors as described in Martins and Rue [30], the gamma
frailty term y; was further reconstructed as log(CT;) =
k(y; — weibul(y,) + (7, (K)/2)y; —u,, (k))* + const, where
Hy (k) is the mean and Ty (k) is the precision parameter of the
Gaussian approximation to the log gamma random term.



2.4. Bayesian Analysis Using a Deterministic Approach
(INLA). The Bayesian approach is implemented using inte-
grated nested Laplace approximation approach (INLA). INLA
provides approximations of simulation-free Bayesian infer-
ence using integrated nested Laplace approximations. The
technique has found favour in modelling works that involve
complex models, as it has been known to circumvent com-
putational cost which is a big challenge in most sampling-
based modelling techniques [14, 30, 31]. Modelling in INLA is
based on directly approximating the posterior marginal;
7(x;/y) and 7(6,/y) from the posterior distribution;

n(x,g) ocn(%)n(%)ﬂ(@). 9)

The approximated posterior marginals are used for
computing summary statistics of interest, including the
posterior means, variances, or quantiles. The strategy in-
volves three components: the data, the latent model, and the
hyperparameter. The data in INLA are generated from the
original components of the observation x and hyper-
parameter 0. This is also part of the likelihood function
defined as n(y/x, 6).

INLA is principally based on statistical inference for latent
Gaussian Markov random field (GMRF) models. GMRF
models are hierarchical models involving several steps [32-34].
The first steps include finding a distributional assumption for
the observed y, which is usually conditioned on some latent
parameters # and some parameters 0 formulated as

H(Z, 6) = Hﬂ(ﬁ, 01). (10)
UA ;i

The latent model component is the most appealing part
of the INLA framework, especially as it relates to how frailty
modelling works. The latent modelling component is drawn
from the unobserved components x. The unobserved
component also represents the structured random effect
(region effects) and the unstructured random effects rep-
resenting effects at individual and group levels estimated
together with predictors. The latent components are linked
to the likelihood through linear predictors, as shown in
equation (12) according to [30].

i ~ n(&,el), (11)
i nj
ng=1
n; = offset + Z wy fr (c) + 21 B+e, i=0,...,m,-1,j=].
=0
(12)

The third component is on the hyperparameters
(6 = 0,,0,), which are very important components/elements/
constituents of the Bayesian framework. The hyperparameters
are helpful in specifying the prior distribution and are im-
portant for determining precision for unobserved factors.

2.5. Description of Analysis. Descriptive statistics such as
means and standard deviations were used to analyze
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measures such as age of the patient. Frequencies as well
as proportions were used to describe categorical vari-
ables. The Kaplan-Meier survival curve and the log-rank
test were carried out to determine differences in survival
by gender, extent, and address code. All variables that
were included in the final analysis for each of the models
were observed to be either significant at the simple re-
gression modelling stage or were found to be a significant
predictor of our outcome from previous findings
(literature).

From the Bayesian perspective, associated factors of
breast cancer mortality were modelled using the integrated
nested Laplace approximation (INLA) approach via a
shared gamma and log-normal frailty models. Estimates
generated from INLA were exponentiated to obtain pos-
terior Bayesian summaries which were reported as hazard
ratios with their associated 95% credible intervals. This
approach enabled us to account for the unmeasured factors
and further allowed us to compare the variances between
patients, regions, and tumor extent. A frailty variance that
is greater than one suggests a higher rate for the event (or
shorter survival times) than would be predicted under the
basic Weibull model, while that less than one suggests a
lower rate (longer survival times). A 95% credible interval
that excludes one is deemed to be significant. Comparison
of models and their fit was assessed via the deviance in-
formation criterion (DIC) and Watanabe-Akaike infor-
mation criterion (WAIC) in the Bayesian paradigm.
Models based on the frequentist approach were compared
using the Akaike information criterion and the Bayesian
information criterion. For the Bayesian approach, marginal
log likelihoods were extracted and used to compute the AIC
outside the INLA environment. Using the Computed DIC
from the Bayesian approach and the extracted AIC from a
frequentist approach, we were able to determine the best fit
model between the Bayesian and frequentist fitted models.
All statistical analyses were performed following the R
(frailtypack) package, Rondeau et al. [35] for the frequentist
approach, while the Bayesian approach was implemented
using a deterministic based approach, known as INLA, a
variant of R open source software. Before running the
models, we scaled the survival time to the maximum of 1
(one) similar to variable centring (time/time max). This was
done in order for the INLA software to converge or else it
crashes. We used the Bayesian statistical approach in order
to obtain posterior estimates which are easy and
straightforwardly interpretable mainly because of the
random nature of the parameters in the Bayesian as op-
posed to the frequentist framework.

3. Results

In Table 1, we provide a summary of the covariates included
in this analysis. There are evident disparities by regions
(address code), with Riyadh, Makkah, and Eastern Province
having the highest number of cancer patients at 28.39%,
26.30%, and 20.47%, respectively. Grade II (5.86%) and
Grade III (4.63%) are the most common cancer grades. Left
paired site laterality (50.92%) and regional extent (52.32%)
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TaBLE 1: Descriptive distribution of the breast cancer patients’
characteristics.

Variable Frequency %
Marital status
Married 135 2.51
Divorced 4525 84.28
Single 318 5.92
Widowed 391 7.28
Sex
Female 5301 98.73
Male 68 1.27
Address code
Asir 253 4.71
Baha 75 1.40
Eastern 1099 20.47
Hail 99 1.84
International 8 0.15
Jazan 130 2.42
Jouf 69 1.29
Madinah 265 4.94
Makkah 1412 26.30
Najran 47 0.88
Northern 37 0.69
Qassim 236 4.40
Riyadh 1524 28.39
Tabuk 115 4.71
Topography
C50.0 nipple 128 2.38
C50.1 central portion 194 3.61
¢50.2 upper-inner 372 6.93
¢50.3 lower inner 195 3.63
c50.4 upper outer 1319 24.57
¢50.5 lower-outer 251 4.67
¢50.6 axillary tail 46 0.86
¢50.8 overl. lesion 1037 19.31
¢50.9 Breast, NOS 1827 34.03
Grade
B-Cell 11 0.20
Grade 1 (Well diff) 399 7.43
Grade TI (Mod diff) 2462 45.86
Grade III (Poor diff) 2396 44.63
Grade IV (Undiff anaplastic) 101 1.88
Laterality
Bilateral invasive 55 1.02
Left paired site 2734 50.92
Late 13 0.24
Right 2567 47.81
Cause of death
Cancer 673 12.53
Not cancer 4696 87.47
Extent
Distant metastasis 911 16.97
Localised 1649 30.71
Regional 2809 52.32
Status
Dead 708 13.19
Alive 4661 86.81

were also most common characteristics. In general, there
were 13.19% cancer deaths and 86.81% noncancer deaths.
The majority of the participants were females (98.73%) with

1.27% being males. Quite a number of the participants were
divorced (84.28%) with only 2.51% being married.

3.1. Model Assessment and Evaluation. Table 2 provides
model selection values obtained for both the marginal and
conditional survival models with the covariates but with
different frailty distributions. For all the six models fitted, the
models which combined fixed and random effects per-
formed better than those with only the fixed effects because
these models had smaller DIC and BIC values, which shows
the importance of both the combined fixed and random
effects approach in explaining cancer patient survival. For
the frequentist and Bayesian approaches, the best model was
M2a and M2b, when log-normal frailty terms were specified
for both. To be consistent and to compare the two ap-
proaches on the same scale, we computed the Bayesian
information criterion for all the Bayesian models. Thus, we
used the BIC as opposed to the DIC to discriminate models
across the two approaches. Using the BIC values, model M2b
had the smallest BIC value of 13913.35, compared to the
standard fixed effect Weibull model M1b (15057.52) and
gamma distributed frailty Weibull model (BIC =218424.1).
Moving to the frequentist models, both BIC and AIC were
used to evaluate models. Using the BIC values, the model
that combined fixed and log-normal random effects (M2a;
BIC =2615.16) were better compared to the fixed effect
(BIC=2661.71) and gamma distributed random effect model
(BIC=2673.29). In both approaches, the gamma frailty
model did not fit the data well as observed using AIC/BIC
and DIC. Thus, interpretation of the results was based on
Mla, M2a, and M2b (see Table 2). We feel it is the pa-
rametrization via the INLA software that might have inflated
the BIC and DIC values under the Bayesian approach. Due
to the large values obtained for the BIC and DIC via the
Bayesian fitted models, we anticipate model fitting issues,
and this also reveals lack of data support especially for the
proposed gamma frailty distributed model.

3.2. Fixed Effect Model (Standard Weibull Model Results).
We estimated two models that assume that cancer patients
from same region have uncorrelated survival risk. Fur-
thermore, two additional models were constructed to
control for frailty effect at the regional level. This strategy
enabled us to examine the effects of unobserved factor es-
timates of the known determinants for cancer.

Presented in Table 3 are the fixed effects results from the
two standard Weibull models constructed to analyze cancer
patients’ data. Overall marital status, grade, cause of death,
and cancer extent increased the risk of a cancer patient
dying. Respondents who are married had a hazard ratio
(HR) of 1.36 and a 95% CI (1.03-1.80) and that of the
widowed had a HR of 1.57 and a 95% CI (1.14-2.18). Both of
them were at a higher risk of dying with cancer relative to
those respondents who were divorced. For grade, the risk
was higher for all the levels i.e Grade I (Well diff) had an HR
of 7.11 and a 95% CI (3.32-15.23) Grade II (Mod diff) HR of
7.89 and 95%CI (3.88-16.06), Grade III (Poor diff) an HR of
5.90 95% CI (2.91-11.96), Grade IV (Undiff) an HR of 5.44
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TaBLE 2: Model comparison with DIC and AIC values.
No Model BIC AIC LLR (df), p value
Frequentist fitted models
1 MIla: standard Weibull 2661.71 2630.05 2296 (36), p<0.001
2 M2a: Weibull with log-normal frailty 2615.16 2615.16 2287 (24), p<0.001
3 M3a: Weibull with gamma frailty 2673.29 2628.17 2296.14 (35), p<0.001
Model BIC DIC Marginal likelihood Effective parameters
Bayesian fitted models
4 M1b: Bayesian standard Weibull 15057.52 Infinite —-6905.77 145.07
5 M2b: Bayesian Weibull with log-normal frailty 13913.35 13456.85 —-6806.38, 35.0
6 M3b: Bayesian Weibull with gamma frailty 218424.1 3597.29 —20118.03 30117.4

TaBLE 3: Standard Weibull model (Model 1).

Standard Weibull model

Variables Mla (Frequentist) M1b (Bayesian approach)
HR 2.5% 97.5% HR 2.5% 97.5%

Sex

Female Ref

Male 0.96 0.64 1.44 1.36 1.03 1.76
Age 0.99 0.99 1.00 1.00 1.00 1.01
Marital status

Divorce Ref

Married 1.36 1.03 1.8 0.79 0.66 0.96

Single 1.08 0.75 1.57 0.79 0.63 0.99

Widowed 1.57 1.14 2.18 0.72 0.59 0.9
Topography

C50.0 nipple Ref

C50.1 central portion of breast 1.00 0.67 1.50 1.14 0.90 1.45

C50.2 upper-inner quadrant of breast 1.05 0.73 1.50 1.16 0.93 1.44

C50.3 lower-inner quadrant of breast 0.95 0.64 1.40 1.23 0.97 1.57

C50.4 upper-outer quadrant of breast 1.01 0.75 1.35 1.12 0.92 1.37

C50.5 lower-outer quadrant of breast 1.01 0.68 1.50 1.02 0.82 1.29

C50.6 axillary tail of breast 0.38 0.18 0.80 1.11 0.77 1.57

C50.8 overl. lesion of breast 0.82 0.61 1.10 1.13 0.92 1.38

C50.9 breast, NOS 0.73 0.55 0.97 1.16 0.96 1.42
Grade

B-Cell Ref

Grade I (Well diff) 7.11 3.32 15.23 1.02 0.59 1.87

Grade II (Mod diff) 7.89 3.88 16.06 1.02 0.59 1.86

Grade III (Poor diff) 59 2.91 11.96 1.05 0.61 1.92

Grade IV (Undiff anaplastic) 5.44 2.48 11.9 0.92 0.52 1.74
Laterality

Bilateral invasive Ref

Left 0.92 0.61 1.39 1.06 0.8 1.43

Paired site, late 0.78 0.36 1.73 2.65 1.2 5.35

Right 0.94 0.62 1.42 1.03 0.78 1.39
Extent

Distant metastasis Ref

Localised 1.73 1.45 2.07 0.90 0.82 0.99

Regional 1.60 1.43 1.79 0.88 0.80 0.96

and 95% CI (2.48-11.9) were relative to B-cells. While the
extent of cancer increased the hazard of death relative to
metastasis distance for localized and Regional levels with
hazard ratio of 1.73 95% CI (1.45-2.07) and 1.60 and 95% CI
(1.43-1.79) respectively. Other factors had a protective effect
on cancer patients. For instance, after controlled for other
factors, auxiliary tail with an HR of 0.38; 95% CI (0.18-0.80)
and breast No’s with an HR of 0.73 and a 95% (0.55-0.97)
decreased the hazard risk of cancer patient compared to

nipple topographical areas. Other topographical factors were
found not to be statistically significant. Table 3 provides
more information about the determinants included in this
analysis.

3.3. Comparing Conditional Models. Tables 4 and 5 provide
results from the two conditional models fitted to control for
unobserved (regional) effects. The estimated variance
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TaBLE 4: Weibull with log-normal frailty (Model 2).
Weibull with log-normal frailty
Variables Frequentist Bayesian approach
HR 2.5% 97.5% HR 2.5% 97.5%
Sex
Female Ref
Male 0.95 0.63 1.43 1.36 1.03 1.76
Age 0.99 0.99 1.00 1.00 1.00 1.01
Marital status
Divorced Ref
Married 1.38 1.05 1.83 0.79 0.66 0.96
Single 1.08 0.75 1.57 0.79 0.63 0.99
Widowed 1.55 1.12 2.14 0.72 0.59 0.90
Topography
C50.0 nipple Ref
C50.1 central portion of breast 1.01 0.68 1.50 1.14 0.90 1.45
C50.2 upper-inner quadrant of breast 1.06 0.75 1.51 1.16 0.93 1.44
C50.3 lower-inner quadrant of breast 0.95 0.64 1.40 1.23 0.97 1.57
C50.4 upper-outer quadrant of breast 1.01 0.75 1.35 1.12 0.92 1.37
C50.5 lower-outer quadrant of breast 1.02 0.69 1.52 1.02 0.82 1.29
C50.6 axillary tail of breast 0.39 0.18 0.82 1.11 0.77 1.57
C50.8 overl. lesion of breast 0.83 0.62 1.11 1.13 0.92 1.38
C50.9 breast, NOS 0.74 0.56 0.97 1.16 0.96 1.42
Grade
B-Cell Ref
Grade 1 (Well diff) 7.27 3.38 15.64 1.02 0.59 1.87
Grade II (Mod diff) 8.09 3.97 16.51 1.02 0.59 1.86
Grade III (Poor diff) 6.03 2.97 12.26 1.05 0.61 1.92
Grade IV (Undiff anaplastic) 5.55 2.52 12.19 0.92 0.52 1.74
Laterality
Bilateral invasive Ref
Left 0.95 0.63 1.43 1.06 0.80 1.43
Paired site, late 0.81 0.37 1.80 2.65 1.20 5.35
Right 0.96 0.64 1.45 1.03 0.78 1.39
Extent
Distant metastasis Ref
Localised 1.73 1.46 2.07 0.90 0.82 0.99
Regional 1.61 1.43 1.80 0.88 0.80 0.96
Theta (6) 0.0013 52

associated with the frailty effect in the Weibull log-normal
frailty model presented in Table 4 was less than 0.01 in Model
2a and 5.2 in Model 2b. For Models 3a and 3b as presented,
which included the gamma frailty parameter, the frailty
variance was 0.98 for Model 3a and negligible for Model 3b.
The frailty parameter values for Model 2b and Model 3a are
statistically significant indicating that survival risks among
cancer patients vary as a result of unobserved effects which is
shared by members of the same region. Following the work
of Govindarajulu et al. [22], the estimated frailty as shown in
Model 2b indicates that a cancer patient’s death in a par-
ticular region increases the risk of the death for the index
cancer patient by (exp(1/5.2 ) = 9.78) times relative to the
overall risk of breast cancer patient’s death. Also, the esti-
mated frailty variance value of 0.98, for Model 3a, denotes
that every death is associated with (exp(+0.98 ) =2.69)
increased risk of the indexed cancer patient dying relative to
the average risk of death. Though the standard errors for the
hazard ratios of the covariates are generally higher with the
frailty Weibull models as compared to the standard model

with higher confidence intervals for grade, for instance, the
impact of the frailty term on parameter estimates is small
and does not change the significance of any of the parameter
estimates in the model. Similarly, the magnitude of the effect
of the determinants included as covariates in the model is
largely unchanged in the presence of the random term
known as frailty.

However, though the two modelling strategies produced
similar results, conflicting results were also observed. For
instance, marital status and cancer extent exhibited con-
sistently reduced risk of cancer deaths compared to what was
reported using frequentist approach. There were also con-
siderable changes in the effects of selected covariates used in
the frequentist when analyzed using the Bayesian approach.
For example, the effect of age, paired site as a measure of
literality, and gender on the risk of death became apparent as
the confidence intervals of the two variables did not include
1 (one) in the Bayesian approach. Overall, the magnitude
effect of topography and grade became nonsignificant when
analyzed using the Bayesian approach. We observed that the
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TaBLE 5: Weibull with gamma frailty (Model 3).
Weibull with gamma frailty
Variables Frequentist Bayesian approach
HR 2.5% 97.5% HR 2.5% 97.5%
Sex
Female Ref
Male 0.96 0.64 1.44 — — —
Age 0.99 0.99 1.00 1.00 1.00 1.01
Marital
Divorce Ref
Married 1.37 1.03 1.81 0.79 0.65 0.96
Single 1.09 0.75 1.58 0.78 0.63 0.98
Widowed 1.57 1.14 2.18 0.72 0.58 0.89
Topography
C50.0 nipple Ref
C50.1 central portion of breast 1.00 0.67 1.50 1.17 0.92 1.49
C50.2 upper-inner quadrant of breast 1.04 0.73 1.49 1.18 0.95 1.49
C50.3 lower-inner quadrant of breast 0.95 0.64 1.40 1.26 0.99 1.63
C50.4 upper-outer quadrant of breast 1.01 0.75 1.35 1.14 0.93 1.41
C50.5 lower-outer quadrant of breast 1.01 0.68 1.50 1.05 0.83 1.33
C50.6 axillary tail of breast 0.38 0.18 0.80 1.25 0.88 1.81
C50.8 overl. lesion of breast 0.82 0.61 1.10 1.15 0.94 1.43
C50.9 breast, NOS 0.73 0.55 0.97 1.19 0.97 1.47
Grade
B-Cell Ref
Grade I (Well diff) 713 3.33 15.26 1.08 0.55 2.38
Grade II (Mod diff) 7.90 3.88 16.09 1.08 0.56 2.37
Grade III (Poor diff) 5.91 2.91 11.98 1.12 0.58 2.46
Grade IV (Undiff anaplastic) 5.44 2.49 11.91 0.98 0.49 2.18
Laterality
Bilateral invasive Ref
Left 0.92 0.61 1.39 1.10 0.82 1.51
Paired site, late 0.78 0.36 1.73 2.51 1.05 5.06
Right 0.94 0.62 1.42 1.08 0.80 1.47
Extent
Distant metastasis Ref
Localised 1.73 1.45 2.07 0.91 0.83 0.99
Regional 1.60 1.43 1.79 0.88 0.81 0.96
Theta (0) 0.98 <0.001

measures of effect for topography and literality had an in-
crease effect under the Bayesian approach, while a decreased
effect was observed with the frequentist approach.

The effect of frailty models can be demonstrated by
looking at the effect of marital status on the risk of death of
the cancer patient. Results from the standard model
showed that the effect of being widowed reduced from 5.57
to 5.55 in the frailty model. This is a lesser effect reduction
of about 2%.

4. Discussion and Conclusion

We have examined, in this paper, the effects of demographics,
extent, topography, grade, and region on breast cancer patient
risk of dying in Saudi Arabia. The study compared two ad-
vanced statistical approaches that have been used to correct
for dependencies in data structures. As demonstrated in this
work, marginal survival models (fixed effects models) can be
extended to conditional survival models by introducing a
random term in the regression model which is later modelled,

either through a semiparametric or a parametric approach
[19, 36]. These types of models are used more, particularly in
medical studies where the patient’s levels are recurrent in
nature and have correlated biomedical data. The history of
application for these types of models in medical statistical
studies include under five studies [19], cancer studies [37, 38],
kidney transplants [39], and genetic studies [22].

Our results suggest that there is evidence of some var-
iation among regions in the risk of cancer mortality that may
not be accounted for by the measured factors. The magni-
tude of effects of the covariates is smaller, and the standard
errors are slightly inflated with the frailty models compared
to the standard models. As noted, the frailty term addition in
the model did not change the direction of the effect of the
covariates and at best the estimates remained the same
throughout the models, and substantive conclusions from
the Weibull Standard models remain valid. Consistent with
findings from other studies that applied both frequentist
[18, 40] and Bayesian approach [36, 41] separately, the
presence of heterogeneity in our study acting at the region
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level, as determined by the two approaches, varied. Gohari
et al. [18] in Iran reported the frailty relative risk of 7.2 in
patients with breast cancer, while Gorfine et al. [42]
established that accounting for heterogeneity improved the
ability of the model to predict the risk of developing a disease
over time based on carrier status. Bakhshi et al. [40] proved
that cure and frailty models were better than the Cox model
to estimate patient survival probabilities.

On the other hand, the presence of unobserved effects in
this study reflects a different level of factors that can be
categorized as genetic or behavioral, occurring at individual
and regional levels, which may not have been measured. We
are, however, confident that the other factors that were not
considered but helped to reduce the unobserved household
effect among cancer mortality risk may have details of
specific family history, education background, type of
treatment, and progesterone receptor (PR) [40, 43] among
other factors.

This modelling approach is an extension of the gener-
alized mixed effects model and can be classified as a gen-
eralized survival linear mixed model. These types of models
have a complex structure which is easily exploited using the
frequentist approach and now the Bayesian approach as
demonstrated in this work due to the availability of statistical
software. Though our approach is complex, the results
obtained are consistent with what has been reported else-
where. Similar to this study, metastasis increased the effects
on the hazard of the event in a study conducted in Iran [40].

We have also demonstrated that some of the effects of the
region level variables are difficult to understand. For in-
stance, in this study, topography and grade were found not
to be statistically significantly associated with cancer mor-
tality. This is in contrast to what is biologically known and
reported elsewhere, where lesion [44] and grade [45] were
reported to be strong breast cancer risk factors.

However, this study shows that marital status is pre-
dictive of breast cancer mortality risks, and it appeared likely
to be a surrogate for cluster effect at regional level including
other contextual factors that may not have been examined in
this study.

5. Strength and Limitations

This research has a number of limitations that need to be
pointed out. The power of the study would have improved if
spatial temporality was incorporated in the analysis strategy
to account for possible spatial effect. Conflicting evidence in
case of age, paired site as a measure of literality, and gender
on the risk of death revealed inherit differences that could be
attributed to differences in computational strategies. INLA
being a deterministic strategy, though fast, required rep-
arametrization of the likelihood and the prior distribution so
that gamma frailty which is a non-Gaussian distributed
parameter can be specified and handled appropriately. We
feel that it is this parametrization that could have affected the
results especially in instances where ambiguous values were
obtained. Due to the large values obtained for the BIC and
DIC via the Bayesian fitted models, we anticipate model
fitting issues, so our estimates should be interpreted with

caution. Furthermore, ambiguous and unrealistic estimates
obtained in the Bayesian approach revealed lack of data
support to the proposed gamma frailty distributed model
contrary to what is assumed elsewhere [19, 46]. In this work,
the gamma distribution with parameters (kappa, kappa)
assumed a fixed expected value of 1 (one) and variance 1/
kappa. However, more discrepancy was also noted between
log-normal frailty models fitted using the two approaches.

Notwithstanding the above limitations, the findings as
presented show a further step toward an improved under-
standing of the risk of breast cancer survival among the
people of Saudi Arabia. This study has provided further
evidence for the argument that information about individual
patients and region is important in understanding in-
equalities in cancer mortalities and the application of robust
statistical methodologies is also possible. Unlike the
Bayesian approach, the frequentist approach via both the
gamma and the log-normal frailties did not exhibit any
problem with the fit of the data. This shows that the fre-
quentist approach exhibits a good fit to the breast cancer
data when modelled through the Weibull proportional re-
gression with frailty.
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