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Abstract

Motivation: Automatic alignment, especially fiducial marker-based alignment, has become

increasingly important due to the high demand of subtomogram averaging and the rapid develop-

ment of large-field electron microscopy. Among the alignment steps, fiducial marker tracking is a

crucial one that determines the quality of the final alignment. Yet, it is still a challenging problem to

track the fiducial markers accurately and effectively in a fully automatic manner.

Results: In this paper, we propose a robust and efficient scheme for fiducial marker tracking.

Firstly, we theoretically prove the upper bound of the transformation deviation of aligning the posi-

tions of fiducial markers on two micrographs by affine transformation. Secondly, we design an

automatic algorithm based on the Gaussian mixture model to accelerate the procedure of fiducial

marker tracking. Thirdly, we propose a divide-and-conquer strategy against lens distortions to

ensure the reliability of our scheme. To our knowledge, this is the first attempt that theoretically

relates the projection model with the tracking model. The real-world experimental results further

support our theoretical bound and demonstrate the effectiveness of our algorithm. This work facili-

tates the fully automatic tracking for datasets with a massive number of fiducial markers.

Availability and implementation: The C/Cþþ source code that implements the fast fiducial marker

tracking is available at https://github.com/icthrm/gmm-marker-tracking. Markerauto 1.6 version or

later (also integrated in the AuTom platform at http://ear.ict.ac.cn/) offers a complete implementa-

tion for fast alignment, in which fast fiducial marker tracking is available by the ‘-t’ option.

Contact: xin.gao@kaust.edu.sa

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Nowadays, three-dimensional (3D) structural analysis based on elec-

tron microscopy plays an important role in the field of structural

biology. Among the various applications, electron tomography (ET)

acts as a bridge between high-resolution structural analysis and cel-

lular imaging (Phan et al., 2012; Wan and Briggs, 2016). In ET, the

3D ultrastructure is reconstructed from a series of micrographs (tilt

series) taken in different orientations. Generally, the projection

parameters can be recorded from the goniometer and used for

further reconstruction. However, due to mechanical instability and

specimen transformation, the recorded micrographs do not exactly

align with the recorded parameters. To obtain high-quality 3D den-

sity from the tilt series, it is thus necessary to recalculate the projec-

tion parameters (i.e. tilt series alignment) before reconstruction.

Tilt series alignment is one of the most important stages in ET

process, which can be classified into two categories: (i) marker-free

alignment and (ii) marker-based alignment. Marker-free alignment

uses the intrinsic ultrastructures from specimens to calibrate the
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projection parameters. The current available marker-free alignment

methods include cross-correlation (Guckenberger, 1982), common-

lines (Liu et al., 1995), iterative alignment methods combining

cross-correlation with reconstruction and reprojection (Winkler and

Taylor, 2006, 2013) and feature-based alignment methods (Brandt

et al., 2001a; Brandt and Ziese, 2006; Casta~no-Dı́ez et al., 2007,

2010; Han et al., 2014; Phan et al., 2009; Sorzano et al., 2009).

Though marker-free alignment does not need any additional

information of the specimen, it suffers from the low signal-to-noise

ratio of electron micrographs, especially in cryo-ET datasets.

The other alignment category, fiducial marker-based alignment,

which requires gold beads to be embedded in the specimens (Frank,

2008; Kremer et al., 1996; Lawrence, 1992), is more robust to

noise owing to the high contrast of the gold beads. Currently,

fiducial marker-based alignment is the most widely used method

in high-resolution ET. Moreover, for the large-field datasets

with obvious lens distortions, the non-straight electron beam trajec-

tory model is preferred (Lawrence et al., 2006; Phan et al., 2012)

and thus the fiducial marker-based alignment becomes the only

option.

The rapid development of electron microscopy technologies has

caused the explosion of data in ET. A large number of researchers

began to use subtomogram averaging to analyze high-resolution

structures in situ (Wan and Briggs, 2016). In addition, large-field

micrographs have become widely used. The exploding size of data

necessitates the development of more efficient and automatic align-

ment algorithms.

A number of automatic marker-based alignment algorithms

have been proposed (Amat et al., 2008; Han et al., 2015;

Mastronarde and Held, 2017). Based on their tracking strategies,

we categorize them into two groups: (i) spatial marker-based

automatic alignment and (ii) model-based automatic alignment.

IMOD’s latest automatic alignment (Mastronarde and Held,

2017) is a classic spatial marker-based alignment. IMOD’s scheme

begins with the selection of initial micrographs near the zero tilt

angle and the detection of fiducial marker positions. These fiducial

markers are then tracked and pre-reconstructed in the 3D spatial

space, from which two-dimensional (2D) reprojections are gener-

ated and used as references for further fiducial marker tracking in

the entire tilt series. Though spatial marker-based alignment tracks

the fiducial markers exactly according to the projection model, it

still requires the determination of the correspondence between the

2D predicted fiducial marker reprojections and the measured fidu-

cial marker positions (for convenience, we denote this operation as

‘motion prediction’). On the other hand, model-based alignment

(Amat et al., 2008; Han et al., 2015) directly uses the information

of measured fiducial marker positions to achieve fiducial marker

tracking. Naturally, the tracking in model-based alignment is

based on a predefined mathematical model, such as the Markov

random field used by Amat et al. (2008) or the random sample

consensus (RANSAC) (Fischler and Bolles, 1981) used by Han

et al. (2015). The fiducial marker tracking strategy used in model-

based automatic alignment is simpler but not exactly accordant

with the projection model.

Despite the aforementioned efforts, several concerns still remain.

Potential failures have been observed in spatial marker-based

alignment (Mastronarde and Held, 2017) due to its long workflow,

in which the neighbor searching used in motion prediction is a

weak point. Compared with the spatial marker-based alignment

(Mastronarde and Held, 2017), model-based alignment (Amat et al.,

2008; Han et al., 2015) has a simpler workflow and has been proven

to be successful in applications like cryo-ET. However, the relation-

ship between the model-based alignment’s mathematical model and

the real projection model still remains to be elucidated. Execution

time is another issue for automatic marker-based alignment.

Markov random field (Amat et al., 2008) is a good attempt for fidu-

cial marker tracking but costs too much time in local information

analysis. The RANSAC model (Han et al., 2015) utilizes the

global information of fiducial marker positions but encounters an

increasing computational cost when the number of fiducial marker

increases.

Focusing on the fiducial marker tracking problem, this paper

makes the following contributions. Firstly, we theoretically prove

the upper bound of the transformation deviation of aligning the

positions of fiducial markers on two micrographs by affine trans-

formation, which theoretically reveals the relationship of model-

based alignment and the projection model. To our knowledge, this

is the first theoretical work to relate the projection model to a

tracking model. The given upper bound of the deviation is an

instructive guide for further algorithm design and is useful in both

model-based alignment and motion prediction of spatial marker-

based alignment. Secondly, we introduce Gaussian mixture model

(GMM) into this field and design an automatic algorithm based on

it to make fiducial marker tracking more effective and efficient.

Finally, we propose a divide-and-conquer strategy against lens dis-

tortions to ensure the reliability of our scheme. The real-world

experimental results further support the theoretical bound and

demonstrate the effectiveness of our algorithm. This work makes

the fully automatic tracking for datasets with a massive number of

fiducial markers possible.

2 Materials and methods

A scheme of marker-based alignment typically includes three

stages: (i) fiducial marker detection, (ii) fiducial marker tracking

and (iii) parameter optimization. In this work, we will focus on the

fiducial marker tracking and assume that the fiducial marker posi-

tions have already been detected. In this section, the relationship

between a 2D model-based tracking and the 3D projection model

is demonstrated for the first time. A consequent upper bound of

the deviation is proved, within which the fiducial markers can be

tracked in an affine transformation constrained model. Then a ser-

ies of solutions is proposed to cope with the fiducial marker track-

ing problem.

2.1 Affine relationship of two micrographs
We begin with the projection model. Typically, the projection is

modeled as an affine or orthogonal projection. A classic orthogonal

model is described as follows (in this section, the bold font is used to

indicate vectors or matrices; a 2D point is represented by a 2 � 1

vector):

u

v

 !
¼ sRcPRbRa

X

Y

Z

0BB@
1CCAþ t; (1)

where (X, Y, Z)T is the spatial location of the ultrastructure or

fiducial markers, s is the image scale change, c is the inplane rota-

tion angle, a is the pitch angle of the tilt axis of the projection, b is

the tilt angle of the sample, t ¼ t0; t1ð ÞT is the translation of the

view, (u, v)T is the measured projection point and P denotes the

854 R.Han et al.

Deleted Text: ,
Deleted Text: ; Han <italic>et<?A3B2 show $146#?>al.</italic>, 2014
Deleted Text:  (SNR)
Deleted Text: ; Kremer <italic>et<?A3B2 show $146#?>al.</italic>, 1996; <xref ref-type=
Deleted Text: -
Deleted Text: electron tomography
Deleted Text: -
Deleted Text: -
Deleted Text: &hx2009;
Deleted Text: &hx2009;
Deleted Text: -
Deleted Text: &hx2009;
Deleted Text: &hx0022;
Deleted Text: &hx0022;
Deleted Text: in 
Deleted Text: in 
Deleted Text: -
Deleted Text: -
Deleted Text: &hx2018;
Deleted Text: ,
Deleted Text: -
Deleted Text: ,
Deleted Text: &hx2009;
Deleted Text: &hx2009;
Deleted Text: <xref ref-type=
Deleted Text: ; 
Deleted Text: ; 
Deleted Text: ; 
Deleted Text: ; 
Deleted Text: ; 
Deleted Text: ; 
Deleted Text: ;


orthogonal projection matrix. Ra; Rb, P and Rc are defined as

follows:

Ra ¼

1 0 0

0 cos a sin a

0 �sin a cos a

0BBBB@
1CCCCA;

Rb ¼

cos b 0 �sin b

0 1 0

sin b 0 cos b

0BBBB@
1CCCCA;

P ¼
1 0 0

0 1 0

0@ 1A;
Rc ¼

cos c sin c

�sin c cos c

0@ 1A:
For two arbitrary views (micrographs), we can always construct a sin-

gle transformation that aligns all the corresponding fiducial markers

within a limited deviation. We will first prove a Lemma that theoreti-

cally guarantees the upper bound of deviation on any arbitrary fidu-

cial marker, and then apply this Lemma to prove a Theorem which

guarantees the upper bound over all the fiducial markers.

Lemma: Suppose the pitch angle is fixed during tilt, for any arbitrary

fiducial marker Xj;Yj;Zj

� �T
and its arbitrary two projections (denoted

as pij and pi0 j), there is always a transformation A and t which is inde-

pendent of j (Equation 3 and Equation 4) that can be applied to this

fiducial marker (p0ij ¼ Apij þ t) to make the deviation jjDjjj ¼
jjp0ij � pi0 jjj � si0 j sin Db

cos a cos bi
Zj � ZlÞj
�

, where a is the fixed pitch angle,

si0 is the scale change of the i0 th micrograph, bi and bi0 are the tilt angles

of the corresponding projections, Db ¼ bi0 � bi and Zl ¼ 1
N

PN
j¼1 Zj.

Proof. We give the detailed proof in Supplementary Material

Section S1. Here we only provide the outline of the proof. The main

idea is to construct such a transformation that is independent of j

and prove that the deviation of this transformation is exactly

si0 j sin Db
cos a cos bi

Zj � ZlÞj
�

as given in the Lemma. Therefore, the optimal

transformation will always be upper bounded by this value.

Firstly, by substituting P, Rb and Ra into Equation (1), the

orthogonal projection can be rewritten as:

u

v

0@ 1A ¼ sRc

cos b sin a sin b

0 cos a

0@ 1A X

Y

0@ 1A
þsRc

�sin b cos a

sin a

0@ 1AZþ
t0

t1

0@ 1A:
(2)

Now consider the jth fiducial marker Xj;Yj;Zj

� �T
(j¼1, 2,. . ., N), by

writing out its projections in the ith and i0 th views [pij ¼ ðuij; vijÞT

and ðpi0j ¼ ui0j; vi0jÞT ] according to Equation (2) and define

Dj ¼ p0ij � pi0j, we can construct transformation A and t as follows:

A ¼ si0

si
Rci0

cos bi0 sin ai0 sin bi0

0 cos ai0

 ! 1

cos bi

�sin ai sin bi

cos ai cos bi

0
1

cos ai

0BBB@
1CCCAR�ci

;

(3)

and

t ¼ ti0 � Ati �wZl; (4)

where Zl ¼ 1
N

PN
j¼1

Zj and w ¼ si0Rci0 Du;Dvð ÞT . Here,

Du ¼ � cos bi0 sin bi cos ai

cos bi

� sin aið Þ2 sin bi cos bi0

cos ai cos bi

þ sin ai0 sin bi0 sin ai

cos ai
þ sin bi0 cos ai0 ;

Dv ¼ cos ai0 sin ai � sin ai0 cos ai

cos ai
¼ sin ai � ai0ð Þ

cos ai
:

Note that our construction of A and t is independent of j. In most ET

systems, the micrographs are taken with the pitch angle fixed, which

means that ai � ai0 . Suppose ai ¼ ai0 ¼ a, and let bi0 � bi ¼ Db; Du

and Dv can be rewritten as:

Du ¼ sin a2

cos a
� sin bi0 � cos bi � cos bi0 � sin bi

cos bi

� �
þ cos a2

cos a
� sin bi0 � cos bi � cos bi0 � sin bi

cos bi

� �
¼ sin a2 þ cos a2

cos a
� sin bi0 � bið Þ

cos bi

� �
¼ sin Db

cos a � cos bi

;

Dv ¼ sin a� að Þ
cos a

¼ 0:

(5)

The deviation Dj can thus be derived as:

Dj ¼ si0Rci0

sin Db
cos a cos bi

0

0B@
1CA Zj �ZlÞ:
�

(6)

By taking the norm of jjDjjj, we get jjDjjj ¼
si0 jjRci0 jjj

sin Db
cos a cos bi

Zj � ZlÞj ¼ si0 j sin Db
cos a cos bi

Zj � ZlÞj
��

. Since the

transformation we constructed in Equation (3) and Equation (4)

always exists, and is just one of all the possible transformations, the

deviation of the optimal transformation will thus always be upper

bounded by si0 j sin Db
cos a cos bi

Zj �ZlÞj
�

.

Typically, s0 is around 1; the value of the tilt angle b is between

�60
�

and 60
�
; and the pitch angle a is between �5

�
and 5

�
.

Therefore, the value of jjDtjj will not be more than

2si0 sin Db Zj � ZlÞ
�

. If all the fiducial markers are located on one

surface of the specimen, Zj � Zl will be very small (almost equal to

zero). In this case, the distributions of the fiducial markers on differ-

ent projections can be constrained by the affine transformation

between two arbitrary micrographs in the tilt series. If the fiducial

markers are located on two surfaces of the specimen, Zj � Zl will

not be more than half of the thickness of the specimen (denoted as

T). If a large tilt angle offset occurs, a coordinate transformation

can be applied to the system to keep the fiducial markers horizontal.

We give a more generalized case of the proof in Part 2 of

Supplementary Material Section S1 to support our bound when the

tilt angle offset is considered. A micrograph with well-distributed

fiducial markers will not contain overlapping fiducial markers.

Therefore, the distance between two measured fiducial marker posi-

tions will be more than the diameters of the fiducial markers. Now

denoting the diameter of a fiducial marker as D, we can conclude

that if the tilt angle difference is Db < D
T, the distributions of the

fiducial markers on two views can be constrained by the affine

transformation without any ambiguity. For example, if the diameter
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of fiducial markers is 20 pixels and the thickness of the specimen is

200 pixels, the maximum Db is around 6� (0.1 Radian), which is sat-

isfied by almost all the tilt series.

Theorem: Suppose the pitch angle is fixed during tilt, for any arbi-

trary two projections (denoted as pi and pi0 ), there is always a trans-

formation A and t that can be applied to pi such that the total

deviation over all the fiducial markers is upper bounded byPN
j¼1 si0 j sin Db

cos a cos bi
Zj � ZlÞj
�

, where Zl ¼ 1
N

PN
j¼1

Zj.

Proof. By applying the construction of the transformation accord-

ing to Equation (3) and Equation (4), both of which are independent

of any specific fiducial marker, the upper bound can be derived by

summing the upper bound in the Lemma over all the fiducial

markers.

The upper bound infers that the measured fiducial marker posi-

tions from a tilt series’ different views can be related by the affine

transformation within a very small deviation, which indicates that

fiducial marker tracking based on a predefined mathematical model

can achieve comparable results as the spatial marker-based tracking.

The proved upper bound has two direct applications: first, it offers

an affine prior to the prediction of fiducial marker positions, which

will be useful for motion prediction (Mastronarde and Held, 2017)

and missing fiducial marker recovery (Amat et al., 2008; Han et al.,

2015); second, it can serve as the guide for the development of fast

tracking algorithms.

2.2 Fiducial marker tracking by GMM
We proved that the affine transformation assumption between two

micrographs can be satisfied within a very small deviation, which

makes the design of a fast and reliable fiducial marker tracking algo-

rithm possible. In this section, a GMM (Jian and Vemuri, 2011) will

be used to represent a point set, and a point set registration solution

from the view of probability distribution will be provided.

2.2.1 GMM presentation of a point set

We would denote the positions of fiducial markers from a micro-

graph as the fixed ‘scene’ point set X ¼ fxn;n ¼ 1; . . . ;Ng and the

positions of fiducial markers from another micrograph as the mov-

ing ‘model’ point set Y ¼ fym;m ¼ 1; . . . ;Mg. Our aim is to find an

affine transformation T �ð Þ so that there is a subset of T Yð Þ with the

maximum cardinality in which the points are corresponding to the

points from a subset of the fixed ‘scene’ set X under a selected meas-

ure of distance (or equivalently, similarity).

For a point y, the probability density function that a point x is

corresponding to y can be measured by a Gaussian kernel (Jian and

Vemuri, 2011):

p xjyð Þ ¼ 1

2pr2
exp � jjx� yjj2

2r2

 !
; (7)

where r is a punishment parameter for similarity. If point x is

located in the same coordinate of y, the probability reaches its

maximum. Given the point set Y, its GMM presentation can be

defined as p xjYð Þ ¼
Pm

j¼1 P mð Þp xjymð Þ, where P(m) represents the

prior probability of the mth point ym. The set to set case (X to Y)

can be generalized from the one point to set case as
1

2pr2

PN
n¼1

PM
m¼1 wme�

jjxn�T ymð Þjj2

2r2 , where wm is the weight specified by

the prior. It is clear that the sum of the probability density function

has the robust similarity form of simrobust ¼
PP

g jjx� yjj2
� �

,

where g �ð Þ is the M-estimator (Stewart, 1999) in Gaussian shape.

Robust similarity is not a convex function (Jian and Vemuri, 2011).

An heuristic solution such as simulated annealing may overcome

some local maximums, but it is unable to guarantee a globally opti-

mal solution.

Since the fiducial marker distribution is prone to be corrupted by

missing markers or the appearance of markers in high tilt angles, a

feasible similarity punishment should ensure that the global solution

of simrobust equals to the correct corresponding relationship of the

point sets. The shape of the cost function is also determined by r.

Our solution starts from the determination of the similarity punish-

ment r. We borrow the concept of the point-spread function

(PSF) to explain the criteria in r value determination. The PSF

describes how blurry a single point-like emitter will appear when it

is diffracted through a microscope and the full width at half

maximum value of the PSF is used to characterize the resolution

(Betzig et al., 2006; Nieuwenhuizen et al., 2013). The Gaussian

kernel is just like the PSF here and the resolution of the fiducial

marker positions is determined by the similarity and r. We should

ensure that almost all the fiducial markers are distinguishable under

a given r, which means that the peak of the Gaussian function

should be retained under summation. Therefore, r can be deter-

mined as:

r ¼ b min
1

M

XM
m¼1

dist ym;Yð Þ; 1

N

XN
n¼1

dist xn;Xð Þ
 !

; (8)

where b 2 0:2; 0:5½ � is the parameter to control the distance interpre-

tation and dist x;Xð Þ refers to the minimum distance between the

point x to the points belonging to X (except itself).

2.2.2 Fast parameter refinement by CPD

Coherent point drift (CPD) (Myronenko and Song, 2010) is intro-

duced for the estimation of transformation T �ð Þ. The view of CPD is

from the aspect of assignment and CPD introduces a representation

of the outliers. Given a point x, it has P(m) probability correspond-

ing to the mth point ym, thus its total probability that belongs to the

point set Y is denoted as
Pm
j¼1

P mð Þp xjymð Þ. Considering the probabil-

ity that point x may represent an outlier, let w denote the outlier

probability. Assuming x is sampled from the point set X randomly

and the points in Y share an equal prior probability, the mixture

model takes the form as:

p xð Þ ¼ w
1

N
þ 1�wð Þ

Xm
j¼1

1

M
p xjymð Þ: (9)

The cost function in CPD is defined as the minimization of the nega-

tive log-likelihood function:

E T �ð Þ; r2
� �

¼ �
XN
n¼1

log
XMþ1

m¼1

P mð Þp xjymð Þ; (10)

where P(m) is the reweighted prior and p xjyMþ1

� �
¼ w

N represents

the probability of outliers. The negative likelihood function has an

obvious advantage that it can be effectively solved by an expecta-

tion–maximum (EM) algorithm.

According to Jensen’s inequality, the upper bound of the negative

log-likelihood function used in the EM algorithm can be defined as:

Q ¼ �
XN
n¼1

XMþ1

m¼1

pold mjxnð Þ log Pnew mð Þpnew xnjymð Þð Þ; (11)

where p mjxnð Þ ¼ P mð Þp xnjymð Þ=p xnð Þ is the corresponding proba-

bility between ym and xn, the ‘old’ parameters indicate the guess of

values in the E-step and the ‘new’ parameters are determined by
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minimizing the expectation of the complete negative log-likelihood

function in the M-step. The algorithm iterates the E-step and M-step

until convergence.

E-step:

Ignoring the constants, the objective function in the E-step can

be rewritten as:

Q A; t; r2
� �

¼ 1

2r2

XN
n¼1

XM
m¼1

pold mjxnð Þjjxn � T ym; A; tð Þjj2

þNpD

2
log r2;

(12)

where T ym; A; tð Þ ¼ Aym þ t; Np ¼
PN

n¼1

PM
m¼1 pold mjxnð Þ � N

(with N¼Np only if w¼0), and pold mjxnð Þ denotes the posterior prob-

abilities of GMM components calculated using the previous parameter

values:

pold mjxnð Þ ¼
exp � 1

2 jj
xn�T ym ;A

old ;toldð Þ
rold jj2

� �
PM
k¼1

exp � 1
2 jj

xn�T yk ;A
old ;toldð Þ

rold jj2
� �

þ c

: (13)

Here c ¼ 2pr2 w
1�w

M
N. Within a feasible local interval, minimizing the

objective function Q in the E-step is equal to solving the negative

log-likelihood function E in Equation (10).

M-step:

In the M-step, our aim is to find the affine matrix A and t in T �ð Þ
that minimizes the objective function Q. It is clear that Q has a

closed-form expression (Myronenko and Song, 2010). For the con-

venience of the following discussion, several representations of vari-

ables are introduced:

1. XN�2 ¼ x1 � � � xNð ÞT—matrix presentation of the point set X ;

2. YM�2 ¼ y1 � � � yMð ÞT—matrix presentation of the point set Y;

3. 1—the column vector of all ones;

4. d að Þ—the diagonal matrix formed from vector a;

5. P—the matrix that is composed by pmn ¼ pold mjxnð Þ.

The solution is to firstly find the root of the partial derivative Q with

respect to t and then substitute t back into the objective function to

obtain the matrix A. Here the equation of @Q
@t takes the form as:

@Q

@t
¼ 1

r2

XN
n¼1

XM
m¼1

pold mjxnð Þ xn � Aym þ tð Þ ¼ 0; (14)

in which the root t is

t ¼ 1

Np

XN
n¼1

XM
m¼1

pold mjxnð Þ xn � Aymð Þ: (15)

By introducing the variables lx ¼ 1
Np

XTPT1; ly ¼ 1
Np

YTP1, t can be

rewritten as t ¼ lx � Aly.

Substitute t back into Q and solve the equation of partial deriva-

tive @Q
@A, the root A is

A ¼ bXT
PT bY� � bYT

dðP1ÞbY� ��1

; (16)

where bX ¼ X� 1lT
x ;
bY ¼ Y� 1lT

y . r2 is also updated according to

the result of @Q
@r2:

r2 ¼ 1

NpD
tr bXT

d PT1
� �bX� �

� tr bXT
PT bYAT

� �� �
: (17)

After solving the matrix A and t, the moving ‘model’ point set Y is

then updated by T ymð Þ ¼ Aym þ t.

2.2.3 Divide-and-conquer strategy against lens distortion

The most severe problem in fiducial marker tracking is that the

shape context of fiducial markers on a micrograph can be easily cor-

rupted. Although the affine transformation relationship can serve as

a global constraint and suppress the effect of outliers, spherical aber-

ration of the lens and non-uniform magnetic fields will result in non-

uniform magnification of the micrographs (Lawrence et al., 2006),

which may increase the deviation of the global affine constraint.

Furthermore, as an algebraic solution to the point set registration,

CPD still has problems in local convergence, which will lead to

incorrect correspondence. Our method tries to overcome the local

convergence issue. The procedure of fiducial marker matching based

on the GMM is illustrated in Algorithm 1, where the threshold d is

used to determine whether two points from different point sets are

close enough.

In our solution, the initial value of r is assigned according to

Equation (8). As a compensation, a grid search of the applicable

value of the transformation matrix A and t with a step size of 2:5r

is conducted at the beginning. The initial values of A and t with a

high value of the robust similarity measure are fed into CPD.

Under the assumption that the pitch angle almost remains

unchanged, we can get the simplified version of A according to

Equation (3):

A ¼ si0

si
Rci0

cos bi0

cos bi

tan a sin Db
cos bi

0 1

0B@
1CAR�ci

: (18)

It should be noted that the values of si0 and si are very close to each

other. The values of bi0 and bi can be assigned from the recorded tilt

angles when designing the search range of A. Considering the real

pitch angle in a tilt series, tan a is a very small value and can be

neglected. Therefore, the search range of A is indeed very small. If

the tilt angle interval is not too large, the affine matrix A will degen-

erate to a rotation matrix. However, it is enough for an initial esti-

mation of A. The search range of t is limited in half the width of the

micrographs, which is enough considering the actual shift. The

transformation which has a high rank of simrobust X ; T i Yð Þð Þ will be

used as the initial seed for further estimation. The fine estimation of

transformation T �ð Þ is then carried out by CPD. The refined value

T �ð Þ with the highest simrobust X ;T i Yð Þð Þ is outputted as the final

result.

Algorithm 1 Recover correspondence between X and Y.

input: X ; Y
1: Generate initial estimation of T �; A; tð Þ by grid search;

2: Select several fT �ð Þg as initial inputs

3: for all T i 2 fT �ð Þg do

4: Estimate T i by CPD as in Section 2.2.2

5: Apply T i to Y
6: Calculate simrobust X ; T i Yð Þð Þ
7: if simrobust is large enough then

8: Use T i and stop trying

9: end if

10: end for

11: T �ð Þ  T i �ð Þ
12: return T �ð Þ
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The affine transformation relationship cannot cover all the cor-

respondence of two sets of fiducial markers under the effect of lens

distortion. Fortunately, we notice that the divide-and-conquer strat-

egy can solve this issue well. Our proposed algorithm that is against

the lens distortion is illustrated in Algorithm 2.

In our implementation, a coarse distance threshold d is used,

such as the diameter of the used fiducial markers. The input is the

result from Algorithm 1. Firstly, the transformation T �ð Þ is applied

to Y and then the peer distance with X is calculated. If the distance

of two points from different point sets is less than the distance

threshold d, the point pair is considered as a matched pair. If the dis-

tance is less than 0:75d, the matched pair will be directly outputted;

if not, the matched pair will be used to recalculate the transforma-

tion T �ð Þ. Here we assume that the distortion is mild and continu-

ous. In the next iteration, we rerun the procedure to generate the

satisfied correspondence until no matched point pair can be found

between X and T Yð Þ. Finally, multiple T 0s will be outputted to

describe the distortion in the micrographs.

3 Results

3.1 Test datasets
Three datasets are used in our experiments. The first dataset, VEEV,

is a tilt series with the fiducial markers located sparsely on the surfa-

ces (Fig. 1A). In this specimen, cryo-EM grids were prepared by

depositing 5 lL of VEEV mixed with gold beads on 200 mesh

Quantifoil copper grids with a holey carbon support. An additional

thin carbon film was overlaid on the grids before specimen deposi-

tion. The tilt series was taken by a DE20 camera (Direct Electron,

LP, San Diego, CA) with a cumulative dose of 	55� 70e=Å
2

per tilt

series. The tilt angles of the projection images range from �50:0
�

to

þ50:0
�

at 5
�

intervals. In total, there are 21 images in the tilt series.

The size of each tilt image is 3K� 4K with a pixel size of 0.1 nm.

Because this dataset has about 40 	 50 fiducial markers sparsely

located on one surface, it is feasible to be used to assess the tracking

deviation in real datasets.

The second dataset, Hemocyanin, is a tilt series of vitrified key-

hole limpet hemocyanin solution (Fig. 1B). Hemocyanin was bought

from Sigma-Aldrich (USA) and buffered in phosphate-buffered sal-

ine solution with a protein concentration of 1 mg/ml. The 300 mesh

copper EM grids with holey carbon film (Quantifoil R2/1) were

bought from EMS (Electron Microscopy Sciences, USA). Protein sol-

ution was applied to glow discharged grids and blotted in Vitrobot

IV (FEI, the Netherlands) using 4 s blotting time under blotting force

2. The blotting chamber conditions were kept at 4% and 100%

humidity. After blotting, the grids were plunge-frozen in liquid

ethane cooled by liquid nitrogen. The cryo-ET data were collected

by FEI Titan Krios (operated at 300 kV) with a Gatan US4000

camera. The total dose used during data collection was around

8000 e/nm2. There are 95 images with the tilt angles ranging from �
70:0

�
to þ70:0

�
at 1

� 	 2
�

intervals. The size of each tilt image is

2K� 2K with a pixel size of 0.4 nm. This is a dataset that we have

used in our previous work (Han et al., 2015).

The third dataset, Adhesion belt, is a tilt series of adhesion belt

structure (Fig. 1C). The Adhesion belt dataset was provided by the

National Institute of Biological Sciences of China. The data were

collected by an FEI Titan Krios (operated at 300 kV) with a Gatan

camera. There are 111 images, with tilt angles ranging from �50:0
�

to þ60:0
�

at 1
� 	 2

�
intervals. The size of each tilt image is

2K� 2K, with a pixel size of 2.03 nm (2 magnitude-binned). The

initial orientation of the tilt azimuth with respect to the vertical

direction of the image is 2:4
�
. This dataset has a mass of fiducial

markers embedded in the specimen, which provides a proper dataset

to compare the runtime of our previous work and the current alge-

braic solution.

3.2 Experimental performance
3.2.1 Verification of the theoretical bound

We first test whether the theoretical upper bound given in Section

2.1 holds in real-world datasets. Since the VEEV dataset was taken

in a large zoom scale and has a good distribution of fiducial

markers, it is used in this experiment. Firstly, the fiducial marker

positions were extracted by our automatic fiducial marker detection

method (Han et al., 2015) and then the fiducial marker positions

belonging to different micrographs were matched. According to the

angle values of the VEEV dataset, we matched the ith and the iþ nð Þ
th micrographs (n ¼ 1;2 . . .N � i) and obtained the corresponding

point set registration results. All the fiducial marker positions were

matched by the GMM-based solution. In case of notable difference

between cos b0 and cos b (i.e. cos b0ð Þ= cos bð Þ > 1:2), the full imple-

mentation of Equation (18) is used for the coarse estimation. Since

in practice cos b0 and cos b are almost always similar, Equation (18)

is seldom needed, but rather to guarantee the completeness of the

method. Figure 2 illustrates the fiducial marker match results.

Figure 2A presents the relationship of fiducial marker positions

between the micrographs from �5
�

and 0
�

tilt angles. We can see

that the links used to mark the correspondent relationship are

almost parallel to each other, which indicates that the fiducial

Fig. 1. Example images from the three test sets. (A) VEEV, (B) Hemocyanin

and (C) Adhesion belt

Algorithm 2 Refine transformation T �ð Þ against lens distortion.

input: X ; Y; T , and distance threshold d

1: C  1; U 1
2: while dist X ; T Yð Þð Þ < d do

3: Apply T �ð Þ to Y
4: for all x 2 X and y 2 Y do

5: if dist x; T yð Þð Þ < 0:75d then

6: C  C [ x; yð Þ
7: end if

8: M 1
9: if dist x; T yð Þð Þ < d then

10: M M[ x; yð Þ
11: end if

12: end for

13: U U [ T
14: Recalculate transformation T by M
15: end while

16: return C and U
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marker positions have not changed a lot between these two views.

Figure 2B presents the relationship between the fiducial markers

from 0
�

and 50
�

tilt angles in which the tilt angle difference is 50
�
.

As expected, the related positions of the fiducial markers have

changed a lot due to the tremendous difference of tilt angles. Figure

2C gives the match error of micrographs with different intervals of

the tilt angle. It can be noticed that the deviation is the smallest

when the tilt angle interval is 5
�

and the average deviation increases

when the tilt angle interval increases. Figure 2C is very useful for the

design of tracking methods. According to the values of the average

deviation, when the tilt angle interval is less than 20
�
, the deviation

is <6 pixels, which is much smaller than the fiducial marker diame-

ter value (18 pixels). Therefore, when designing tracking algorithms,

we can just match the micrographs whose tilt angle interval is less

than 20
�

and then combine the match results together (Amat et al.,

2008; Brandt and Ziese, 2006; Han et al., 2015).

3.2.2 Effectiveness of the divide-and-conquer strategy

Figure 2D shows the superimposition of fiducial marker positions

from the micrographs with 0
�

and 50
�

tilt angles (labeled by ‘dot’

and ‘inverted triangle’, respectively), and the affine transformed

marker positions from the micrograph with 50
�

tilt angle (labeled by

‘circle’). We can see that the GMM-based fiducial marker tracking

algorithm (Algorithm 1) can reasonably well recover the corre-

spondence between fiducial markers in the two micrographs, but the

lens distortion issue is obvious. Figure 3 illustrates the transformed

fiducial marker positions in Figure 2D after applying the divide-and-

conquer refinement to resolve the lens distortion issue (Algorithm

2). According to our strategy, we firstly matched the two datasets by

threshold 0:75d and labeled the matched points. Then the remaining

unmatched points were reformed into two new point sets and were

matched by d. This procedure was repeated until no more matched

points could be labeled. In this dataset, we used the fiducial marker

diameter as a strict distance threshold. After applying our divide-

and-conquer algorithm, the fiducial markers from the 50
�

micro-

graph were divided into three separate point sets. As shown in

Figure 3, the divide-and-conquer algorithm ran for three rounds,

and two affine transformation parameters were calculated and

applied to the fiducial markers. The transformed fiducial markers

denoted by red ‘circle’ and green ‘circle’ are the ones matched cor-

rectly with the fixed fiducial markers, whereas the fiducial markers

that are labeled by black ‘circle’ belong to the third point set for

Fig. 2. (A) The match of fiducial markers that belong to micrographs of �5
�

and 0
�

tilt angles. (B) The match of fiducial markers that belong to micrographs of 0
�

and 50
�

tilt angles. (C) For each interval, the box plot indicates the distribution of the registration error for the point set registration: firstly, the average deviation

of each point set registration result is calculated and then the box plot is drawn based on this average deviation. According to the tilt angle values, the first box

plot contains 20 average deviations, the second contains 19 and so on. (D) Superimposition of fiducial marker positions from the micrographs with 0
�

and 50
�

tilt

angles (labeled by ‘dot’ and ‘inverted triangle’, respectively), and the affine transformed marker positions from the micrograph with 50
�

tilt angle (labeled by

‘circle’)
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which a uniform transformation to the fixed point set was difficult

to be found. There are 28 matched pairs of fiducial markers detected

after the divide-and-conquer algorithm, whereas there are only 22

matched pairs without this refinement step (Fig. 2D).

In practice, a tilt series alignment module does not need to be

applied to match the whole set of micrographs. Instead, only the

adjacent micrographs or micrographs within several intervals are

matched. Keeping the tilt angle interval smaller than 20
�

and using

the transitivity of fiducial marker positions on different micrographs

can lead to more reliable fiducial marker tracking (Amat et al.,

2008; Han et al., 2015). Therefore, the effect of lens distortion is dif-

ficult to be observed in the matching result of two micrographs with

a small tilt angle interval. However, according to the deviation value

in Equation (6), a relatively large deviation may still be observed in

the high tilt angles. Under this circumstance, the effect of lens

distortion will be enlarged. Our divide-and-conquer algorithm can

be used to obtain better fiducial marker tracking. Here, the

Hemocyanin dataset is used as an illustration. The adjacent micro-

graphs and the micrographs with one interval apart are matched.

Because the interval of tilt angles is very small in the Hemocyanin

dataset, almost all the fiducial markers can be tracked with high

quality without lens distortion correction. However, micrographs

with high tilt angles still encounter lens distortion issues, which

require the divide-and-conquer refinement. Figure 4 shows the

matching results from the micrographs with 67
�

and 70
�

tilt angles.

For each micrograph, 180 fiducial marker positions were detected

and used in fiducial marker matching. Figure 4A shows the result

directly matched by the affine transformation model, in which the

majority of the fiducial markers were correctly matched, but some

markers still have relatively large deviation (e.g. the fiducial markers

in the green ellipse region). Figure 4B shows the result in which the

lens distortion is resolved by the divide-and-conquer algorithm. It is

clear that the fiducial markers located in the green ellipse region

have much smaller deviation compared to the previous result. By

directly applying the affine transformation, we obtained 155 pairs

of the correctly tracked fiducial markers, whereas after the applica-

tion of the divide-and-conquer algorithm, 161 pairs were correctly

tracked. The results prove the effectiveness of the lens distortion

refinement.

3.2.3 Computational efficiency

Another merit of our solution is the speedup gained from the appli-

cation of the GMM. Though our previous work (Han et al., 2015)

can align a classic cryo-ET dataset in about 3 	 5 min, the process

of a large-field dataset which has hundreds of fiducial markers

embedded in still remains a problem. With our new solution, the

model-based fiducial marker tracking can be solved in a simpler

way. According to our derivation, if the micrographs’ tilt angle

interval is not too large, the coarse estimation of the transformation

matrix A can be simplified as a rigid matrix. If the coarse estimation

in Algorithm 1 is replaced by rigid transformation, we can gain a

significant speedup without the loss of accuracy. Figure 5 illustrates

the comparison of the runtime between our algebraic tracking algo-

rithm and the previous random sampling work (Han et al., 2015).

Here, for the Hemocyanin dataset and the Adhesion belt dataset, the

fiducial marker positions in the nth and (nþ1)th, and nth and

(nþ2)th micrographs are matched. Both the algebraic solution and

the random sampling solution were run on a Fedora 25 system with

128 Gb memory and two E5-2667v4 (3.2 GHz) CPU. In Figure 5,

the x-axis represents the average number of fiducial marker posi-

tions for each matching operation, and the y-axis represents the run-

time (ms) in the log scale. It can be seen that if the number of

fiducial marker positions is less than 110, there is no obvious

Fig. 3. Result illustration of the VEEV dataset. Superimposition of fiducial

marker positions from the micrographs with 0
�

and 50
�

tilt angles (labeled by

‘dot’ and ‘inverted triangle’, respectively), and the affine transformed marker

positions from the micrograph with 50
�

tilt angle (labeled by ‘circle’). Divide-

and-conquer algorithm is used to reduce the effect of lens distortion: the fidu-

cial markers labeled by red ‘circle’ and green ‘circle’ are the ones matched

correctly with the fixed fiducial markers from 0
�
; and the fiducial markers

labeled by black ‘circle’ are regarded as outliers

Fig. 4. Result illustration of the Hemocyanin dataset. Superimposition of fidu-

cial marker positions from the micrographs with 67
�

and 70
�

tilt angles

(labeled by ‘dot’ and ‘inverted triangle’, respectively), and the affine trans-

formed marker positions from the micrograph with 70
�

tilt angle (labeled by

‘circle’). (A) The direct fiducial marker match result by affine transformation.

(B) Divide-and-conquer algorithm is used to reduce the effect of lens distor-

tion: the fiducial markers labeled by red ‘circle’ and green ‘circle’ are the ones

matched correctly with the fixed fiducial markers; and the fiducial markers

labeled by black ‘circle’ are concerned as outliers
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difference between our current GMM-based algebraic solution

and our previous random sampling solution (both of the two meth-

ods can finish the fiducial marker matching of two micrographs in

1000 ms). It complies with the fact that the random sampling

solution will not cost too much time for cryo-ET datasets with a

small number of fiducial markers. When the number of fiducial

marker increases (e.g. >150), the previous random sampling

solution needs about 2000 	 5000 ms to finish a fiducial marker

matching of two micrographs, whereas the current GMM-based sol-

ution only needs 200 	 500 ms. The total tracking time is consistent

with the above results. For the Hemocyanin dataset, to generate the

whole track model, the random sampling solution and the GMM-

based solution cost 263 196 ms (4.38 min) and 41 164 ms (0.68 min),

respectively. For the Adhesion belt dataset, to generate the whole

track model, the random sampling solution and the GMM-based

solution cost 2 325 557 ms (38.76 min) and 176 987 ms (2.95 min),

respectively. Because for the Hemocyanin dataset, most of the

micrographs only have 80 	 120 fiducial markers, the total runtime

for random sampling is not too long. On the contrary, most of

the micrographs have 195 	 255 fiducial markers in the Adhesion

belt dataset, so the runtime cost by the random sampling solution

is about 10 times longer than that of the GMM-based solution.

The trend will continue if the number of fiducial markers increases.

Therefore, the GMM-based solution is much faster for the datasets

with a large number of fiducial markers.

3.2.4 Performance in marker-based alignment

To test the correctness of the proposed GMM-based tracking model,

we integrated it to our previous fully automatic alignment scheme

(Han et al., 2015, 2017) and obtained the alignment result for the

Adhesion belt dataset (Fig. 6). It can be seen that after the assembly

of peer matching, there are 105 tracks that cover more than 77

micrographs in the Adhesion belt dataset (	70% of the entire tilt

series). Only the tracks that are long enough are used for projection

parameter estimation. As shown in Figure 6A, all the 105 tracks are

used and the average length of tracks used for parameter optimiza-

tion is 96.4, while the mean alignment residual is 0.37 pixel. Figure

6C and D shows the aligned tracks of the Adhesion belt dataset

from different directions. We can notice that the alignment is suc-

cessful. We also compared the results with the ones of random sam-

pling and found that there was no significant difference in the

tracking accuracy. To achieve the approximate alignment, our ran-

dom sampling method took 43.5 min in total, whereas the GMM-

based method took only 6.7 min. Overall, the experimental results

demonstrate that the theoretical upper bound is very useful for

tracking algorithm design and our GMM-based tracking model can

dramatically improve the tracking efficiency with good accuracy.

4 Discussion and conclusion

In this work, our focus is the fiducial marker tracking in fully automatic

tilt series alignment. We begin our work by discussing the projection

model in ET and then giving and proving a theoretical upper bound of

the deviation that allows the positions of fiducial markers in two micro-

graphs to be aligned by affine transformation. This theoretical bound is

very useful for the design of tracking methods, which can ensure that

tracking using only 2D positions of the fiducial markers can be success-

ful for most of the general tilt series. Then, the tracking of fiducial

markers is reduced to an incomplete point set registration problem. We

introduce a GMM and design an automatic algorithm based on it to

make fiducial marker tracking more effective and efficient. Finally, we

propose a divide-and-conquer algorithm to resolve the lens distortion

issue to ensure the reliability of our scheme. The real-world experimen-

tal results further support our proposed bound and demonstrate the

effectiveness of our algorithms. This work makes the fully automatic

tracking for datasets with a large number of fiducial markers possible.

However, to achieve more reliable and accurate fully automatic fiducial

marker-based alignment, several future works should be done.

Firstly, we should make efforts on making the algebraic solution

more robust for complex situations. Compared with the random

sampling method (Han et al., 2015), the algebraic method is much

faster. However, the algebraic method is sensitive to outliers com-

pared to the random sampling method (Supplementary Material

Section S2). The current version may stuck in datasets with

extremely irregular fiducial marker distributions. This situation

often happens when aligning tilt series for subtomogram averaging,

in which the motion of views may be large and may result in many

fiducial markers outside the focus area, for example, 60 abruptly

introduced outside markers versus 10 inside markers. Because the

fiducial markers are randomly distributed on the specimen and do

not indicate a certain shape context, these abruptly introduced fidu-

cial markers will appear as outliers and degenerate the probability

distribution in our analysis. Fortunately, usually the subtomogram

averaging applications do not use many fiducial markers and thus

our previous random sampling method can handle such irregular

datasets fast enough. In the future, analysis based on the marker

density may be added to the model to cope with such situations.

Fig. 5. Runtime of the proposed GMM-based method (in red) and the previous

random sampling-based method (Han et al., 2015) (in blue) on (A) the

Hemocyanin dataset and (B) the Adhesion belt dataset. The x-axis represents

the average number of fiducial markers and the y-axis represents the runtime

(ms) in the log scale
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Secondly, a more mature fiducial marker detection method is

needed for a robust fully automatic fiducial marker-based alignment.

For datasets that have hundreds of fiducial markers embedded in, the

algebraic solution is obviously a better choice. Better performance of

marker detection could offer a better fiducial marker distribution and

further improve the tracking result. There are various studies that

describe the fiducial marker detection algorithms (Amat et al., 2008;

Brandt et al., 2001b; Cao et al., 2011; Han et al., 2015; Mastronarde

and Held, 2017; Ress et al., 1999). Trampert et al. (2015) made a

comparison of several state-of-the-art fiducial marker detection algo-

rithms and drew the conclusion that none of them is superior to the

others in all cases, which suggests that the choice of a marker detec-

tion algorithm depends on the properties of the dataset to be ana-

lyzed. Considering the difference between a cryo-ET micrograph and

a negative-stained micrograph, a feasible and accurate fiducial marker

detection algorithm should fully use the intrinsic properties in the

dataset. Recent development of machine learning techniques such as

deep learning (Wang et al., 2016) and bioimaging signal processing

techniques such as NMR peak picking (Abbas et al., 2013; Alipanahi

et al., 2009; Cannistraci et al., 2015; Cheng et al., 2014; Liu et al.,

2012) would be a promising direction for fiducial marker detection.
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