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Transposable elements are ubiquitous
residents in eukaryotic genomes.

Often considered to be genomic parasites,
they can lead to dramatic changes in
genome organization, gene expression,
and gene evolution. The oomycete plant
pathogen Phytophthora infestans has
evolved a genome organization where
core biology genes are predominantly
located in genome regions that have
relatively few resident transposons. In
contrast, disease effector-encoding genes
are most frequently located in rapidly
evolving genomic regions that are rich in
transposons. P. infestans, as a eukaryote,
likely uses RNA silencing to minimize the
activity of transposons. We have shown
that fusion of a short interspersed
element (SINE) to an effector gene in
P. infestans leads to the silencing of both
the introduced fusion and endogenous
homologous sequences. This is also likely
to occur naturally in the genome of
P. infestans, as transcriptional inactivation
of effectors is known to occur, and over
half of the translocated “RXLR class” of
effectors are located within 2 kb of
transposon sequences in the P. infestans
genome. In this commentary, we review
the diverse transposon inventory of
P. infestans, its control by RNA silencing,
and consequences for expression modu-
lation of nearby effector genes in this
economically important plant pathogen.

Oomycete Plant Pathogens
and Their Effectors

Many eukaryotic plant pathogens exhibit
variation in traits such as specific virulence
and avirulence, and pathogenicity. The

mechanisms underlying this variation
have remained largely unaddressed. Much
research is presently focused on identifying
the molecules (proteins or metabolites)
that act at the interface of pathogen and
host. Outcomes from this research have
led to the development of general models
that describe interactions between plants
and pathogens at the molecular level.
Central to these evolutionary hypotheses,
such as the “zig-zag” model, are pathogen
molecules called effectors. Mechanistic
details regarding plant immunity can be
found in many outstanding reviews (for
example, see refs. 1 and 2). In brief, all
pathogens trigger defense responses in
plants, due to detection of conserved
molecules called pathogen associated
molecular patterns (PAMPs). This detec-
tion triggers an array of immune responses,
or PAMP triggered immunity (PTI).
Pathogens may adapt and produce secreted
effectors to suppress PTI in plants, leading
to effector-triggered susceptibility (ETS).
Effectors can also be recognized by specific
plant host resistance (R) proteins, resulting
in effector-triggered immunity (ETI). In
this instance, the recognized effector is
termed an avirulence (Avr) protein. It is
postulated that the high numbers of
R-genes in plant genomes and their large
sequence diversity are essential evolutionary
factors in the surveillance machinery for
resisting pathogen attack. Plant R-genes
evolve through duplication, unequal cross-
ing over, recombination and diversification,
leading to clusters of paralogous genes.3 In
comparison, pathogens have evolved vari-
ous ways to evade detection by these
resistance proteins, such as variations in
sequence, gene loss, or transcriptional
inactivation (reviewed in refs. 4 and 5).
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Effectors are thus considered to define the
host range of a pathogen, by adapting to
specific host target proteins. The selection
pressure on effectors has resulted in their
placement among the most rapidly evolving
proteins in pathogen genomes.

How expression of effector genes varies
or is regulated in pathogen genomes is
little understood, but it is likely that
epigenetic mechanisms may have some
influence. Epigenetic control of genes is
well described in eukaryotes and its
mechanism(s) frequently involves overlap
with genome defense mechanisms such as
RNA mediated silencing, DNA or histone
methylation, and heterochromatin forma-
tion (reviewed in refs. 6 and 7). These
latter mechanisms often have the endo-
genous role of restricting the deleterious
impact of transposable element activity on
their host genome (reviewed in ref. 8).

Oomycetes are a group of eukaryotes
that superficially resemble fungi in their
hyphal growth habit and formation of
spores, but are only distantly related to
fungi, being placed in the stramenopiles.9

Oomycetes encompass many extremely
destructive plant pathogens such as the
potato late blight agent, Phytophthora
infestans. This pathogen precipitated the
Irish potato famine in the mid-1800s and
can still cause economically significant
losses, thus making it a continuing threat
to food security.10,11 Recent years have
witnessed a renaissance in molecular bio-
logy research into oomycetes, culminating
in the genome sequencing of at least seven
plant pathogenic species and the discovery
of vast numbers of disease promoting
effector proteins.12-17 These effector pro-
teins are grouped into two broad classes;
those that act in the apoplast (outside the
plasma membrane of plant cells), and
those that are translocated into host cells
to exert their action (reviewed in ref. 18).
This latter group contains the intensely
studied “RXLR” and “Crinkler” classes of
effectors that are defined by specific amino
acid motifs within their peptide sequences
(reviewed in refs. 18 and 19).

Oomycete Genomes, Transposons
and RNA Silencing

Of the available oomycete genome se-
quences, the genome of P. infestans has

been analyzed and annotated in the
most detail. Bioinformatic analyses have
revealed that the P. infestans genome is
organized into gene-rich islands, separated
by extensive stretches of gene-poor and
highly repetitive DNA.12,13 The repetitive
DNA is rich in transposable elements.
Effector genes are preferentially located in
the gene-poor and repeat (transposon)-
rich genomic regions.13,20 This raises the
possibility that, first, transposon activity
may contribute to the evolution of
effectors, and second that the proximity
of transposons to effectors may influence
their expression. The proximity of trans-
poson sequences to active genes has been
reported to influence their expression in
numerous organisms.21,22

P. infestans has the largest known
oomycete genome, at 240 Mb.13 It has
been estimated that 74% of the genome
comprises highly repeated sequences. The
repetitive DNA of P. infestans encom-
passes a wide repertoire of transposons:
short interspersed elements (SINEs), non-
long-terminal repeat (non-LTR) long
interspersed elements (LINEs), Copia and
Gypsy LTR retrotransposons, Cryptons,
Helitrons, DIRS-like, mini-transposable
elements (MITEs), hATs, PiggyBACs,
Mutators, Mariners, and a broad diversity
of novel LTR and DNA transposons.13,23,24

Some of these transposons are presumably
active, as their transcripts are present at high
levels in some lifecycle stages.25 However,
many are believed to represent ancient
insertions into the P. infestans genome
and are therefore now inactive.13,26

P. infestans has an active RNA silencing
pathway,27 which has been exploited in
RNA interference (RNAi) studies to deter-
mine the role(s) of specific genes (reviewed
in refs. 28 and 29). The silencing pathway
presumably acts, as in many other eukar-
yotes (reviewed in ref. 8), to restrict the
activity of its heavy genomic load of
transposons. A hallmark of silencing is
the presence of small non-coding RNAs
(sRNA) of 19–40 nt. The general pro-
cesses and components involved in RNA
silencing are reviewed elsewhere.6,7,28

Consistent with this, in a recent report
we identified small non-coding RNAs of
40 nt that were homologous to a non-
autonomous P. infestans SINE called
infSINEm.30 The P. infestans genome
contains 32 copies of infSINEm, and some
copies are expressed at a low level, likely
through its internal RNA polymerase III
promoter. It was hypothesized that the
identified 40 nt sRNAs were likely to be
involved in silencing the expression of
infSINEm, and that any P. infestans
sequence transcriptionally fused to
infSINEm, together with its endogenous
copy, would also be subject to silencing
(Fig. 1). An additional reason to examine
the spread of silencing from a transposon
to an endogenous gene was to exploit this
to develop simpler vectors for targeted
gene silencing in P. infestans. The PiAvr3a
gene was selected to deliver a pheno-
typic readout of silencing spread from
infSINEm, as this effector gene is essential
for pathogenicity on potato leaves,30,31 and
overexpression in the sense direction

Figure 1. Model for silencing of an effector-encoding gene by transcriptional fusion to a SINE
in P. infestans. Small RNAs derived from endogenous infSINEm (green) initiate silencing of
the transgenic PiAvr3a-infSINEm fusion transcript (yellow-blue) through degradation by Argonaute
(Ago). Secondary sRNAs are formed from the fusion transcript through the action of RNA
dependent RNA polymerase (RdR) and Dicer-like (Dcl). Secondary sRNAs target the endogenous
copies of both infSINEm and PiAvr3a (brown) to initiate (Ago) or reinforce silencing (RdR→Dcl→Ago).
Arrows indicate the direction and reinforcement of silencing.
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had not previously led to silencing.32

Transcriptional fusions of infSINEm in
transgenic lines of P. infestans, under
control of a strong constitutive promoter,
initially yielded several lines that were
partially silenced for PiAvr3a. This was
most pronounced when infSINEm was
fused to the 3' end of PiAvr3a, although
silencing was also observed for infSINEm-
PiAvr3a fusions. However, over time the
silencing was overcome or released in most
transgenic lines; the expression of PiAvr3a
and infSINEm returned to wild-type or
higher levels. In a small number of lines,
both PiAvr3a and infSINEm became fully
silenced.

Evidence for Endogenous
Silencing of Effectors

in P. infestans through Proximity
to Transposons

The biological significance of our find-
ings is that a transposable element-derived
sequence, silenced via sRNAs, can poten-
tially also bi-directionally silence nearby
sequences in P. infestans. Similar prolifera-
tion of transposons and gene repression
has been reported from Drosophila mela-
nogaster.33 However, in the P. infestans
system, transposition rates and distance
to a potential target gene remains to be
determined.

In a study into the effects of silencing
a series of P. infestans NIF transcription
factors, it was demonstrated that silencing
of these genes led to formation of hetero-
chromatin at the affected locus.34 The
formation of heterochromatin was also
demonstrated to spread outwards from the
silenced locus for approximately 300 bp,
but was also detectable up to 600 bp.

Taken together with our results from
infSINEm, it is possible that genes located
near silenced transposons (within 300 bp)
may be subject to reduction in expres-
sion due to heterochromatin formation
(Fig. 2). This is particularly of interest
when the genomic locations of the RXLR
effectors are considered. These genes are
preferentially located in genomic regions
also heavily populated with transposons.13

Little is known of which effector genes
are essential for infection, and which
are dispensable. In P. infestans, to date
PiAvr3a is the only effector that has

been demonstrated to be essential for
pathogenicity.30,31 Therefore, until many
more RXLR encoding genes have been
assessed for their effects on pathogenicity
through silencing, it is difficult to defini-
tively associate the genomic location of
specific RXLR effectors and neighboring
transposons with reduced pathogenicity.
However, the recent report of PiAvr2 may
provide some evidence that transposon-
initiated silencing of effectors may also
occur naturally.35

The PiAvr2 effector is recognized by
the R2 resistance protein in potato,35 and
initiates a defense response called the

hypersensitive response, a form of pro-
grammed cell death that restricts the
growth of invading pathogens, including
P. infestans. Genotypes of P. infestans that
are virulent on potato plants with the R2
gene express a sequence variant called
PiAvr2-like that is not recognized by
R2. Virulent isolates are typically homo-
zygous for PiAvr2-like, while avirulent
isolates may be homozygous for PiAvr2
or heterozygous. However, a small number
of virulent genotypes are heterozygous,
but express only PiAvr2-like. Other
heterozygous isolates may express predo-
minantly one allele. These results

Figure 2. Proposed model for transcriptional repression of effector genes due to proximity to
transposon sequences. Transposon sequences (TE; blue box) are strongly targeted for silencing
by abundant homologous small RNAs (sRNAs). Inactivation of transposons results from formation of
heterochromatin, guided by sRNAs. The heterochromatic region may spread outwards along
the genomic DNA (dotted line), and affect nearby effector gene sequences (yellow), either through
degradation of mRNAs (Ago) or repression of transcription (histone methylation). The formation of
additional sRNAs, maintaining or reinforcing the silenced state, can occur through the action of Rdr
and Dcl on mRNAs from the transposon or effector gene.
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demonstrate an allele-specific inactivation
of expression at this effector locus. The
sequence and organization of the genomic
region encompassing the PiAvr2 locus is
highly variable between virulent and
avirulent alleles, and is bounded by
transposable element-derived sequences.
The nearest of these transposons (trans-
posase-like) is 231 bp from the 3' end of
PiAvr2, which is within the range of
heterochromatin formation determined
experimentally.34 It remains to be deter-
mined if this proximity can influence
PiAvr2 expression.

Transcriptional inactivation of aviru-
lence effectors has also been observed in
P. sojae, the soybean root rot pathogen.
Genotypes have been identified that
exhibit transcriptional inactivation of
the PsAvr1a, 1b and 3a/5 avirulence
genes.36-38 For PsAvr1a and 3a/5, trans-
posable element sequences are located at
the 3' end, or in the promoter of these
genes, respectively.37,38 Although it is
intriguing that transposons are found
nearby transcriptionally inactivated
effector genes, it should be cautioned
that ascribing effector silencing events to
transposons is complicated by the nature
of effector gene evolution in P. infestans.
That is, many RXLR effectors are part of
gene families, with members exhibiting
very closely related gene sequences.13

Furthermore, effectors may also exhibit
copy number polymorphism between iso-
lates.37 Transcriptional inactivation by
silencing mechanisms may lead to a loss,
or reduced transcription, for the entire
gene family. However, such a possibility
remains to be demonstrated.

Of the 563 RXLR effectors predicted
from the P. infestans genome, a total of
283 are located within 2 kb of a
transposon-derived sequence (Fig. 3). Of
these, four contain transposon insertions, a
further 35 are located within 300 bp of a
transposon-derived sequence, and a total
of 106 within 600 bp. PiAvr2, together
with PiAvr4, PiAvrBlb1, and PiAvrBlb2
(reviewed in ref. 5) are found within 2 kb
of transposon-derived sequences.

The possibility that P. infestans can vary
the expression of a large proportion of

pathogenicity effectors may contribute to
its adaptability when confronted with
resistant host plants. In addition to the
sequence variation present within popula-
tions, it is possible that it can also use
epigenetic mechanisms to alter its specific
virulence and overcome plant resistance,
and vary pathogenicity.

Conclusions and Prospects

Transposable elements are often called
selfish or junk DNA, but they have had
a profound influence on the evolution of
the genomes, and likely the biology, of
many fungal and oomycete plant patho-
gens. This is exemplified by P. infestans
and closely related species that have greatly
expanded genomes,39 assumed to be due
to extensive transposon amplification. It
has been proposed that the location of
the majority of disease effector genes in
transposon-rich, rapidly evolving, genomic
regions is likely to have had an impact on
adaptability to new host plants through-
out evolution.39 The next step in under-
standing the influence that transposons
have on the biology of P. infestans will
be to determine the extent of influence
from heterochomatin formation in close

proximity to transposons. Small RNAs are
considered to be centrally involved in
many aspects of gene silencing, either
post-transcriptional or transcriptional.
High-throughput deep-sequencing of
sRNAs will reveal if these sRNAs map
to, and thus silence, the regions of genome
spanning effectors and transposons. Such
studies are presently comparatively rare
for plant pathogens,40 but hold promise
in determining the role(s) of transposons
in influencing the expression and evolu-
tion of effector genes, and thus host range
of plant pathogens.
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Figure 3. RXLR effector gene proximity to transposon derived sequences in the P. infestans
genome. The Y-axis represents the number of RXLR effector genes in each group. The X-axis
represents the distance from RXLR effector to nearest transposon-derived sequence (100 bp
window) up to a maximum of 2 kb. The PiAvr2 effector is located in the "300" window, PiAvr4 is
in the “1200” window, and PiAvrBlb1 is in the “1500” window. The RXLR encoding gene family
encompassing PiAvrBlb2 has three paralogs in each of the “400” and “900” windows.
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