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OBJECTIVE—We determined whether muscle AMP-activated
protein kinase (AMPK) has a role in the development of insulin
resistance.

RESEARCH DESIGN AND METHODS—Muscle-specific
transgenic mice expressing an inactive form of the AMPK �2
catalytic subunit (�2i TG) and their wild-type littermates were
fed either a high-fat (60% kcal fat) or a control (10% kcal fat) diet
for 30 weeks.

RESULTS—Compared with wild-type mice, glucose tolerance in
�2i TG mice was slightly impaired on the control diet and
significantly impaired on the high-fat diet. To determine whether
the whole-body glucose intolerance was associated with im-
paired insulin sensitivity in skeletal muscle, glucose transport in
response to submaximal insulin (450 �U/ml) was measured in
isolated soleus muscles. On the control diet, insulin-stimulated
glucose transport was reduced by �50% in �2i TG mice com-
pared with wild-type mice. High-fat feeding partially decreased
insulin-stimulated glucose transport in wild-type mice, while
high-fat feeding resulted in a full blunting of insulin-stimulated
glucose transport in the �2i TG mice. High-fat feeding in �2i TG
mice was accompanied by decreased expression of insulin
signaling proteins in gastrocnemius muscle.

CONCLUSIONS—The lack of skeletal muscle AMPK �2 activity
exacerbates the development of glucose intolerance and insulin
resistance caused by high-fat feeding and supports the thesis that
AMPK �2 is an important target for the prevention/amelioration
of skeletal muscle insulin resistance through lifestyle (exercise)
and pharmacologic (e.g., metformin) treatments. Diabetes 57:
2958–2966, 2008

T
he development of insulin resistance in skeletal
muscle precedes the onset of type 2 diabetes by
decades (1). Although the underlying mechanism
is not fully understood, in recent years there has

been growing interest in AMP-activated protein kinase
(AMPK) as a potential target to attenuate skeletal muscle
insulin resistance. As examples, two well-known therapies

for type 2 diabetes, physical exercise and metformin, both
activate AMPK in skeletal muscle (2). Despite this empha-
sis on AMPK, there is little direct evidence showing that
AMPK is in fact critical in the development of skeletal
muscle insulin resistance.

AMPK is an energy-sensing enzyme that is activated by
acute increases in the cellular AMP-to-ATP ratio. In skel-
etal muscle, AMPK activity is increased by stimuli such as
exercise, hypoxia, ischemia, and osmotic stress, all of
which reduced cellular energy level (2). When intracellular
ATP decreases, AMPK acts to switch off ATP-consuming
pathways, such as glycogen, fatty acid, and protein syn-
thesis pathways, and acts to switch on alternative path-
ways for ATP regeneration, such as glucose transport,
glycolysis, and fatty acid oxidation. AMPK may also play a
role in enhancing insulin sensitivity and/or responsiveness
for glucose transport (3–6) in skeletal muscle.

AMPK is a heterotrimeric serine/threonine kinase that
consists of a catalytic �-subunit and regulatory �- and
�-subunits (7–11). In skeletal muscle, �2 (12,13) is the
major catalytic isoform expressed. To examine a possible
role of AMPK in the development of insulin resistance,
muscle-specific transgenic mice expressing an inactive
form of the AMPK �2 catalytic subunit isoform (�2i TG
mice) (14) and their wild-type littermates were subjected
to a high-fat diet. Here, we show that ablation of muscle
AMPK �2 activity worsens the glucose intolerance induced
by high-fat feeding. This exacerbated glucose intolerance
is associated with a marked decrease in muscle glucose
transport in response to insulin, measured in vitro in
isolated muscles. These results demonstrate that AMPK �2
activity is an important factor contributing to insulin
action on glucose transport in skeletal muscle. Therefore,
activation of muscle AMPK �2 by exercise and/or pharma-
cological stimulation can be a significant strategy to
improve insulin resistance in patients with type 2 diabetes.

RESEARCH DESIGN AND METHODS

Transgenic mice. To render the catalytic subunit inactive, the aspartic acid
at amino acid residue 157 of rat AMPK �2 subunit was substituted for alanine
(15). Mice expressing the inactive �2 tagged at the amino terminus with a HA
epitope were generated by injecting the recombinant DNA driven by a muscle
creatine kinase promoter into fertilized FVB (Friend virus B-type) mouse
oocytes, and the initial characterization of these mice has been described
previously (14). All procedures used were approved by the institutional animal
care and use committee of the Joslin Diabetes Center.
Diet treatments. Six-week-old male �2i TG mice and their wild-type litter-
mates were housed in plastic cages in animal quarters maintained at 22°C with
a 12:12-h dark-light cycle. Animals were fed a high-fat or standard diet for 30
weeks. The high-fat diet consisted of 19.7% (of energy) casein, 54.4% lard, 5.5%
soybean oil, 12.3% maltodextrin, and 6.7% sucrose (D12492; Research Diets,
New Brunswick, NJ). The control diet consisted of 19.7% casein, 4.4% lard,
5.5% soybean oil, 3.5% maltodextrin, 34.5% sucrose, and 31.1% corn starch
(D12450B; Research Diets). Both control and high-fat diets were supple-
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mented with 1.3% (wt/wt) vitamin mix, 0.3% (wt/wt) choline bitartrate, 1.3%
(wt/wt) mineral mix, 1.7% (wt/wt) dicalsium phosphate, 0.7% (wt/wt) calcium
carbonate, and 2.1% (wt/wt) potassium citrate.
Body weights and blood glucose concentrations. The mice were weighed
weekly, and blood glucose concentrations were measured in the fasting state
once every 2 weeks. To measure blood glucose concentrations, food was
removed at 2100 h and the mice were kept in a new cage for 12 h before blood
collection. A drop of blood was taken from the tail between 0900 and 1000 h
and blood glucose concentrations were determined using a glucometer (One
Touch Ultra, LifeScan, West Chester, PA).
Glucose tolerance tests. Mice underwent glucose tolerance tests at weeks
4, 18, 26, and 29. Glucose (1 g/kg) was injected intraperitoneally and blood was
collected from the tail before (0 min) and after glucose injection (15, 30, 60,
and 120 min). Blood glucose was determined using the glucometer.
Blood parameters. The mice were fasted for 12 h before the experiment.
Mice were killed by decapitation and trunk blood collected. Serum insulin
concentrations were assessed using a rat/mouse insulin enzyme-linked
immunosorbent assay kit with a mouse insulin standard (Linco Research,
St. Charles, MO). Serum triglycerides were determined by kit assay (Sigma,
St. Louis, MO) and serum free fatty acids using the NEFA C kit (Wako,
Dallas, TX).
Measurement of muscle lipid and glycogen content. Muscle triglycerides
were estimated by measuring glycerol fluorimetrically after hydrolysis (16).
Diacylglycerol and ceramide content in the extracts were determined using a
diglyceride kinase reaction-based method (17). For glycogen measurements,
muscle was hydrolyzed and glycogen concentrations were determined by the
hexokinase enzymatic method, using the glucose HK reagent (Sigma). Tibialis
anterior muscles were used for these measurements.
Muscle incubation and glucose transport. After 30 weeks of dietary
treatment, the mice were fasted overnight and killed. The soleus muscles were
rapidly removed and treated as previously described (14). Briefly, each soleus
muscle was mounted on an incubation apparatus and preincubated in
Krebs-Ringer bicarbonate (KRB) buffer containing 2 mmol/l pyruvate for 20
min. The muscles were then incubated in KRB buffer in the absence or
presence of 450 �U/ml insulin for 30 min. The buffers were kept at 37°C
throughout the experiment and gassed continuously with 95% O2 and 5% CO2.
Immediately after muscle incubation, the muscles were transferred to KRB
buffer containing the same concentration of insulin and 1 mmol/l 2-[3H]-deoxy-
D-glucose (1.5 �Ci/ml) and 7 mmol/l D-[14C]-mannitol (0.3 �Ci/ml), and glucose
transport was measured as described (14).
Immunoblotting. Immunoblotting was done using standard procedures as
previously described (18). Antibodies were from commercial sources and
consisted of insulin receptor �-subunit (Cell Signaling), insulin receptor
substrate-1 (IRS-1), Akt (Upstate Biotechnology, Lake Placid, NY), and GLUT1
and GLUT4 (Chemicon, Temecula, CA). Gastrocnemius muscles were used for
immunoblotting.
Measurement of isoform-specific AMPK activity. AMPK activity was
measured as previously described (14). Briefly, muscle lysates (150 �g
protein) were immunoprecipitated with specific antibodies against the �1 or
�2 catalytic subunits and protein A beads. The kinase reaction was carried out
in 40 mmol/l HEPES, pH 7.0; 0.1 mmol/l synthetic SAMS peptide; 0.2 mmol/l
AMP; 80 mmol/l NaCl; 0.8 mmol/l dithiothreitol; 5 mmol/l MgCl2; and 0.2

mmol/l ATP (2 �Ci of [�-32P]ATP) for 20 min at 30°C. Reaction products were
spotted on Whatman P81 filter paper, the papers were extensively washed in
1% phosphoric acid, and radioactivity was assessed with a scintillation
counter. Kinase activity was assessed by incorporated ATP (pmol) per
immunoprecipitated protein (mg) per min.
Noninvasive physiological and behavioral characterization. Wild-type
and �2i TG mice were subjected to noninvasive physiological and behavioral
characterization using the Comprehensive Lab Animal Monitoring System

FIG. 1. AMPK activity. Thirty weeks after the dietary treatments, the
mice were fasted overnight. AMPK �1 and �2 activities were analyzed
in extracts from gastrocnemius muscles. Data are represented as
means � SE. n � 5–6 for all groups.

TABLE 1
Change in body weight and blood glucose

Week
0 4 18 26 29

Body weight (g)
Control diet

Wild type 26.5 � 0.7 30.6 � 1.0 34.9 � 1.8 37.8 � 1.7 37.9 � 1.4
�2i TG 25.0 � 0.6 29.4 � 0.6 32.7 � 1.2 35.5 � 1.3 36.4 � 1.2

High-fat diet
Wild type 24.8 � 0.7 34.1 � 0.8* 41.3 � 1.9* 47.3 � 2.5* 47.6 � 2.5*
�2i TG 24.9 � 0.5 34.9 � 0.8* 42.7 � 1.7* 49.2 � 1.0* 48.6 � 1.5*

Blood glucose (mg/dl)
Control diet

Wild type 190.6 � 10.8 127.8 � 5.1 136.4 � 6.9 130.8 � 6.9 126.6 � 20.3
�2i TG 165.4 � 11.4 155.0 � 11.1 133.6 � 12.7 122.4 � 9.3 143.5 � 29.4

High-fat diet
Wild type 171.8 � 16.6 165.0 � 12.8 149.0 � 28.6 154.5 � 7.9 162.0 � 17.6*
�2i TG 182.5 � 12.3 160.3 � 10.8 157.2 � 6.4 150.3 � 14.3‡ 191.5 � 18.3‡

Data are means � SE. n � 5–6 for all points. *P � 0.01 vs. control diet in same genotype. ‡P � 0.05 vs. control diet in same genotype.
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(CLAMS; Columbus Instruments, Columbus, OH) at the Physiology Core
Laboratory of the Joslin Diabetes Center. The mice were monitored for 24 h
and assessed for oxygen consumption (VO2; ml � kg	1 � h	1), carbon dioxide
generation (VCO2; ml � kg	1 � h	1), heat generation calculated from gas
exchange data (kcal/h), respiratory exchange ratio calculated from gas
exchange data, food consumption (g/24 h), water consumption (ml/24 h), and
locomotive activity evaluated by three-dimensional fixed-point observation
(counts/h). Monitoring started at 1000 h, and CLAMS assessment was made
during both the light cycle (0700–1900 h) and dark cycle (1900–700 h).
Statistics. Statistical evaluation was performed by two-way ANOVA or
Student’s two-tailed t test. When ANOVA revealed significant differences, the
Fisher’s t test was used as a post hoc test for multiple comparisons.

RESULTS

Body weight and blood glucose concentrations. Body
weights and blood glucose concentrations are summarized
in Table 1. The effects of the high-fat diet on body weight
emerged by week 4 and remained for the remaining
experimental period in both wild-type and �2i TG mice.
The high-fat diet–induced increase in body weight was
similar between wild-type and �2i TG mice. Blood glucose
concentrations in the fasted state tended to be higher with
the high-fat diet compared with the control diet in both
wild-type and �2i TG mice (main effect of the diet, P � 0.05
at week 26 and P � 0.07 at week 29). The relatively minor

effect of the high-fat diet on blood glucose may be due to
the mouse strain used in this study. It has been shown that
in FVB mice, the background strain used in the current
study are resistant to high-fat diets compared with other
mouse strains (19,20). No significant differences in blood
glucose concentrations were observed between genotypes
in both control and high-fat diet–treated mice. There was
a tendency for blood glucose concentrations to decline
from week 0 to week 4, which is likely due to acclimation
of the mice to handling during blood collection.
AMPK activity. To confirm that muscle AMPK �2 activity
was inhibited in muscles of �2i TG mice, isoform-specific
AMPK activities were measured in gastrocnemius muscle
at the end of the experimental period. As expected, �2
activity was blunted in �2i TG mice, and there was no
compensatory increase in �1 activity in the �2i TG mice
(Fig. 1). Interestingly, there was a tendency for AMPK �2
activity to diminish with long-term high-fat feeding in
wild-type mice, whereas there was no effect of high-fat
feeding on AMPK �1 activity (Fig. 1).
Glucose tolerance. To test whether the lack of muscle
AMPK �2 activity induces glucose intolerance in vivo,
wild-type and �2i TG mice fed the control or high-fat diet

FIG. 2. Effect of high-fat diet and lack of AMPK �2 activity on glucose tolerance test. Glucose tolerance tests were performed in wild-type and
�2i TG mice fed a control or a high-fat diet at weeks 4, 18, 26, and 29. Blood glucose concentration was measured at time points 0, 15, 30, 60, and
120 min after the glucose injection. Data are represented as means � SE. n � 5–6 for all groups. *P < 0.05 vs. wild type with high-fat diet; **P <
0.01 vs. wild type with high-fat diet. E, high-fat diet wild type; F, high-fat diet �2i TG; ‚, control diet wild type; Œ, control diet �2i TG.
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were subjected to glucose tolerance tests. Blood glucose
concentrations were monitored for 120 min after intraperi-
toneal glucose injection. As shown in Fig. 2, the high-fat
diet resulted in impaired glucose tolerance in both wild-
type and �2i TG mice by week 4, an effect that persisted
for the remainder of the study. There was no difference
between wild-type and �2i TG mice with both control and
high-fat diet treatments at weeks 4 and 18. However, with
26 and 29 weeks of high-fat feeding, glucose tolerance in
�2i TG mice was significantly impaired compared with
wild-type mice. The area under the curve of the glucose
tolerance test at week 29 was significantly higher (P �
0.05) in the �2i TG mice that were fed the high-fat diet
(17.6 � 7.2 vs. 22.1 � 22.9; mg/dl 
 120 min 
 103). This
shows that the lack of skeletal muscle AMPK �2 activity
exacerbates the development of glucose intolerance.
Glucose transport in isolated muscle. We next exam-
ined muscle insulin sensitivity for glucose transport using
the in vitro muscle incubation system (Fig. 3). At week 30,
soleus muscles were isolated from the mice and incubated
in the absence or presence of a submaximal dose of insulin
(450 �U/ml). In mice fed the control diet, insulin increased
glucose transport by twofold in wild-type mice. This
increase in insulin-stimulated glucose transport tended to
be diminished in �2i TG compared with wild-type mice
(P � 0.07). Insulin significantly increased glucose trans-
port in wild-type mice fed both the standard and high-fat
diet, but this increase was blunted by 40% with the high-fat
feeding. In �2i TG mice, insulin-stimulated glucose trans-
port was totally abolished on the high-fat diet, showing
that a lack of AMPK activity further worsens high-fat
diet–induced muscle insulin resistance. These results sug-
gest that impaired insulin-stimulated glucose transport in
�2i TG mice on the high-fat diet contributes to the
deterioration of glucose intolerance observed in these
animals. Isolated extensor digitorum longus muscles were
also used to determine glucose transport in vitro (data not

shown). However, the increase in insulin-stimulated glu-
cose transport was very small even in control diet–fed
wild-type mice, making it difficult to compare the differ-
ence between genotype and fed conditions and demon-
strating that extensor digitorum longus muscles become
insulin resistant with age.
Expression of insulin signaling molecules. Because
�2i TG mice showed decreased insulin sensitivity for
glucose transport, we also determined the effects of diet
and genotype on protein expression of key insulin signal-
ing molecules. Since use of the entire soleus muscle was
necessary to measure glucose transport, we used gastroc-
nemius muscles for these analyses. The decrease in insu-
lin-stimulated glucose transport in the �2i TG mice fed the
high-fat diet was accompanied by reductions in insulin
receptor-� subunit, IRS-1, and Akt compared with wild-
type mice fed the high-fat diet (Fig. 4). Expression of these
molecules was not significantly different between �2i TG
and wild-type mice fed the control diet. Therefore, lack of
AMPK �2 activity itself does not seem to be a trigger for
the downregulation of insulin signaling molecules. Instead,
there may be synergic effects of high-fat feeding and a lack
of AMPK �2 activity on the expression of these proteins.
Interestingly, GLUT4 expression was not different among
the four groups (Fig. 4). Although it has been reported that
activation of AMPK by 5-aminoimidazole-4-carboxamide-
1-�-4-ribofuranoside (AICAR) increases GLUT4 expres-
sion in skeletal muscle (21,22), our results show that
ablation of AMPK activity does not affect GLUT4 protein
expression.
Muscle lipid and glycogen content. Muscle lipid con-
centrations are considered to be an important determinant
of insulin resistance in skeletal muscle (23). Therefore, we
measured muscle triglyceride, diacylglycerol, and cer-
amide content in tibialis anterior muscles (Fig. 5). Muscle
triglyceride concentrations tended to be higher in �2i TG
mice compared with wild-type mice on the control diet,
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although the difference did not reach statistical signifi-
cance (P � 0.09). The high-fat diet also tended to increase
triglyceride content in wild-type mice compared with the
control diet (P � 0.08). There was no additive effect of the
high-fat diet and lack of AMPK �2 activity on triglyceride
content. Muscle diacylglycerol concentrations were not
different between wild-type and �2i TG mice on the
control diet. The high-fat diet increased diacylglycerol
content, and this increase was statistically significant only
in the �2i TG mice. There were no differences in muscle
ceramide concentrations among the four groups. Muscle
glycogen concentrations are also considered to be an
important factor in the regulation of insulin-stimulated
glucose transport (24). Muscle glycogen content in the �2i
TG mice was lower compared with wild-type mice under
both the standard and high-fat diet conditions. The high-fat
diet did not significantly affect muscle glycogen content in
both wild-type and �2i TG mice.
Serum insulin, free fatty acid, and triglyceride con-
centrations. As shown in Fig. 6, the high-fat diet signifi-
cantly increased serum insulin in both the wild-type and
�2i TG mice, with no difference between genotypes. Both

serum free fatty acids and triglycerides tended to decrease
with the high-fat diet compared with the control diet in
both wild-type and �2i TG mice, although these changes
did not reach statistical significance.
Respiratory exchange ratio. As expected, respiratory
exchange ratio was significantly reduced (P � 0.05) with
the high-fat diet in both wild-type (control 0.86 � 0.03;
high fat 0.76 � 0.03) and �2i TG (control 0.84 � 0.03; high
fat 0.75 � 0.01) mice. There were no differences of
respiratory exchange ratio between genotypes in both
control and high-fat diet conditions.

DISCUSSION

AMPK has been proposed to be a key regulator of glucose
metabolism in skeletal muscle and a therapeutic target for
the treatment of type 2 diabetes (10,25). Although direct
evidence for a role of AMPK in the long-term regulation of
skeletal muscle insulin sensitivity is lacking, there are
several lines of evidence to support the concept that
AMPK may be important for normal insulin action in this
tissue. As examples, acute activation of AMPK is followed

FIG. 4. Effect of lack of AMPK �2 activity and high-fat diet on expression of molecules related with insulin-dependent glucose transport. Thirty
weeks after the dietary treatments, the mice were fasted overnight. Immunoblotting of gastrocnemius muscle lysate from wild-type and �2i TG
mice was performed. Quantification of insulin receptor-�, IRS-1, Akt, and GLUT4 were displayed. Data are represented as means � SE. n � 5–6
for all groups.
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by an increase in insulin action on glucose transport in
skeletal muscle (3,4,6,26,27). Prior incubation of isolated
rat epitrochlearis muscles with the AMPK activator AICAR
enhanced insulin-stimulated glucose transport by twofold
(4). It was reported that the insulin-sensitizing effects of
both AICAR and hyperosmolarity were diminished by
inhibition of AMPK activity with compound C in C2C12
myotubes (6). The effects of chronic AMPK activation via
long-term AICAR treatment have also been investigated.
AICAR treatment of Zucker diabetic fatty rats for 8 weeks
improved insulin sensitivity measured by a hyperinsuline-
mic-euglycemic clamp, an affect due mainly to increased
glucose transport in skeletal muscle (28). In contrast,
there was no effect of 1 h of AICAR pretreatment on
insulin-stimulated glucose transport in primary human
muscle cells (29), and administration of AICAR for 1 week
did not increase insulin-stimulated glucose transport in
isolated muscles from KKAy-CEPT (30) and db/db (31)
mice. The differences between the studies might come
from the distinct types of muscles used for each of the
investigations, since chronic AICAR administration was
shown to improve insulin-stimulated glucose transport in
rat skeletal muscle in a fiber-type–specific manner (5).
Although current observations are not entirely consistent,
studies using AICAR generally suggest that AMPK has a
role in insulin sensitivity for glucose transport in skeletal
muscle.

AICAR is taken up into skeletal muscle and metabolized to
ZMP, an analog of AMP. Therefore, AICAR is not completely
specific for AMPK because ZMP regulates other AMP-sensi-
tive enzymes such as fructose-1,6-bisphosphates (32) and
muscle glycogen phosphorylase (33). Given the nonspecific-
ity of AICAR to AMPK activation and the inconsistent find-
ings discussed above, it is important to use an animal model
in which AMPK activity is eliminated to determine the role of
AMPK in insulin sensitivity. In the current study, we showed
that ablation of skeletal muscle AMPK �2 activity aggravates
the development of whole-body glucose intolerance caused
by high-fat feeding. Although we cannot fully rule out the
possibility that glucose intolerance in high-fat–fed �2i TG
mice was due to defects in insulin secretion or hepatic
glucose production, this seems unlikely because the ablation
of AMPK �2 activity blunted insulin-stimulated glucose trans-
port measured in isolated muscles from high-fat–fed mice.
These results demonstrate that AMPK is a necessary factor in
order to maintain normal insulin action in skeletal muscle.
Our results also suggest that a lack of muscle AMPK activity
may increase the risks of insulin resistance and type 2
diabetes. Since glucose tolerance in �2i TG mice was not
significantly different compared with wild-type mice on the
control diet, ablation of AMPK �2 activity itself may not be a
direct trigger in the development of insulin resistance.
Rather, lack of AMPK activity may work as a precipitating
factor for the development of insulin resistance. Importantly,

FIG. 5. Effect of lack of AMPK �2 activity and high-fat diet on muscle lipid and glycogen content. Thirty weeks after the dietary treatments, the
mice were fasted overnight. Triglyceride, diacylglycerol, ceramide, and glycogen content were analyzed in extracts from tibialis anterior muscles.
Data are represented as means � SE. n � 5–6 for all groups.

N. FUJII AND ASSOCIATES

DIABETES, VOL. 57, NOVEMBER 2008 2963



AMPK activity in skeletal muscle from patients with type 2
diabetes appears to be intact. Basal activity is similar to
matched controls (13,34), and the enzyme can be activated
normally by acute exercise (13) and metformin in vivo
(13,35) and by AICAR in vitro (36). These reports also
suggest that skeletal muscle insulin resistance is unlikely to
be initiated by dysfunction of the AMPK trimer.

Other studies have shown that obese insulin-resistant
Zucker rats have reduced AMPK activity and related
signaling abnormalities in skeletal muscle (37–39). These
reports indicate that skeletal muscle AMPK activity can be
altered if the obesity and/or insulin resistance is severe,
and, in this situation, lower AMPK activity may contribute
to the obese and insulin-resistant phenotype (39). Impor-
tantly, exercise training can reverse abnormalities of im-
paired AMPK signaling in obese Zucker rats, which may
contribute to the beneficial effect of exercise on improve-
ment of insulin resistance (39). Interestingly, it has also
been reported that suppression of AMPK signaling is
involved in tumor necrosis factor–induced skeletal muscle

insulin resistance (40). Furthermore, the antiobesity ef-
fects of ciliary neurotrophic factor have been recently
shown to be mediated by AMPK in skeletal muscle, and
these effects are not suppressed by diet-induced obesity.
Thus, AMPK may be a significant contributing factor to the
development of insulin resistance in obesity.

Recently, it has been reported that there are age-
associated reductions in AMPK activity in skeletal muscle
(41). In this report, acute activation of AMPK �2 by AICAR
infusion or exercise observed in young rats (3 months old)
was blunted in skeletal muscle of old rats (28 months old).
This blunted AMPK �2 activation was associated with
reduced mitochondrial biogenesis, suggesting that aging-
associated reductions in muscle AMPK activity may be
an important contributing factor in the reduced mito-
chondrial function and resultant insulin resistance (41).
Interestingly, treatment with the antidiabetes agent rosigli-
tazone for 1 week enhanced AICAR-induced AMPK �2
activation and glucose uptake in insulin-resistant high-fat–
fed rats, suggesting that rosiglitazone potentiates AMPK
�2 activity (27). Since rosiglitazone acutely activates
AMPK (42), chronic or repetitive activation of AMPK, such
as exercise training, may potentiate its function/activity. It
has been reported that basal AMPK activity is elevated
with endurance training in human skeletal muscle (43).
Therefore, activation of muscle AMPK by exercise and/or
pharmacological stimulation can be an important strategy
to improve insulin resistance (44).

Accumulation of muscle triglyceride is recognized as a
consistent marker of insulin resistance (45). Interestingly,
in our study, muscle triglyceride content tended to in-
crease in the �2i TG mice fed the standard diet, and, in
conjunction, insulin-stimulated glucose transport also
tended to be lower in the �2i TG mice. One of the major
roles of AMPK in skeletal muscle is fatty acid oxidation
(8,46). Therefore, it is possible that ablation of AMPK
activity inhibited fatty acid oxidation and facilitated accu-
mulation of triglycerides in �2i TG mice. The high-fat diet
increased muscle triglyceride content in both wild-type
and �2i TG mice. The high-fat diet and AMPK activity
ablation, however, did not have an additive effect on
triglyceride content. Since insulin-stimulated glucose
transport was further impaired by a high-fat diet in the �2i
TG mice, triglyceride content is not the factor that exac-
erbates muscle insulin resistance in this study. Diacylglyc-
erol has been shown to accumulate in the insulin-resistant
muscle of obese animal models, including high-fat–fed rats
(23). Since the diacylglycerol-sensitive novel protein kin-
dase Cs, ε and/or �, are associated with reduced insulin
action in skeletal muscle (47,48), intracellular accumula-
tion of diacylglycerol may be a factor contributing to
insulin resistance. Consistent with previous reports, the
high-fat diet used in this study increased diacylglycerol
content in both wild-type and �2i TG mice. No difference,
however, was observed between wild-type and �2i TG
mice, similar to the triglyceride finding. Ceramide, a lipid
implicated in reduced insulin signaling (23), did not
change in response to the high-fat diet or lack of AMPK
activity.

We do not know the exact mechanism by which ablation
of AMPK activity exacerbates insulin resistance induced
by a high-fat diet. However, the reduced expression of
insulin receptor �-subunit, IRS-1, and Akt may be an
essential component for the blunted insulin action on
glucose transport. Interestingly, high fat feeding and abla-
tion of AMPK activity per se did not alter expression of
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FIG. 6. Effect of lack of AMPK �2 activity and high-fat diet on serum
metabolic parameters. Thirty weeks after the dietary treatments, the
mice were fasted overnight. Serum insulin, free fatty acids, and trig-
lycerides were measured. Data are represented as means � SE. n � 5–6
for all groups.
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those molecules. In future studies, it will be important to
investigate the signaling mechanisms that induce the syn-
ergistic effects of combining a high-fat diet and ablation of
AMPK.

It has been reported that muscle glycogen content is
inversely correlated with insulin-stimulated glucose trans-
port (49–51). However, in the current study, glycogen
content in the gastrocnemius muscles was lowered by
ablation of AMPK activity in �2i TG mice compared with
wild-type mice in both control and high-fat diet (Fig. 4).
Consistent with our results, decreased muscle glycogen
content was also observed in AMPK �2 knockout (soleus
muscle) (52) and AMPK dominant-negative TG mice (gas-
trocnemius muscle) (53). Therefore, glycogen cannot be a
major factor responsible for the impaired insulin-stimu-
lated glucose transport in �2i TG mice (Fig. 2).

The greater impairment of glucose tolerance in the
high-fat–fed �2iTG mice compared with wild-type mice did
not occur immediately upon commencement of high-fat
feeding. This may be explained by the findings that FVB
mice have a higher degree of resistance to high-fat diets
compared with other mouse strains (19,20). It is possible
that the effects of blunted AMPK activity on glucose
tolerance, glucose transport, and expression of insulin
signaling proteins would have been more pronounced if
the animals were on a different background strain.

In summary, the present study shows for the first time
that ablation of AMPK �2 activity specifically in skeletal
muscle exacerbates the development of glucose intoler-
ance and insulin resistance caused by high-fat feeding. We
conclude that AMPK functions in the regulation of insulin-
stimulated glucose transport in skeletal muscle. Keeping
AMPK activity intact by regular exercise or using an AMPK
activator such as rosiglitazone or metformin may be
important in the prevention and treatment of skeletal
muscle insulin resistance.
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