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Summary
Ligand-receptor pairs play important roles in cell–cell communication for multicellular organisms

in response to environmental cues. Recently, the emergence of single-cell RNA-sequencing

(scRNA-seq) provides unprecedented opportunities to investigate cellular communication based

on ligand-receptor expression. However, so far, no reliable ligand-receptor interaction database

is available for plant species. In this study, we developed PlantPhoneDB (https://jasonxu.

shinyapps.io/PlantPhoneDB/), a pan-plant database comprising a large number of high-

confidence ligand-receptor pairs manually curated from seven resources. Also, we developed a

PlantPhoneDB R package, which not only provided optional four scoring approaches that

calculate interaction scores of ligand-receptor pairs between cell types but also provided

visualization functions to present analysis results. At the PlantPhoneDB web interface, the

processed datasets and results can be searched, browsed, and downloaded. To uncover novel

cell–cell communication events in plants, we applied the PlantPhoneDB R package on

GSE121619 dataset to infer significant cell–cell interactions of heat-shocked root cells in

Arabidopsis thaliana. As a result, the PlantPhoneDB predicted the actively communicating

AT1G28290-AT2G14890 ligand-receptor pair in atrichoblast–cortex cell pair in Arabidopsis

thaliana. Importantly, the downstream target genes of this ligand-receptor pair were significantly

enriched in the ribosome pathway, which facilitated plants adapting to environmental changes.

In conclusion, PlantPhoneDB provided researchers with integrated resources to infer cell–cell
communication from scRNA-seq datasets.

Introduction

In order to adapt to environmental changes, plants achieve

controlled short and long ranges of cell–cell communication to

perceive environmental cues in many ways, including mobile

transcriptome, transcription factors, phytohormones, and small

signalling peptides (Busch and Benfey, 2010; Murphy et

al., 2012). In recent years, the importance of secreted

signalling peptides in cell–cell communication has received

massive attention in plants, coordinating cellular functions to

sustain plant growth and development (Jeon et al., 2021; Oh

et al., 2018; Takahashi et al., 2018; Zhong et al., 2022). Sim-

ilar to mammals, plants have evolved a large number of

secreted peptides, which are considered to be intercellular

signalling molecules (Lease and Walker, 2006). Secreted pep-

tide ligands have been considered as the first messenger to

bind to cell surface receptors that are transmembrane proteins

with extracellular and intracellular kinase domains for sig-

nalling transduction. For instance, Phytosulfokine (PSK) peptide

may interact with PSK receptor gene 1 (PSKR1) and PSK

receptor gene 2 (PSKR2) to regulate root growth in Arabidop-

sis (Kutschmar et al., 2009), and the pathway of AtPep3

peptide and membrane-receptor kinase gene PEPR1 is associ-

ated with salt tolerance in Arabidopsis (Nakaminami et

al., 2018). Many cell surface receptors are composed of

receptor-like proteins and receptor-like kinases, which contain

more than 610 receptor-like kinase members in Arabidopsis

thaliana (Shiu and Bleecker, 2001) and over 1000 receptor-like

kinase members in Oryza sativa (Shiu et al., 2004). And the

peptide-receptor interactions can activate a series of down-

stream physiological and biochemical processes. In brief,

secreted peptides and corresponding cell surface receptors

play important roles in cell–cell communication in plants

(Chakraborty et al., 2019).

Plants are composed of different cell types that form a

dynamic and complex cell–cell communication network to

ensure functional connections. To better study cellular functions,

it is necessary to understand how cells communicate with each

other in response to their environment. The emergence of

high-throughput single-cell RNA-sequencing (scRNA-seq) tech-

nologies provides unprecedented opportunities to characterize

cellular compositions and activities at single-cell resolution.

Compared with traditional bulk RNA-seq, scRNA-seq has signif-

icant advantages on gene dynamic expression in individual cell

types. The scRNA-seq has been increasingly used to study

transcriptional regulations and developmental mechanisms of

plant tissues, responses of various cell types to different

environmental stimuli, and finally cell–cell interactions (Jean-

Baptiste et al., 2019; Liu et al., 2021; Thibivilliers and

Libault, 2021; Xu et al., 2021).

Some software tools have been developed to infer cell–cell
communication. For example, SingleCellSignalR uses a new

regularized product score (LRscore) to account for variable levels

of depth in scRNA-seq datasets and provides a cutoff value
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(LRscore >0.5) to control the false discovery rate for ligand-

receptor interactions based on two benchmarks (Cabello-Aguilar

et al., 2020). Another software CellPhoneDB calculates ligand-

receptor interaction scores using a permutation test by randomly

shuffling the cluster labels (such as 100 times), and computes a

P-value based on a null distribution of interactions scores.

CellPhoneDB considers that ligand interacts with receptor if P-

value <0.05 (Efremova et al., 2020). Also, scTensor adopts non-

negative Tucker decomposition to detect some hypergraphs

based on automatically generating 12 organisms’ ligand-

receptor pairs, including Arabidopsis thaliana. The scTensor

algorithm includes five steps: construction of CCI-tensor,

CANDECOMP/PARAFAC and tucker decomposition, non-

negative tucker decomposition, extraction of CCIs as hyper-

graphs, and label permutation method (Kim and Choi, 2007;

Tsuyuzaki et al., 2019; Zhou et al., 2014). However, most of

them are specific to humans or mice, and no real ligand-receptor

pairs databases are available for plants. Although scTensor

supports the analysis of data from plants, the confidence level of

the predicted ligand-receptor pairs by scTensor is not controlled

(Cabello-Aguilar et al., 2020).

To address this problem, in this study, we created a

PlantPhoneDB, a pan-plant database containing ligand-receptor

pairs with controlled quality from seven resources. Based on

ligand-receptor pairs, we developed an R package ‘PlantPho-

neDB’, which provided optional four scoring approaches to

calculate the score of ligand-receptor interactions to infer cell–cell
communication between different cell types from scRNA-seq

datasets. As a result, the PlantPhoneDB R package can predict

downstream target genes regulated by ligand-receptor pairs that

were involved in the signalling pathway in plants. Finally, we

successfully developed a web interface, where users can search,

browse and download the processed datasets.

Results

Statistics of PlantPhoneDB

The current PlantPhoneDB website contains 3514 unique ligand-

receptor pairs for Arabidopsis thaliana, which are curated from

seven resources, including plant.MAP, Interactome v2.0, IntAct,

BioGRID, Text-mining from literature, STRING, and Orthologs

resources (Figure 1a). Ligand-receptor pairs in PlantPhoneDB

include 574 ligands and 585 receptors in Arabidopsis thaliana,

respectively. scTensor, an R package automatically generates 12

organisms’ ligand-receptor pairs from the STRING database using

36 approaches. scTensor generates 3014 ligand-receptor pairs

involving 671 ligands and 645 receptors for Arabidopsis thaliana

(Figure S1a). Compared with scTensor, only 26.11% (787/3014)

ligand-receptor pairs from scTensor were covered in the PlantPho-

neDB, and 2727 ligand-receptor pairs in Arabidopsis thaliana were

uniquely recorded in PlantPhoneDB but not in scTensor (Fig-

ure S1b). For further comparison, we filtered the ligand-receptor

pairs (3014 pairs) provided by scTensor using a PPI combined

score > 600 as the cutoff of filtering criteria. Among 818 ligand-

receptor pairs obtained, 762 pairs were overlapped with STRING

resource (1112 pairs) from PlantPhoneDB (Figure S1b). Also, by

assigning orthologs of ligand-receptor pairs between Arabidopsis

thaliana and other four plant species proteomes using the

InParanoid algorithm (Sonnhammer and Östlund, 2015), the

number of ligand-receptor pairs identified ranged from 1751

(Solanum lycopersicum) to 3762 (Oryza sativa) (Figure 1b).

In addition, in PlantPhoneDB, we manually reviewed and

confirmed 23 peer-reviewed publications and four preprints, and

collected the information of 29 scRNA-seq datasets, including

~560 000 cells of 15 tissues from five plant species, including

Arabidopsis thaliana, Oryza sativa, Populus alba x Populus

glandulosa, Solanum lycopersicum and Zea mays (Data S1).

Among them, 14 scRNA-seq datasets were directly obtained

from PlantscRNAdb (Chen et al., 2021) (http://ibi.zju.edu.cn/

plantscrnadb/index.php). After processing, the qualified scRNA-

seq datasets were used to perform cell–cell communication

(filtering criteria see method). Of note, we will update our

database once 10 pending scRNA-seq datasets are processed or

new plant scRNA-seq datasets are available (Figure 1c).

Function of PlantPhoneDB

We designed several modules to display the analysis results,

including ligand-receptor pairs, the processed scRNA-seq

datasets, cell-type annotation, and cell–cell communication

from single-cell transcriptomics. On the homepage, users can

obtain the statistics of PlantPhoneDB that contains the number

of ligand-receptor pairs and ~ 560 000 cells of 15 tissues from

five plant species (Figure 2a). In the search tab, users can query

the detailed information of a specific ligand or receptor using

an accepted ID, such as Uniprot Accession, TAIR Locus

identifier, or Rice locus. The References module provides 27

articles about plant scRNA-seq datasets. Users can directly

review the title and abstract when they click on one article of

interest. The Download module supports users with the

demand for ligand-receptor pairs and single-cell-level expression

matrices.

In the Explorer tab (Figure S2a), PlantPhoneDB allows detailed

exploration of the cell–cell communication for a processed

scRNA-seq dataset. We also provided R scripts with a full

document under the Document module to help researchers

analyse their own datasets locally. In the About tab, PlantPho-

neDB welcomes any feedback by email.

Single scRNA-seq dataset exploration

In the aspect of visualization, users can upload each processed

scRNA-seq dataset to the FASTGenomics platform (https://www.

fastgenomics.org/) for visualization or explore it using Cellxgene

(https://chanzuckerberg.github.io/cellxgene/) on local. Here, we

adopted a MAESTRO tutorial (gene marker-based annotation

method) to perform cell identity annotation of a scRNA-seq

dataset with accession GSE114615 (Turco et al., 2019) and

demonstrated cell-type compositions (Figure 2b) and gene

expression distributions (Figure 2c). If users are interested in one

specific cell type, such as the lateral root cell of Arabidopsis

thaliana, they can choose the interesting cell type and other cell

types for DEGs analysis. Users can optionally use the Wilcoxon

rank-sum test to evaluate the statistical difference in gene

expression between different cell types.

Compared with other cell types, we observed that AT2G43610

had the highest expression level in Lateral root cells (Figure 2c).

Moreover, AT2G43610 (logFC = 1.78, FDR = 1.29 × 10−222)

was the top one DEG in the lateral root cells (Data S2) and a

marker gene reported by PlantscRNAdb (Chen et al., 2021;

Wendrich et al., 2020). Also, we can see that the UMAP plot

and violin plot revealed specific expression patterns of

AT2G43610 across different cell types in Lateral root tissue

(Figure S2b; Figure 2c). In summary, the violin plot and UMAP
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plot could show the expression patterns of AT2G43610 across

different cell types and check whether AT2G43610 as one of the

marker genes is helpful for cell identity annotation.

Selection of automatic cell identification methods

In order to select the better-fitting model to scRNA-seq datasets

for cell-type annotation, here, we benchmarked the performance

of 10 classifiers across 7 human peripheral blood mononuclear

cells (PBMC) datasets (PbmcBench; Data S3) using 5-fold cross-

validation. That is, each dataset was randomly split into 5 parts, 4

of 5 folds were used to train the classifiers, and the last fold was

used to evaluate the performance of the classifiers. We repeated

this procedure 5 times to obtain the F1-score and running time. In

brief, we tested the performance of classifiers across datasets

from different sequencing protocols (inter-datasets model; Fig-

ure 3a) and within a dataset (intra-dataset model; Figure 3b),

respectively. As a result, we obtained 49 pairwise train-test

combination results. Most notably, the best-performing classifier

was MAESTRO classifier regardless of dataset type, which had a

higher F1-score and lower running time (Figure 3c).

Besides, almost all classifiers performed well except for the

index of cell identity (ICI) classifier, the mean F1-score was greater

than 0.75 for all classifiers except for the ICI classifier (Figure 3c).

Another exception is that the garnett classifier performed poorly

on inDrop protocol, but well for other protocols. A classifier is

actually required to predict cell identities for cross-datasets in the

real scenario. Therefore, we evaluated the statistical difference in

the performance of each classifier between inter-dataset and

intra-dataset models using the F1-score, and concluded that there

was no difference except for SingleR and scmap-cluster classifier

(P-value <0.05; Figure S3a). We subsequently evaluated the

performance of all classifiers on the inter-datasets model or intra-

dataset model using the F1-score and obtained a significant

difference in performance (P-value <0.05; Figure S3b).

Comparisons of scoring method

Subsequently, we used four scoring approaches to infer cell–cell
communication from scRNA-seq datasets with cell types anno-

tated by the MAESTRO classifier. Interestingly, the resulting

heatmap (Figure 4a, b) showed a similar cell–cell communication

Figure 1 Statistics of PlantPhoneDB and summary of scRNA-seq datasets were analysed. (a) The number of ligand-receptor pairs curated from plant.MAP,

Interactome v2.0, IntAct, BioGRID, Text-mining from literatures, STRING, and Orthologs resources in Arabidopsis thaliana. And 3514 unique ligand-receptor

pairs are used to infer cell–cell communication. (b) The number of ligands, receptors and ligand-receptor pairs identified in 5 plant species, including

Arabidopsis thaliana, Oryza sativa, Populus alba x Populus glandulosa, Solanum lycopersicum, and Zea mays. (c) PlantPhoneDB includes 29 scRNA-seq

datasets information, covering ~560 000 cells of 15 tissues from 5 plant species. FAIL, PASS, and pending datasets are indicated as blue, black, and purple

bar, respectively. PASS datasets indicate scRNA-seq datasets with ≥1000 high-quality cells; pending datasets indicate PASS datasets without available the

expression matrix or datasets are too large to be analysed on our laptop. The rest of scRNA-seq datasets were considered to be FAIL datasets (<1000 high-

quality cells). The number of cells (recorded by original paper) for each dataset is shown inside the parenthesis.
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network on 3 k or 8 k 10 × human peripheral blood mononu-

clear cells (PBMCs) dataset for four scoring approaches (LRscore,

WeightProduct, Average, and Product). Furthermore, the similar-

ity of the cell–cell communication network was evaluated using

cosine similarity, and showed high similarity among the four

scoring approaches (Figure S4a), suggesting that little perfor-

mance difference among four scoring approaches. To evaluate

whether the performance of the four scoring approaches was

affected by the number of cells, the 8 k 10 × PBMCs dataset was

subsampled to 10, 20, 30, 40, 50, 60, 70, 80, and 90% of its

original size (8488 cells) in a stratified way. Using these cells in the

dataset, four scoring approaches performed well regardless of the

number of cells in this study (Figure S4b).

We next asked which cell–cell pair was communicating more

frequently. An easy strategy was to count the number of ligand-

receptor pairs for a given cell–cell pair, and then to normalize

counts by dividing the total cell numbers of the corresponding

cell–cell pair. Lastly, based on the ranking of normalized counts,

we used the top 10 communicating cell type pairs identified to

compare the performance among the four soring approaches.

Our results indicated that the four scoring approaches could

identify almost the same top communicating cell–cell pairs

(Data S4). Nevertheless, users should pay attention to the

difference in scoring approaches when highlighting their com-

munication network of interest (Data S5). Therefore, we recom-

mend using at least two soring approaches to infer cell–cell
communication.

Application of PlantPhoneDB

To explore more applications of PlantPhoneDB, we next studied how

cells communicate in plants under heat-shock stress. The processed

scRNA-seq dataset (GSE121619) (Jean-Baptiste et al., 2019) was

Figure 2 Functions of PlantPhoneDB web interface and a visualization example of AT2G43610 gene expression across cell types. (a) Overview of

PlantPhoneDB. Seven modules are displayed on the navigation bar. Number of ligand-receptor pairs from five plant species are collected in PlantPhoneDB.

The detailed information of scRNA-seq datasets and resources are showed in the box. (b) Visualization example of GSE114615 dataset using cellxgene

software. The detailed meta-information for each dataset was displayed on the left, such as annotated cell identities and treatment conditions. On the

right, the UMAP plot of GSE114615 dataset with cells coloured by trichoblast, atrichoblast, lateral root, meristem, endodermis, and cortex cell types. Each

dot represents one cell. (c) A violin plot shows the distribution of AT2G43610 expression level across six different cell types.
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used as input of the PlantPhoneDB R package, which contained

15 729 cells involving 9 cell types, namely Pericycle cells, Lateral

root cells, Trichoblast cells, Cortex cells, Endodermis cells,

Meristem cells, Phloem cells, Atrichoblast cells and Xylem cells

(Figure 5a). The expression of DEGs (FDR <0.05, logFC

> = 0.25) suggested that these cell types were correctly defined

(Figure 5b). We then wanted to know whether all cells were

able to exhibit heat-shock induction (Figure S5a). To do so, we

calculated the proportion of different cell types from the control

and heat-shock samples. Compared with control, atrichoblast

cells, meristem cells, and cortex cells accounted for a higher

proportion, which revelated that these cells were essential for

heat-shock response (Figure S5b). A chi-square test was used to

calculate the ratio of the observed and expected cell numbers

(RO/E) for each cell type. And these cell types displayed

significant distinct preferences between the control and heat-

shock samples (Figure 5c).

We also used PlantPhoneDB to identify a total of 1640

(including 439 experimental, 414 literatures-supported, and 787

predicted ligand-receptor pairs) significant ligand-receptor pairs

between pairwise cell types using the Average scoring approach

(Data S6), including 1457 paracrine ligand-receptor pairs and 183

autocrine ligand-receptor pairs (Figure 5d, Figure S5c, d). Herein,

we focused on the top 10 ligand-receptor pairs ranked by score

using the Average scoring method, which may play important

roles in cell–cell communication. Notably, some ligand-receptor

pairs were detected in most cell–cell pairs, such as AT3G53230–
AT3G09840, AT3G53230–AT5G12110, and AT4G12420–
AT2G45960; however, other ligand-receptor pairs were found

in a few cell–cell pairs, such as AT4G15800–AT1G55330 and

AT4G15800–AT3G13520 in atrichoblast–endodermis pair,

implied different regulatory mechanisms of various ligand-

receptor pairs (Figure 5e). In particular, 49 significant ligand-

receptor pairs were detected in the biggest cell communication

Figure 3 Benchmarks the performance of 10 classifiers across 7 PbmcBench datasets. (a) Heatmap shows the median F1-scores of 10 classifiers for 42

pairwise train-test combination across different protocols (inter-datasets model). Datasets on the top of the heatmap are used as training datasets, and

testing datasets are indicated on the bottom of the heatmap. The inter-datasets model indicated trained scRNA-seq dataset from one sequencing protocol

was used to predict cell type of scRNA-seq dataset from another sequencing protocol. (b) Median F1-scores of 10 classifiers within a dataset of different

protocols (intra-dataset model), including 10 × v2, 10 × v3, CEL_Seq, Drop_Seq, inDrop, Seq_Well and Smart_Seq2 protocol. The intra-dataset model

indicated trained scRNA-seq dataset from one sequencing protocol was used to predict cell type of scRNA-seq dataset from the same sequencing protocol.

(c) Evaluates mean computation time and mean F1-scores of each classifier. Barplot indicates mean running time of each classifier (left); line plot indicates

mean F1-scores (right).
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network (from Atrichoblast to Cortex cells), which highlighted the

importance of atrichoblast–cortex cell pair in response to heat-

shock stress (Figure S5e). Then, we constructed an internal

signalling network regulated by each ligand-receptor pair from 49

ligand-receptor pairs of Atrichoblast-Cortex cell pair. The path-

way analysis results showed that the downstream target genes of

AT1G28290-AT2G14890 pair (FDR = 3.77 × 10−64) were mainly

involved in the ribosome pathway (ath03010; Data S7; Fig-

ure S5f). Intriguingly, a previous study supported that heat stress

would give rise to the ribosome pausing phenomenon in

Arabidopsis thaliana (Merret et al., 2015).

In addition, a rice scRNA-seq dataset (GSE146035) (Liu

et al., 2021), including 10 968 cells and 12 564 cells from

cultivar Nipponbare (Japonica) and 93–11 (Indica), respectively,

was composed of six cell types, namely Columella cells, Cortex

cells, Endodermis cells, Epidermis cells, Metaxylem cells and Stele

cells (Figure 6a), was used to perform cell–cell communication.

The expression of known marker genes revealed that these cell

types were correctly annotated (Figure 6b). PlantPhoneDB R

package not only can identify significant ligand-receptor pairs in

single root cells of Arabidopsis thaliana under different environ-

mental conditions, such as heat-shock stress, but also can

compare the fractions of the number of interactions among

different cell types by dividing by a total of interactions between

two scRNA-seq datasets. We can see that using the fractions of

the number of interactions as the quantification of the cell–cell
communications highlights the importance of relative ranking in

the cell–cell communications network for each cell group

between the two rice cultivars. (Figure 6c). We also provided a

network-graph view to visualize the different number of interac-

tions among different cell types (Figure 6d, e) and the number of

interactions for the cell–cell communication subnetwork when

selecting one cell type of interest. We sometimes maybe more

concerned on the cell–cell communication of certain cell types we

were interested in (Figure S6). In summary, we can compare the

difference in cell–cell interaction by comparing the two rice

cultivars using the PlantPhoneDB R package.

Discussion

Ligand-receptor pairs are widely used to infer cell–cell commu-

nication from the single-cell transcriptome. The rapid increase in

scRNA-seq datasets makes it possible to study how cell types of

plant tissue communicate in response to environmental cues,

such as heat-shock stress. Many software tools have been

developed based on ligand-receptor pairs from human and

model animals (Liu et al., 2022; Shao et al., 2021). However, no

plant-specific ligand-receptor pair databases are available up to

now. Therefore, it’s necessary to develop a comprehensive and

reliable ligand-receptor pairs database to study cell–cell commu-

nication for plants, especially Arabidopsis thaliana, being an

important model plant. In this study, we developed PlantPhoneDB

which contained a large number of high-confidence ligand-

receptor pairs. Compared with scTensor, we identified 2727

Figure 4 Comparison of four scoring approaches (LRscore, WeightProduct, Average, and Product). (a) The number of ligand-receptor pairs identified

using four scoring approaches on 8 k 10 × PBMCs dataset. Rows represent cells expressing the receptors and columns represent cells expressing the

ligands. Low and high number of ligand-receptor pair are showed by purple and yellow, respectively. (b) The number of ligand-receptor pairs identified

using four scoring approaches on 3 k 10 × PBMCs dataset.
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ligand-receptor pairs with certain confident criteria in Arabidopsis

thaliana in PlantPhoneDB but not in scTensor. As mentioned

above, only 787 ligand-receptor pairs were overlapped with the

scTensor (Figure S1b). In addition, only 19.37% (74/382)

literature-supported ligand-receptor pairs we collected was over-

lapped with the scTensor (Figure S4c). For further comparison,

Figure 5 Significant cell–cell interactions of heat-shocked root cells in Arabidopsis thaliana. (a) UMAP plot of GSE121619 dataset with cells coloured by

atrichoblast, cortex, endodermis, lateral root, meristem, pericycle, phloem, trichoblast, and xylem cell types. (b) The mean expression of signature genes for

each cell type annotated by MAESTRO software. Low and high gene expression levels are showed by blue and read, respectively. (c) Preference of each cell

type under heat-shock stress. RO/E above 1 indicates enrichment. (d) Chord diagram of cell–cell communication between pairwise cell types. The line width

indicates the number of significant ligand-receptor pairs. (e) Top 10 ligand-receptor pairs with P-value <0.05 show different regulatory pattern. Columns

are scaled by max ligand-receptor expression.

Figure 6 Comparison of the number of interactions of cell pairs between two rice cultivar datasets (93–11 and Nipponbare). (a) UMAP visualization of

GSE146035 dataset, including 10 968 cells and 12 564 cells from two cultivar Nipponbare (Japonica) and 93–11 (Indica), respectively. Each dot represents

one cell. (b) The mean expression of known marker genes for each cell type from two rice cultivars. (c) Difference of cell–cell interactions of each cell type in

two rice cultivars, accounting for total cell number. (d) Identification of significant ligand-receptor pairs between pairwise cell types in rice cultivar 93–11.
(e) Identification of significant ligand-receptor pairs between pairwise cell types in rice cultivar Nipponbare.
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93.15% (762/818) high-confidence ligand-receptor pairs and

1.14% ((787–762)/(3014–818)) low-confidence ligand-receptor

pairs from scTensor were covered in the PlantPhoneDB. There are

two possible reasons for the low overlap between scTensor and

PlantPhoneDB: (1) The STRING database is constantly updated,

and ligand-receptor pairs by scTensor are not the latest. (2)

scTensor contains only ligand-receptor pairs from the STRING

database in plants, but without other databases, such as BioGRID

and IntAct, etc. As explained (Cabello-Aguilar et al., 2020), they

could not use scTensor beyond its prepackaged example dataset.

Despite considerable efforts scTensor made, it’s necessary to

develop a plant-specific tool for cell–cell communication. The

PlantPhoneDB R package not only provides some visualization

functions, including dot plot, heatmap plot, circular plot, and

network of cell–cell communication but also supports four

scoring approaches to estimate PPI strength (Table 1).

Recent scRNA-seq technologies have successfully solved cellu-

lar heterogeneity problems and promoted us to underline cell–cell
communication in plant species at single-cell resolution. To gain

the landscape of plant cellular communication, it’s vital to identify

cell-type identities. We evaluated the performance of 10 classi-

fiers on 7 PbmcBench datasets based on the F1-score and

computation time, and chose MAESTRO software to annotate the

cell clusters. The ICI method performed worst on all PbmcBench

datasets for cell identity annotation. We speculated that the ICI

method is specific to the root tissue of Arabidopsis thaliana rather

than other tissues or organisms. Wang et al. suggested the

approach was likely not appropriate for the rice scRNA-seq

dataset (Wang et al., 2021). In the present study, the PlantPho-

neDB R package provided optional four scoring approaches to

infer cellular communication. There was very little difference

among the four scoring approaches except for running time.

In this study, we demonstrated two examples of how to use

PlantPhoneDB in real-world scRNA-seq datasets from plants. On

one hand, PlantPhoneDB could predict an important biological

pathway regulated by AT1G28290-AT2G14890 pair, which was

supported by a previous study (Merret et al., 2015). It could be an

important regulatory mechanism, which facilitates plants adapt-

ing to environmental changes. To some extent, a previous study

demonstrated that heat stress would give rise to the ribosome

pausing phenomenon supported our result at the bulk RNA-Seq

level. These findings provided important cues to further under-

stand how cells communicate with each other in response to heat

stress. However, further evidence is needed to support this

finding. On the other hand, we compared cellular communication

between two rice cultivars and revealed the importance of

relative ranking in the cell–cell communications network for each

cell group. PlantPhoneDB also provides multiple visualizations of

the number of interactions among different cell types to compare

differences in the communication network. However, there are

some limitations to be noted. Firstly, we did not take into account

the heteromeric interactions between ligand-binding receptors

and respective co-receptors, which could serve as an important

interaction platform (Smakowska-Luzan et al., 2018; Zhang et

al., 2022). Secondly, due to the very low overlap of ligand-

receptor pairs between non-literature-supported pairs (experi-

mental and predicted pairs) and literature-supported pairs from

PlantPhoneDB, we could not perform benchmarking analyses and

accurately evaluate the likelihood of the cell–cell communica-

tions. Besides, plant hormones are also involved in many

processes of plant growth and development, which trigger

numerous transcriptional programs in response to environmental

cues (Nemhauser et al., 2006). A possible mechanism is cross-talk

between phytohormones and secreted signalling peptides to

integrate cellular communication network and regulate physio-

logical and biochemical processes. Lastly, scRNA-seq datasets are

too large for memory and require high-power computing server.

Therefore, for now, we only offer an R package for users to install

and analyse their own datasets. In the future, we will build an

application for visualization, comparison, and cell–cell communi-

cation for single-cell transcriptome datasets. It does not require

associated expertise and expense, just uploading dataset,

analysing and downloading analyse results. In the future, the

use of spatial transcriptomics technologies on plant species will

promote us to constantly update PlantPhoneDB.

In summary, PlantPhoneDB provides numerous high-

confidence ligand-receptor pairs in five plant species. And we

constructed a user-friendly website for systematically searching,

browsing, and downloading the processed datasets, facilitating

the exploration of cell–cell communication at single-cell resolution

in plants. In addition, the PlantPhoneDB R package provides some

functions using R (version: 4.0.2), such as LRscore,

Table 1 Comparison of PlantPhoneDB R package with other software tools

Features PlantPhoneDB SingleCellSignalR CellPhoneDB scTensor

Number of species 5 2 1 12

plant-specific Y N N N

preprocessed data Y Y N Y

Complete pipeline Y Y N N

Scoring approach Regularized product/Average/

product/Weight Product

Regularized product Average Linear decomposition

Coding language R R Python R

Intracellular signalling Y Y N N

Dot plot Y N Y N

Heatmap plot Y N Y N

Circular plots Y Y N N

Tables Y Y Y Y

Web interface Y N Y Not available

Network of cell–cell communication Y Y N Y
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heatmap_count, CCI_circle, CCI_network, and LR_pathway, to

infer and construct cell–cell communication network and intra-

cellular signalling pathway.

Materials and methods

PlantPhoneDB-a curated database based on ligand-
receptor interactions

To construct a ligand-receptor interaction database, we searched

secreted proteins and plasma membrane proteins from the

UniProtKB/Swiss-Prot (Boutet et al., 2016) database using the

keywords KW-0964 (secreted) and KW-1003 (cell membrane),

respectively, according to the protocol of CellPhoneDB v.2.0. We

also manually reviewed open access databases, for instance, TAIR

(Berardini et al., 2015) database includes receptor kinase-like

gene family and PlantSecKB (http://proteomics.ysu.edu/

secretomes/plant/index.php) database, a knowledgebase for

plant secretomes, and peer-reviewed publications or preprints

with the term ‘ligand and receptor’ in the title or abstract and

developed PlantPhoneDB. For Arabidopsis thaliana, we down-

loaded protein–protein interactions (PPIs) curated from literature

from BioGRID (Oughtred et al., 2021), Interactome v2.0 (https://

www.arabidopsis.org/download/index.jsp), IntAct (Hermjakob et

al., 2004), plant.MAP (McWhite et al., 2020), and STRING (Szk-

larczyk et al., 2019) databases. Of which, STRING database also

included a large number of experimental and predicted associ-

ations between proteins. Currently, all the annotation of PPIs

from BioGRID, Interactome v2.0, IntAct, and plant.MAP data-

bases were extracted from the literature. In plant.MAP, while CF-

MS scores represent PPI strength, CF-MS scores >0.5 correspond

to ~90% true positive rate, and scores >0.2 correspond to ~50%
true positive rate. We kept pairs of which CF-MS score >0.3. In
STRING, we selected pairs if PPI combined score >600. Finally, we

matched ligands with receptors taken from UniProtKB using

reliable PPIs.

Besides, PlantPhoneDB integrates some existing resources

(CellTalkDB (Shao et al., 2021), SingleCellSignalR, and CSOmap

(Ren et al., 2020)) that contain human ligand-receptor interac-

tions. To expand our ligand-receptor interaction database, we did

orthologs assignment between Homo sapiens and Arabidopsis

thaliana proteomes using the InParanoid algorithm (Hou et

al., 2020; Sonnhammer and Östlund, 2015) to transfer annota-

tions of known PPI. Moreover, to the run PlantPhoneDB R

package on other plant species, we extracted the homologues of

ligand-receptor interactions based on Arabidopsis thaliana

ortholog mappings using the InParanoid algorithm. The improved

genome sequences and annotation files of Populus alba×Populus
glandulosa (Huang et al., 2021) were obtained from https://doi.

org/10.6084/m9.figshare.12369209. Protein sequences of other

species were downloaded from UniProtKB/Swiss-Prot database.

Especially, for non-model plants, there are not available ligand-

receptor pairs for cell–cell communication analysis. Therefore, we

also provided a workflow to perform computational identifica-

tions of secreted proteins, receptor-like kinases (RLKs), or

receptor-like proteins (RLPs) and their interaction based on

protein sequences (Figure S2c). The workflow consists of three

main steps: (1) identification of secreted proteins, (2) identifica-

tion of RLKs/RLPs, and (3) prediction of protein–protein interac-

tions. In detail, firstly, the SignalP 5.0 software was used for

secretory signal peptide prediction (Almagro Armenteros et

al., 2019). The accuracy of secretome prediction could be further

improved by combing signalP 5.0 with other software, including

Phobius (Käll et al., 2007), TMHMM (Krogh et al., 2001), and

TargetP (Boos et al., 2018). Therefore, a predicted protein that

has a secretory signal peptide by at least three software, including

signalP 5.0 and TMHMM. And these predicted proteins without

transmembrane helix and endoplasmic reticulum (ER) retention

signals were considered to be secreted proteins. Then, the

workflow provided by Restrepo-Montoya et al. was used for the

computational identification of RLK/RLP and their structural

domains in legumes, which can be applied to the proteomes of

other plant species (Restrepo-Montoya et al., 2020). The Pfam_s-

can program was used to identify target domains. And those

proteins with transmembrane helix and extracellular domain, and

without Nucleotide-Binding domain shared by plant resistance

gene products (NB-ARC) domain were considered to be RLPs.

While those proteins with transmembrane helix, extracellular

domain, intracellular domain and Pkinase domain, and without

NB-ARC domain were considered to be RLKs. Lastly, computa-

tional prediction of protein–protein interaction was performed

using CAMP (or other optional software), a sequence-based deep

learning framework for the multifaceted prediction of peptide-

protein interactions (Lei et al., 2021). Figure S2c showed filtering

criteria, and for the detailed usage of software in the workflow,

users can read documents on their published manuscripts.

Collection and processing of scRNA-seq datasets

Plant scRNA-seq datasets reported previously (Chen et al., 2021)

were downloaded from PlantscRNAdb (http://ibi.zju.edu.cn/

plantscrnadb/index.php), which includes 26 326 marker genes,

128 different cell types, 15 tissues from four plant species (Oryza

sativa, Arabidopsis thaliana, Zea mays, and Solanum lycoper-

sicum). In addition, we searched plant scRNA-seq datasets from

the Gene Expression Omnibus (GEO) (NCBI Resource Coordina-

tors, 2018) and ArrayExpress (Athar et al., 2019) using the

keyword ‘plant single cell or scRNA-seq’. Then, we manually

confirmed and curated each dataset with available the expression

matrix of the raw count, FPKM, TPM, or normalized count, and

metadata information. Overall, a total of 29 plant single-cell

transcriptome datasets across five plant species (Data S1) were

obtained initially for further analysis.

Admittedly, we adopted a standard preprocessing analysis

workflow based on Seurat v.4.0.3 (Hao et al., 2021) to perform

quality control, data normalization, data scaling, integration,

dimensional reduction, cell clustering, and differential expression

analysis for the datasets we collected. Due to the technical noise

in scRNA-seq or contamination of samples, low-quality cells were

filtered out based on the number of unique detected genes (<200
genes per cell) and the total number of molecules (<1000 UMI

per cell). We kept the datasets with ≥1000 high-quality cells,

which were considered to be PASS datasets. In addition, PASS

datasets without available expression matrix or with a large

number of cells that consume high memory on our laptop were

considered to be pending datasets. The rest of the scRNA-seq

datasets were considered to be FAIL datasets (<1000 high-quality

cells).

In order to eliminate the batch effect of different scRNA-seq

datasets, the SCTransform function was applied to data normal-

ization and data scaling. After data integration, the top 3000

variable features identified were employed for dimensional

reduction using the principal component analysis (PCA) function.

The first 50 principal components were chosen for cell clustering

using K-Nearest Neighbours (KNN) and Louvain algorithm by

FindNeighbors and FindClusters function. The differentially
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expressed genes (DEGs) for each cluster were determined by false

discovery rate (FDR <0.05) and the log-scale fold change (logFC

> = 0.25) using the FindAllMarkers function.

Cell-type annotation

The cell types of clusters were determined by prior knowledge or

supervised approaches. First, we automatically assigned the cell

type identity to clusters based on signature files using the

RNAAnnotateCelltype function from the MAESTRO R package

(Wang et al., 2020). The signature files were constructed for

plant species by collecting marker genes of each cell type of

different tissues from the publicly available resources (Chen

et al., 2021; Efroni et al., 2015). Second, we calculated an index

of cell identity (ICI) score for each scRNA-seq dataset to identify

cell types of clusters using an information-theory-based approach

(Efroni et al., 2015). Third, we annotated the cell clusters based

on a weighted marker-based index of cell identity (MICI) (Wang

et al., 2021). Finally, we annotated cells against microarrays data

(if available) using SingleR (Aran et al., 2019), an automatic

annotation method for scRNA-seq datasets.

To achieve a more reliable performance of cell-type annotation,

several other automatic cell identification methods were used to

compare the performance of the classifiers (Data S8). Here, a

total of 7 human peripheral blood mononuclear cells (PBMC)

scRNA-seq datasets with known cell-type annotation were used

to perform benchmarking analyses (Data S3). The 7 PBMC

datasets (PbmcBench) with 7 different sequencing protocols

were downloaded from Zenodo (https://doi.org/10.5281/zenodo.

3357167) (Abdelaal et al., 2019). The performance of the clas-

sifiers was evaluated based on the F1-score and computation

time.

The score of ligand-receptor interactions

To investigate the expression of genes on both transcript level and

protein level, we reanalyzed the relationship between mRNA and

protein data from four tissues of Arabidopsis thaliana (Data S9),

namely flower, rosette leaf, silique, and seed (Mergner et al., 2020),

using Spearman’s correlation. We concluded that the majority of

genes (26 828/37137, 72.24%, ¦Spearman’s correlation¦ > 0.3)

were highly correlated between transcript level and protein level

for four tissue types, suggesting that transcript abundance could

be a proxy for protein abundance (Figure S1c, d). Therefore, we

scored ligand-receptor interactions based on the transcript level

of genes.

Importantly, several strategies of communication scores were

proposed to infer the PPI strength and showed advantages based

on their different assumptions (Armingol et al., 2021), i.e.

SingleCellSignalR and CellPhoneDB. In addition, an edge-score

model was developed to model PPI by the law of mass (Altmann

et al., 2020). PlantPhoneDB R package provides these optional

approaches for users to score ligand-receptor interactions. It is

worth noting that each ligand-receptor pair was expressed in at

least 10% of cells of a given cell type.

For comparison, we used the 3 k and 8 k 10 × PBMCs datasets

from https://support.10xgenomics.com/single-cell-gene-expressi

on/datasets, to evaluate the performance of four scoring

approaches (LRscore, WeightProduct, Average, and Product).

We filtered the ligand-receptor pairs with LRscore <= 0.5

imposed by Cabello-Aguilar et al (Cabello-Aguilar et al., 2020).

For the Product and Average scoring approaches, we calculated

the P-values based on the interaction score distribution of

randomly permuted cell types (100 times by default). P-values

<0.05 were considered significant. As for the WeightProduct

scoring approach, we considered that the mean expression level

of ligand and receptor above 0.1 could be co-detected.

Construction of intracellular signalling pathway

We assumed the ligand-receptor pair as the seed node to transmit

signalling from the surface of the cell membrane to downstream

genes (Browaeys et al., 2020). In order to understand down-

stream biological pathways regulated by ligand-receptor pair, we

identified highly variable genes as the primary downstream target

genes of a specific ligand-receptor pair using SCTransform

function from the Seurat R package (parameters by default),

which could highlight biological signals in downstream analysis

(Brennecke et al., 2013). Then, we further filtered downstream

genes that meet the following two criteria: First, downstream

genes were considered as differentially expressed genes (DEGs;

FDR <0.05, logfc.threshold >0.25) identified by FindMarkers

function from Seurat v.4.0.3 R package; second, Spearman’s

correlation greater than one threshold (0.013 by default)

between mean expression of ligand-receptor pair and expression

of each downstream gene.

Lastly, we constructed a weight adjacent matrix based on

mutual information between all pairs of ligand-receptor pairs and

downstream DEGs for each cell type using the infotheo R package

(https://cran.r-project.org/web/packages/infotheo/index.html).

The weak edges were removed to reconstruct an intracellular

gene co-expression network using the parmigene R package

(Sales and Romualdi, 2011). For a particular ligand-receptor pair,

the 2nd-order neighbourhoods (default) were extracted to

perform functional category enrichment analysis of signalling

pathways using the Fisher’s exact test. That is, we related ligand-

receptor pair with all possible downstream pathways for each cell

type. Pathway gene sets were obtained from PlantGSAD database

(Ma et al., 2022). The statistical formula of the Fisher’s exact test

is defined as (1):

P ¼
n

k

� �
N�n

K�k

� �

N

K

� � (1)

where N is the number of unique detected genes from a scRNA-

seq dataset, n is the number of the 2nd-order neighbourhoods, K

is the number of one pathway gene sets and k is the number of

overlapping genes. We adjusted enrichment P-values using the

method of Benjamini & Hochberg (Korthauer et al., 2019).

Web interface of PlantPhoneDB

PlantPhoneDB is a ligand-receptor interactions database, which

aims to infer cell–cell communications from scRNA-seq datasets in

plants. We built the PlantPhoneDB web interface to present the

results we analysed in a flexible way based on shiny (www.

rstudio.com/shiny), a web application framework for R. All the

processed scRNA-seq datasets can be searched and downloaded

from the web interface, and saved as h5ad format file to meet

requirements of cellxgene (https://chanzuckerberg.github.io/

cellxgene/) for visualization. The website is freely available at

https://jasonxu.shinyapps.io/PlantPhoneDB/ without login require-

ments. The documentation for PlantPhoneDB is available at

https://plantphonedb.readthedocs.io/en/latest/index.html.
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Sonnhammer, E.L.L. and Östlund, G. (2015) InParanoid 8: orthology analysis

between 273 proteomes, mostly eukaryotic. Nucleic Acids Res. 43, D234–
D239.

Szklarczyk, D., Gable, A.L., Lyon, D., Junge, A., Wyder, S., Huerta-Cepas, J.,

Simonovic, M. et al. (2019) STRING v11: protein-protein association networks

with increased coverage, supporting functional discovery in genome-wide

experimental datasets. Nucleic Acids Res. 47, D607–D613.
Takahashi, F., Suzuki, T., Osakabe, Y., Betsuyaku, S., Kondo, Y., Dohmae, N.,

Fukuda, H. et al. (2018) A small peptide modulates stomatal control via

abscisic acid in long-distance signalling. Nature 556, 235–238.
Thibivilliers, S. and Libault, M. (2021) Enhancing our understanding of plant

cell-to-cell interactions using single-cell omics. Front. Plant Sci. 12, 1585.

Tsuyuzaki, K., Ishii, M. and Nikaido, I. (2019) Uncovering hypergraphs of cell-cell

interaction from single cell RNA-sequencing data, 566182.

Turco, G.M., Rodriguez-Medina, J., Siebert, S., Han, D., Valderrama-Gómez,
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