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Background: An influenza forecasting system is critical to influenza epidemic prepared-
ness. Low temperature has long been recognized as a condition favoring influenza
epidemic, yet it fails to justify the summer influenza peak in tropics/subtropics. Recent
studies have suggested that absolute humidity (AH) had a U-shape relationship with
influenza survival and transmission across climate zones, indicating that a unified influ-
enza forecasting system could be established for China with various climate conditions.
Methods: Our study has generated weekly influenza forecasts by season and type/subtype
in northern and southern China from 2011 to 2021, using a forecasting system combining
an AH-driven susceptible-infected-recovered-susceptible (SIRS) model and the ensemble
adjustment Kalman filter (EAKF). Model performance was assessed by sensitivity and
specificity in predicting epidemics, and by accuracies in predicting peak timing and
magnitude.
Results: Our forecast system can generally well predict seasonal influenza epidemics
(mean sensitivity>87.5%; mean specificity >80%). The average forecast accuracies were 82%
and 60% for peak timing and magnitude at 3e6 weeks ahead for northern China, higher
than those of 42% and 20% for southern China. The accuracy was generally better when the
forecast was made closer to the actual peak time.
Discussion: The established AH-driven forecasting system can generally well predict the
occurrence of seasonal influenza epidemics in China.
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1. Introduction

Seasonal influenza is an acute respiratory infection resulting in 3e5 million severe cases and 290,000e650,000 deaths
globally each year (Iuliano et al., 2018). Influenza usually exhibits awinter peak each year in temperate regions, but in tropical
and subtropical regions it can havemultiple peaks each year or circulate year-round (Tamerius et al., 2013). Accurate influenza
forecasts have significant public health implications, which can provide valuable information in planning and deploying
interventions such as the distribution of vaccines and antivirals.

Previous studies have suggested that meteorological factors were important to the seasonal circulation of influenza,
especially temperature and relative humidity. Lowen et al. found that cold temperature and low relative humidity were
favorable to the spread of influenza virus by a guinea pig model (Lowen et al., 2007). However, relative humidity is highly
correlated with temperature. Shaman and Kohn reinterpreted Lowen's study in terms of absolute humidity (AH), which was
the actual water vapor content of air irrespective of temperature (Shaman & Kohn, 2009). They found that the survival and
transmission ability of influenza virus decreased with AH in a simple linear relationship, which was much stronger than the
relationships with temperature or relative humidity. Therefore, Shaman et al. have developed an AH-driven forecast model
which can generate accurate forecasts for temperate countries with peak timing and intensity accuracy exceeding 50% at 2e4
weeks prior to the actual peak time (Kramer & Shaman, 2019; Shaman & Karspeck, 2012).

However, as influenza activity is more irregular in tropical and subtropical regions, the model used in temperate regions is
insufficient to explain the transmission patterns in tropics/subtropics. A few studies suggested that the effect of humidity on
influenza transmission may follow a U-shape relationship rather than monotonically reduced, which implies that both low
and high humidity conditions favor influenza transmission (Yang et al., 2012). Yuan et al. developed an AH-drivenmodel with
a U-shape relationship and reconstructed the long-term influenza epidemic dynamics in Hong Kong, which provided valuable
evidence for influenza modeling in tropical and subtropical regions (Yuan et al., 2021).

China is a geographically, climatologically diverse country, and influenza seasonality varies significantly between northern
and southern China (Bloom-Feshbach et al., 2013). It is challenging to forecast influenza activity in northern and southern
China based on a unified forecasting system. Recently, an effort has beenmade by Zhanwei Du et al. (Du et al., 2023) to predict
influenza incidence in China, but their model did not incorporate the meteorological driver. Our study aims to develop a
unified AH-driven forecasting system to generate weekly forecasts of influenza for northern and southern China during the
2011e2021 seasons.

2. Materials and methods

2.1. Data

Weekly influenza surveillance data in northern and southern China from 2011 week 40 to 2021 week 40 were extracted
from the Influenza Weekly Reports published by the Chinese National Influenza Center (CNIC, 2024). Northern and southern
China were divided by the Qinling Mountains-Huaihe River Line (Shi et al., 2018). We used the product of weekly influenza-
like illness (ILI) consultation rate and proportion of specimens tested positive for influenza as the influenza proxy (ILIþ) (Yang
et al., 2015). Daily mean temperature and relative humidity were collected from the China Meteorological Data Sharing
Service System (http://data.cma.cn) and converted to weekly absolute humidity. Demographic data, including natural birth
and death rates for 2011e2021 were obtained from the China Statistical Yearbook (http://www.stats.gov.cn/).

2.2. Definitions of seasonal epidemic

The baseline of seasonal influenza was defined as the 40% quantile of the non-zero ILI þ records for each influenza type/
subtype, or the first quartile of the non-zero ILIþ records for all influenza types combined. The epidemic onset was defined as
the first of three consecutiveweeks with ILIþ records exceeding a baseline, and the ending of an epidemic was defined as the
first of two consecutive weeks with ILI þ below the baseline following an onset. The period between an onset and its
respective ending was defined as an epidemic duration (Yang et al., 2015). The peak timing was defined as the week with the
maximum ILIþ, and peak magnitude was defined as the maximum ILIþ.

2.3. AH-driven forecasting system

We modeled influenza transmission using a susceptible-infected-recovered-susceptible (SIRS) model with demography.
Absolute humidity modulates influenza transmission rates by altering basic reproductive number R0ðtÞ through a U-shape
relationship with both low and high AH conditions favoring influenza transmission (Yuan et al., 2021).

To forecast influenza activity, we combined the SIRS model with the ensemble adjustment Kalman filter (EAKF) to develop
a SIRS-EAKF forecasting system.We first initialized the SIRS-EAKF system from a broad initial distribution for each parameter
and performed two rounds of parameter optimization (Yuan et al., 2021) to generate parameter distributions that best fit the
Chinese influenza activity (Supplementary Fig. S1).

Retrospective forecasting was then performed for northern and southern China, respectively. In northern China, the
systemwas run by season and influenza type/subtype, generated forecasts at 6 weeks, 3 weeks, and 0 week before the actual
51

http://data.cma.cn
http://www.stats.gov.cn/


X. Chen, F. Tao, Y. Chen et al. Infectious Disease Modelling 10 (2025) 50e59
peak time. While in southern China, the system was run continuously from the first record to the last record and generated
weekly 40-week forecasts. The SIRS-EAKF systemwas run with 300 ensemble members in both regions, and the systemwas
reinitialized once filter divergence was detected (Yang et al., 2015). Details of the SIRS-EAKF system and the calculation of
absolute humidity are presented in the Supplementary Material.

2.4. Model assessment

We first evaluated whether the forecast system can accurately predict upcoming epidemic events. A phase predictionwas
deemed accurate if the predicted epidemic trajectory included an epidemic during the predicted period. Similarly, it was
deemed accurate if there was no predicted epidemic during a dormant period. Secondly, we assessed whether the forecast
system can accurately predict the peak timing, peak magnitude, epidemic onset and duration. Predictions of epidemic onset
or peak timing within ±1 week of observation, durationwithin ±2 weeks of observation, and peak magnitude within ±20% of
the observation were deemed accurate. Thirdly, to further test whether our system outperformed a naive method, we con-
ducted a simple analog forecast to predict the peak timing and magnitude (Yang et al., 2015). For each week, 100 forecasts
were generated by randomly drawing peak timing and magnitude records from historical records. Forecast accuracy was
tallied over all samples and compared to the AH-driven SIRS-EAKF method (Yang et al., 2015). The structure of SIRS-EAKF
forecasting system was illustrated in Fig. 1.

3. Results

3.1. Influenza epidemics and impact of humidity on influenza transmission

We identified 11 influenza epidemics in northern China and 14 influenza epidemics in southern China during 2011e2021
seasons (Fig. 2). There were 7 A(H1N1),10 A(H3N2), and 8 influenza B epidemics in northern China, while the corresponding
epidemics were 7,10, and 8 in southern China.We found that R0 wasminimizedwhen AHwas in the range of 12.0e16.7 g=m3

(Table 1). R0 increased quadratically with a decreasing AH up to a minimum of 2e8 g=m3 and an increasing AH up to a
maximum of 24e25 g=m3 (Supplementary Fig. S2), confirming our assumptions of the U-shape relationship between AH and
influenza transmission.

3.2. Reconstruction and forecasting ILI þ time series

The AH-driven SIRS-EAKF system could well reconstruct the historical ILI þ time series in northern and southern China
with the mean correlation coefficients of 0.974 (95% CI: 0.970e0.978) and 0.983 (95% CI: 0.979e0.987), respectively. We
found that the system could in general well predict the peak timing and magnitude over 3 weeks before the actual event in
both northern and southern China. Forecast accuracy became higher when the prediction was made closer to the actual peak
time. (Figs. 3 and 4).

3.3. Forecasting accuracy

In northern China, the forecast system could accurately detect an epidemic (mean sensitivity>95%) and did not falsely
predict epidemics during dormant periods (mean specificity >85%) (Fig. 5A). Accuracies in southern Chinawere slightly lower
than those in northern China (mean sensitivity>80% and mean specificity >75%) but remained at a relatively high level.
Forecasts for A(H3N2) and A(H1N1) had the highest sensitivity (100%), and forecasts for influenza B had the highest specificity
(85%) in northern China. While in southern China, A(H1N1) had the highest sensitivity (90%) and specificity (87%).

The mean forecasting accuracy for peak timing in northern and southern Chinawas 82% and 42% for 3e6 weeks before the
actual peak time and increased to 99% and 97% for 3e6 weeks after the actual peak time (Fig. 5B & C). The mean forecasting
accuracy for peakmagnitude in northern and southern Chinawas 60% and 20% for 3e6 weeks before the actual peak time and
increased to 94% and 95% for 3e6 weeks after the actual peak time. However, the SIRS-EAKF system was unable to predict
epidemic onset and duration prior to the actual peak time. In northern and southern China, the maximum accuracy for
durationwas 98% and 78% at 6 weeks after the actual peak time, while the accuracy of epidemic onset fluctuated around 20%.

Our forecasting system outperformed the simple analog forecast method (Supplementary Fig. S3). The accuracy of the
SIRS-EAKF increased consistently as the forecast initiation time progressed (up to nearly 100%), while the accuracy of the
naive method remained 20%e30% throughout the entire prediction period.

4. Discussion

Previous studies have found that real-time influenza forecasts could be generated using AH-driven predictive models in
temperate countries (Shaman et al., 2013; Yang et al., 2014). However, due to the irregular influenza pattern in subtropical and
tropical regions, few studies have been conducted to predict influenza activity accurately in these regions (Yuan et al., 2021;
Du et al., 2023). For countries with complex climates such as China, it is difficult to build a unified national forecasting system.
In this study, we constructed and tested an AH-driven forecasting system to handle the complex influenza dynamics in China.
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Fig. 1. The structure of SIRS-EAKF forecasting system.
Note: This figure illustrates the overall structure of the SIRS-EAKF forecasting system, including the processing of data, retrospective forecasting, and evaluation of
the model.
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Although many studies have suggested that the effect of humidity on influenza transmission may follow a U-shape
relationship rather than monotonically reduced (Yang et al., 2012; Yuan et al., 2021), this effect has rarely been quantified or
incorporated into influenza transmission models. In this study, we found the threshold of AH is approximately 12.0e16.7 g=
m3. Compared with the studies in Hong Kong (Yang et al., 2015) and Singapore (Tamerius et al., 2013), our AH threshold is
slightly higher. This is mainly because these two studies were located in areaswith lower latitudes, which had higher absolute
humidity and more irregular influenza patterns. Moreover, recent studies have suggested that influenza transmission is
driven by AH, moderated by temperature (Deyle et al., 2016). However, since the effect of temperature is currently unclear, we
did not incorporate temperature into the model.

In the past decades, there has been a growing effort to develop systems and methods for forecasting different charac-
teristics of influenza epidemics (Ali & Cowling, 2021). Qian et al. (19) used a seasonal autoregressive integrated moving
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Fig. 2. Time series of ILIþ in northern (A) and southern (B) China, by type/subtype.
Note: The green horizontal line is the baseline; the grey shaded bars are epidemic periods. The baseline was defined as the 40% quantile of the non-zero
ILI þ records for each influenza strain, or the first quartile of the non-zero ILI þ records for all influenza strains combined. The epidemic onset was defined
as the first of three consecutive weeks with ILI þ records exceeding a baseline, and the ending of an epidemic was defined as the first of two consecutive weeks
with ILI þ below the baseline following an onset.
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average model (SARIMA) to predict the incidence trend of influenza-like illness proportion (ILI%) in Shanghai. Yang L et al.
(Yang et al., 2024) recently built a deep-learning model upon Chinese influenza surveillance data to predict and provide early
warnings for epidemic trends in China. Compared with these methods, the humidity-driven SIRS model used in this study is
able to reflect the transmission dynamics of influenza viruses in populations in terms of the transmission mechanism, which
can better predict the trend of influenza. In northern China, the system was run by seasons. While in southern China, the
systemwas run continuously from the first record to the last record. The difference in forecast measurements is mainly due to
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Table 1
Descriptions of the parameter ranges. The table lists all the variables and parameters used by the SIRS-EAKF system and their corresponding descriptions.
The initial ranges and model estimation ranges for each variable and parameter are listed after them.

Parameter Parameter Description Initial ranges Estimated ranges

N The size of the model population. 100000
R0max

The theoretical value of R0 at q ¼ qmin and q ¼ qmax . 1.5e3.5 2.4e3.0
R0diff

The difference between R0max
, and R0 at q ¼ qmid . 0.6e1.2 0.6e1.0

qmin (g=m3) The absolute humidity value at which R0 ¼ R0max
; the minimum value of absolute humidity permitted. 0e10 2.0e8.0

qmax (g=
m3)

The absolute humidity value at which R0 ¼ R0max
; the maximum value of absolute humidity permitted. 18e25 24.0e25.0

qmid (g=m3) The absolute humidity value at which R0 ¼ R0max
� R0diff

: 11.0e17.0 12.0e16.7
D (days) The duration of influenza infection. 2e8 4e5
L (days) The duration of influenza immunity. 150e3650 1275e1982
S0 The number of people susceptible to influenza at the beginning of the model run. 40%N e 80%N 40305e48586
I0 The number of people infected at the beginning of the model run. 10e500 28e425
p An exponent to allow for imperfect mixing. 0.97 0.97

Fig. 3. Forecasted ILI þ time series for A (H1N1), A(H3N2) and influenza B in northern China.
Note: The blue lines are modeled based on observations during the training period, and the red dashed lines are the forecasts generated by the system; red
vertical lines indicate the actual peak time, and grey vertical lines mark the week the forecasts are made.

X. Chen, F. Tao, Y. Chen et al. Infectious Disease Modelling 10 (2025) 50e59
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Fig. 4. Continuously forecasted ILI þ time series in southern China.
Note: The ‘x’ points are the actual weekly ILI þ data, the yellow vertical line is the start week of the forecast. The forecasting system was run continuously, the
green vertical lines indicate the actual peak time, and the red dashed lines are forecasts for the next 40 weeks.

X. Chen, F. Tao, Y. Chen et al. Infectious Disease Modelling 10 (2025) 50e59
the irregularity of influenza activity in southern China, as dividing by seasons may cause some peaks in the southern China
being separated into different seasons, thereby affecting the prediction accuracy. In addition to this, more detailed mecha-
nistic models could be used in conjunction with the system as our understanding of influenza transmission dynamics im-
proves in the future.

Notably, due to the strict non-pharmaceutical interventions (NPIs) implemented during the coronavirus disease 2019
(COVID-19) pandemic, influenza activity was significantly reduced in 2020 and 2021 seasons (Feng et al., 2021). Since the
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Fig. 5. Forecasting Accuracy of the system.
Note: (A) Four measures, sensitivity (TPR), specificity (SPC), positive predictive value (PPV), and negative predictive value (NPV) are shown for northern and
southern China. Results are tallied over forecasts of each influenza type/subtype.
The accuracy in predicting peak timing, peak magnitude, epidemic onset and duration for each influenza type/subtype in northern (B) and southern (C) China. On
the x-axis, positive leads indicate that the peak is in the past; negative leads indicate that the peak is in the future; a 0-week lead indicates that the peak is the
same week as forecast. For example, “-6” means that the forecast starts at week 6 before the actual peak time, “6” means that the forecast starts at week 6 after
the actual peak time, and “0” means that the forecast starts at the actual peak time.

X. Chen, F. Tao, Y. Chen et al. Infectious Disease Modelling 10 (2025) 50e59
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interactive effect between influenza and SARS-CoV-2 is not well understood so far, we did not predict the influenza activity
after the COVID-19 outbreak in this study. In the future, influenza and COVID-19will co-exist in the population for a long time,
further influenza prediction studies may need to consider the interaction between influenza and SARS-CoV-2 viruses.

The limitations of our study should be noted. Our model did not explicitly include the effects of contact patterns, vacci-
nation, or NPIs. A more comprehensive model is needed in the future to optimize the forecasting ability of the system,
especially in forecasting epidemic onset and duration (Yang et al., 2015).

In conclusion, our AH-driven forecasting system could generally well predict the occurrence of seasonal epidemics and
generate reliable forecasts of peak timing and peak magnitude up to 3e6 weeks before the actual peak time. Our results
suggested that a unified forecasting system of seasonal influenza for a large country with complex climate is possible. This
system could provide reliable warnings of incoming influenza peaks and help public health workers in better anticipating
influenza epidemics in forthcoming weeks.
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