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Abstract 

Background: Ticks are responsible for transmitting several notable pathogens worldwide. Finland lies in a zone 
where two human-biting tick species co-occur: Ixodes ricinus and Ixodes persulcatus. Tick densities have increased in 
boreal regions worldwide during past decades, and tick-borne pathogens have been identified as one of the major 
threats to public health in the face of climate change.

Methods: We used species distribution modelling techniques to predict the distributions of I. ricinus and I. persul-
catus, using aggregated historical data from 2014 to 2020 and new tick occurrence data from 2021. By aiming to fill 
the gaps in tick occurrence data, we created a new sampling strategy across Finland. We also screened for tick-borne 
encephalitis virus (TBEV) and Borrelia from the newly collected ticks. Climate, land use and vegetation data, and popu-
lation densities of the tick hosts were used in various combinations on four data sets to estimate tick species’ distribu-
tions across mainland Finland with a 1-km resolution.

Results: In the 2021 survey, 89 new locations were sampled of which 25 new presences and 63 absences were 
found for I. ricinus and one new presence and 88 absences for I. persulcatus. A total of 502 ticks were collected and 
analysed; no ticks were positive for TBEV, while 56 (47%) of the 120 pools, including adult, nymph, and larva pools, 
were positive for Borrelia (minimum infection rate 11.2%, respectively). Our prediction results demonstrate that two 
combined predictor data sets based on ensemble mean models yielded the highest predictive accuracy for both 
I. ricinus (AUC = 0.91, 0.94) and I. persulcatus (AUC = 0.93, 0.96). The suitable habitats for I. ricinus were determined 
by higher relative humidity, air temperature, precipitation sum, and middle-infrared reflectance levels and higher 
densities of white-tailed deer, European hare, and red fox. For I. persulcatus, locations with greater precipitation and 
air temperature and higher white-tailed deer, roe deer, and mountain hare densities were associated with higher 
occurrence probabilities. Suitable habitats for I. ricinus ranged from southern Finland up to Central Ostrobothnia and 
North Karelia, excluding areas in Ostrobothnia and Pirkanmaa. For I. persulcatus, suitable areas were located along the 
western coast from Ostrobothnia to southern Lapland, in North Karelia, North Savo, Kainuu, and areas in Pirkanmaa 
and Päijät-Häme.

Conclusions: This is the first study conducted in Finland that estimates potential tick species distributions using 
environmental and host data. Our results can be utilized in vector control strategies, as supporting material in recom-
mendations issued by public health authorities, and as predictor data for modelling the risk for tick-borne diseases.
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Background
In temperate and boreal forests, ticks are among the 
most important arthropods transmitting viruses and 
other pathogens causing diseases in humans. In North-
ern Europe, among the most prevalent tick-borne 
pathogens are Borrelia burgdorferi (s.l.) bacteria caus-
ing Lyme borreliosis (LB) and tick-borne encephalitis 
virus (TBEV) causing tick-borne encephalitis (TBE). 
The abundances and distributions of vectors and their 
hosts are mainly restricted by their habitat suitability, 
determined largely by climatic and environmental con-
ditions, similarly to other arthropods. Finland lies in 
a zone with overlapping geographical distributions of 
two tick species, the castor bean tick Ixodes ricinus Lin-
naeus 1758 and the taiga tick Ixodes persulcatus Schulze 
1930. Tick abundances have increased in Finland, which 
has been mirrored by a rising incidence of tick-borne 
diseases (TBDs) in the country during the past decades 
[1–4]. The distribution of I. ricinus extends throughout 
Europe from Sweden to North Africa and from Ireland 
to the Urals [5, 6], and the distribution of I. persulcatus 
extends from Fennoscandia to Japan. During the last 2 
decades, the taiga tick, I. persulcatus, has spread to new 
areas in Northern Europe: from eastern Finland to the 
north-western coast of Finland and all the way to east-
ern Sweden [7–9]. Currently, ticks occur throughout 
Finland, excluding most of Lapland [9]. Ixodes ricinus 
is predominant in southern Finland while I. persulca-
tus prevails in the eastern regions of Finland and on the 
north-western coast up to southern Lapland, although 
I. persulcatus may be spreading southwards, with 
recent records from the capital region along the south 
coast [10]. Central Finland is considered a sympatric 
area where both species occur.

Knowledge of tick seasonalities, i.e. the time periods 
when ticks are active, is important because of its pub-
lic health relevance, but also for understanding how 
environmental and other factors influence their distri-
butions. Ixodes ricinus is active from May to Septem-
ber in Finland, with two activity peaks. Adult I. ricinus 
activity peaks in July–August and nymph activity peaks 
in September [9, 11], while I. ricinus nymphs and adult 
females have been found to peak in May–June [12] and 
in August–September [12, 13]. The seasonal activity of 
I. persulcatus adults in Finland is unimodal, as they are 
active in May–July, with the highest activity peak in 
May [9, 11, 14]. Tick reproduction and abundance and 
pathogen transmission are dependent on the presence 

of a suitable vertebrate host. Adult and nymphal I. rici-
nus and I. persulcatus often feed on small to medium-
sized animals, such as rodents, birds, foxes, and hares, 
but also on large-sized animals including deer, moose, 
and humans [15–17]. In contrast to I. ricinus nymphs, I. 
persulcatus nymphs rarely feed on larger hosts, includ-
ing humans [14]. Larval I. ricinus and I. persulcatus feed 
mainly on terrestrial vertebrates, such as voles or birds, 
as they are numerous and move close to the ground in 
the vicinity of tick larvae [18, 19]. Tick densities vary 
largely depending on geographical location. Gener-
ally, 100–1000/100  m2 is considered high density for 
I. ricinus nymphs in Central Europe, while 10–13/100 
 m2 and 10/100  m2 already indicate high densities for I. 
ricinus [2, 20] and I. persulcatus nymphs or adults in 
Finland [14], respectively. High density numbers in Fin-
land coincide with those observed for I. persulcatus in 
northern Sweden [21].

Weather, climate change, and the environment influ-
ence habitat suitability, vector activity, and the rate of 
vector development [22, 23]. Ticks need sufficiently high 
temperatures to complete their development [24]. Ixodes 
ricinus and I. persulcatus differ in terms of their temper-
ature-related activity, with I. persulcatus being active at 
lower temperatures [25–27]. Generally, warm tempera-
tures and increased rainfall positively affect tick densi-
ties [22], but extremely high temperatures combined 
with decreased rainfall may reduce tick populations [28]. 
Water vapour is the main source of moisture for active 
unfed ticks, and it is only absorbed at sufficiently high 
relative air humidity [24]. Ixodes ricinus requires high 
relative humidity (> 80%) to survive during off-host peri-
ods [29]. In the northern distribution limit of the spe-
cies, relative humidity was found to positively correlate 
with the abundances of I. ricinus nymphs and adults [2]. 
Saturation deficit was also found to positively influence 
the abundance of questing I. ricinus larvae and to posi-
tively influence adult abundance until the optimal value 
(3.16  mmHg) [12]. Despite less research conducted on 
I. persulcatus than on I. ricinus in their northern distri-
bution limits, findings suggest that the climatic require-
ments of I. persulcatus differ from those of I. ricinus. 
Ixodes persulcatus occurs in areas where growing season 
length varies between 140 and 150 days, while I. ricinus 
prefer areas with a growing season of > 180 days [8]. Fur-
thermore, I. persulcatus occurs in areas with less precipi-
tation and a lower humidity index and temperature sum 
than the northern distribution limits of I. ricinus [8, 24]. 

Keywords: Ixodes ricinus, Ixodes persulcatus, Species distribution modelling, Ensemble prediction, Tick-borne 
pathogen, Borrelia burgdorferi sensu lato
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Snow cover influences tick development, acting as an 
insulator that protects the nymphal ticks and larvae from 
freezing [30].

Species distribution modelling (SDM) methods can 
be used to determine the habitat suitability areas of the 
two species and to indicate the most influential factors 
affecting their distributions [31]. SDM techniques have 
widely been used to study I. ricinus occurrences [32–37] 
in Europe. In addition to studies focused on modelling 
I. ricinus occurrences, multiple studies have modelled I. 
ricinus densities [38–41], which requires more compre-
hensive and continuous tick sampling than needed for 
presence-absence modelling. No earlier SDM studies 
have estimated I. persulcatus distributions in Europe or 
Asia, although a few studies have estimated their prob-
able occurrences [42, 43]. Earlier research in Finland 
on tick distributions shows occurrence point patterns 
[9] and I. ricinus [11, 12, 20] and I. persulcatus [11, 14] 
abundances at smaller scales, but SDM methods have 
not been conducted previously. Host data are difficult to 
obtain and are thus missing from the majority of SDM 
studies examining ticks. However, several statistical anal-
yses on I. ricinus distributions have included tick host 
data [44–47].

In this study, we aim to (1) analyse the ticks collected 
in 2021 for species and possible pathogens: TBEV and 
Borrelia, (2) estimate the potential distributions of I. rici-
nus and I. persulcatus in mainland Finland and assess the 
model performance using various variable compositions, 
and (3) identify the most influential factors driving the 
spatial patterns. The study aim is to predict tick species 
occurrences instead of tick densities, and thus habitat 
suitability in the Results refers to the probability of spe-
cies presence instead of the estimated abundance. Our 
study is based on data obtained from historical tick data 
sets from 2014 to 2020 and on new tick collections from 
2021.

Methods
Study area
Finland (59°50′N, 20°38′E, 70°09′N, 31°30′E) is located in 
Northern Europe between Sweden and Russia (Fig.  1). 
This study covers Finland, excluding the Åland Islands 
and most parts of Lapland. Only the south-western 
municipalities of Lapland were included, Simo, Kemin-
maa, Tornio, and Kemi, because of the presence of both 
tick species in the region [9].

Tick data
Historical tick data
Historical tick data were collected by the Universities of 
Turku, Jyväskylä, and Helsinki. The majority of the data 
consisted of national crowdsourcing data, where citizens 

collected ticks across Finland from April to Novem-
ber, 2015, and sent them to the University of Turku for 
identification and further analysis [9]. The coordinates 
for the crowdsourcing data were manually gathered and 
recorded by biologists from the University of Turku, 
based on information provided in the letters used to 
send the ticks, along with their own assessment of suit-
able areas for ticks (based on topographic and satellite 
imagery). As for pinpointing the location where each tick 
got on its vessel, most ticks were sent in by dog owners 
after being removed from the dogs. These dog owners 
reported consistently walking approximately the same 
routes with their pets, and thus we would expect the ticks 
to have gotten on the dogs within a 500-m diameter of 
the mentioned walking areas. These factors naturally lead 
to uncertainty in the correctness of the coordinate points 
and, more notably, to uncertainty regarding the accuracy 
to which the coordinates depict the exact location for 
acquiring the tick. However, we would expect the coor-
dinate points and surrounding environments to repre-
sent the tick acquisition area at a 1-km resolution in most 
cases. In addition, tick collections at smaller scales were 
conducted by the Universities of Helsinki, Turku, and 
Jyväskylä from 2014 to 2020. Aggregated historical data 
consisted of 4152 presences for I. ricinus and 986 pres-
ences for I. persulcatus.

Sampling strategy for tick collections in 2021
Historical I. ricinus data covered the entire study area 
well, but I. persulcatus occurrence data were spatially 
clustered. We therefore targeted the activity season of 
I. persulcatus from May to June in 2021 to fill the gaps 
in environmental space covered by the data. We cre-
ated a GIS-based sampling strategy using both ESRI 
ArcGIS (version 10.3.1) (ESRI, Redlands, CA, USA) and 
 VECMAP® software [48] with the following criteria 
(Additional file 1: Fig. S1a). We created "regulated areas" 
as buffer zones around existing I. persulcatus occurrences 
within a 5-km radius to exclude them from the sampling 
strategy. Then, we created 500-m buffer zones around 
the roads to ensure accessibility. We used the CORINE 
Land cover CLC2018 data set available for Finland [49] to 
extract land cover classes known to be suitable habitats 
for ticks: a forest category including deciduous, conifer-
ous, and mixed forests and a meadow category including 
sparsely wooded areas. We used subdivisions of land-
scape provinces to distinguish areas already well covered 
with I. persulcatus occurrences from four larger areas 
where further collections were needed. For each of the 
four areas, a random sample of 25 collections points (a 
total of 100 locations) was created in  VECMAP® based 
on the relative shares of the two land cover categories in 
the area (approximately 86% forests and 14% meadows). 
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Fig. 1 A map presenting the study area with elevation levels
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As ecotones are locations with most tick abundance [50], 
each created collection point was moved to the closest 
ecotone using a Google Maps Satellite map.

Tick collections and processing
Additional sampling of 100 locations was carried out 
from the beginning of May to the end of June 2021, which 
is considered the activity season of I. persulcatus (peak in 
May) in Finland [9, 11, 14]. Ticks were collected by slowly 
dragging a 1.0 × 1.5-m or a 1.0 × 1.0-m cotton cloth over 
10-m sections, with a total of 400-m dragging sessions in 
each locality. This design was defined together with Finn-
ish tick specialists. If ticks were not detected after 400 m 
of dragging, the site was considered an absence loca-
tion. Sampling was conducted during the day or night 
but not on rainy days. Sampling date or time may affect 
the sampling results. All ticks attached to the cloth were 
collected using tweezers. The larvae, nymphs, and adults 
were separated, placed into 15-ml Greiner tubes with a 
grass stalk inserted in each tube, and transported to the 
Department of Virology at the University of Helsinki. 
Ticks were stored alive at 4  °C until homogenization. 
Ticks were pooled according to species, development 
stage, and collection site (adults 1; nymphs 1–5; larvae 
1–50). RNA was extracted using a QIAamp Viral RNA 
Mini Kit (Qiagen) and DNA using a DNeasy Blood and 
Tissue DNA extraction kit (Qiagen, Hilden, Germany) 
according to the manufacturers’ instructions. Tick spe-
cies was confirmed by molecular identification, using 
a species-specific duplex TaqMan real-time PCR assay, 
as previously described [1]. TBEV was screened using a 
quantitative real-time PCR assay [51], with the following 
modifications; assays were carried out in 20 μl of reaction 
volume, including 5 μl Taqman fast virus 1-step master-
mix (Thermo Fischer Scientific), 0.4  μl forward primer, 
0.6 μl reverse primer, 0.16 μl probe, 8.84 μl  H2O, and 5 μl 
RNA. The thermal cycling profile was 50  °C for 5  min, 
followed by 20  s at 95  °C, prior to amplification (95  °C 
15 s, 60 °C 30 s, 40 cycles). For Borrelia, we used a quan-
titative real-time PCR assay, as previously described [9]. 
All PCR reactions were performed on a T100™ Thermal 
Cycler (Bio-Rad, Germany).

Data pre‑processing
Spatial autocorrelation (SA) refers to data or residuals 
correlated with themselves rather than being independ-
ent [52], and it may inflate the effective sample size and 
bias parameter estimates. To reduce SA, tick occurrence 
data were thinned using R package Wallace [53], which 
uses the spThin approach [54]. For I. ricinus presence-
absence data, we used 10 km of spatial thinning for I. rici-
nus and 3 km of spatial thinning for I. persulcatus, which 
were considered I. ricinus absences with true absences 

(N = 88) obtained from the summer sampling in 2021. 
For I. persulcatus presence-absence data, 3 km of spatial 
thinning for I. persulcatus was used to obtain the highest 
possible number of presences and 5  km of spatial thin-
ning for I. ricinus. These data were aggregated with data 
of true absences described above. After data thinning, I. 
ricinus data consisted of 622 presences and 637 absences, 
and I. persulcatus data consisted of 509 presences and 
1289 absences (Fig. 2a, b).

Geospatial data
Environmental, climate, and other predictors were 
selected based on factors known to influence the I. rici-
nus and I. persulcatus distributions. Environmental data 
for Finland were obtained from various sources and 
included data derived from satellite imagery, GIS layers, 
or interpolated data. Details of the predictor data are 
provided in Table 1. The initial data sets for both species 
included 25 predictors before running a multicollinear-
ity analysis. Final predictors in each variable combina-
tion are seen in Fig. 3 and Additional file 5: Table S1. For 
monthly climate data (relative air humidity, air tempera-
ture, and precipitation), we calculated the mean for the 
activity seasons for both species: May–September for I. 
ricinus and April–June for I. persulcatus.

Host data
Host abundance estimates were based on snow track 
counts from the wildlife triangle census, which is a 
national monitoring scheme coordinated by the Natu-
ral Resources Institute Finland (LUKE). Abundance was 
approximated using a snow track index (I = tracks/10 km/
day) for each species and triangle in an area, i.e., the num-
ber of snow tracks observed per 10 km of counted tran-
sect, further divided by the number of days during which 
snow tracks have accumulated (days since the last snow-
fall or since a round of “pre-mapping”). For each species 
occurrence, we calculated the average annual snow track 
index within a 50-km radius, and the annual indexes for 
that area were further averaged over the study period 
(2014–2021). The layer of species-specific distributions 
was formed by repeating this procedure over a 1 × 1-km 
grid (Table  1). The data consist of calculated average 
abundance indexes for European hare (Lepus europaeus), 
mountain hare (Lepus timidus), moose (Alces alces), red 
fox (Vulpes vulpes), roe deer (Capreolus capreolus), and 
white-tailed deer (Odocoileus virginianus).

Data preparation and data analysis
We used four variable compositions for the SDM pre-
dictions: environment only, host only, combined data on 
environmental and host variables, and combined data on 
environmental and host variables with suitability data of 
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either tick species. In the fourth variable composition, the 
suitability data of either tick species were produced based 
on environmental and host data to reveal any potential 
effects of I. ricinus occurrence to I. persulcatus pres-
ence and vice versa. We decided to include this predic-
tor because of field observations in which the one species 
has not been found in the vicinity of the other species. 
We used the biomod2 platform in R (version 3.4.6) [61, 
62] to create SDMs to identify areas with suitable habitat 
conditions for I. ricinus and I. persulcatus. All geospatial 
data sets, including environmental and other data, were 
processed in ESRI ArcGIS (version 10.3.1) (ESRI, Red-
lands, CA, USA) and were set to the same spatial extent, 
geographic coordinate system (EUREF FIN TM35FIN, 
epsg:3067), and resolution (1 × 1  km). Multicollinearity 
of the variables was investigated using Variance Infla-
tion Factors (VIFs), as implemented in R package usdm 
[63, 64]. Predictor VIFs were calculated and correlated 
variables were excluded in a stepwise procedure using 
a commonly applied threshold value of 10 [65, 66]. 
The following eight predictive modelling techniques 
were employed: generalized linear models (GLM) [67], 

generalized additive models (GAM) [68], classification 
tree analysis (CTA) [69], artificial neural networks (ANN) 
[70], multivariate adaptive regression splines (MARS) 
[71], generalized boosting models (GBM) [72], random 
forest (RF) [73], and maximum entropy (MAXENT) [74]. 
Flexible discriminant analysis (FDA) and surface range 
envelope (SRE) were excluded due to generally poor pre-
dictive performance [75, 76]. Models were mostly run 
using the default settings of biomod2, with the follow-
ing exception: we used the GAM function in the mgcv 
package, with k = 3 as the basis dimension for the thin 
plate smoothing terms [77]. We used a cross-validation 
technique where we split the thinned data set into two 
subsets, one to calibrate the models (70%) and another 
to evaluate the models (30%) [31]. We repeated the cali-
bration and evaluation sets 50 times for each model (400 
model evaluation runs in total) [31]. To reduce the uncer-
tainty related to the choice of a single modelling tech-
nique, we built ensemble predictions using the ensemble 
mean method that averages predictions across the best-
performing individual models with the selected threshold 
(0.7 < AUC < 1.0) [62].

Fig. 2 Presence–absence data of a I. ricinus and b I. persulcatus after data thinning, presented together with mean air temperature during the 
activity seasons of each species: May–September for I. ricinus and April–June for I. persulcatus in 2014–2021
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The accuracy assessment
Sensitivity (the proportion of correctly predicted pres-
ences) and specificity (the proportion of correctly pre-
dicted absences) were calculated to quantify omission 
errors [78]. Sensitivity is calculated by dividing true pres-
ences (TP) by the sum of TP and false absences (FA). Sim-
ilarly, specificity is calculated by dividing true absences 
(TA) by the sum of TA and false positives (FP). The area 
under the curve (AUC), used here to assess model per-
formance, is the measure of a model’s ability to distin-
guish between these presence and absence classes. The 
AUC scores range from 0 to 1, with 0.5 being the thresh-
old for predictions better than random [78] and > 0.7 
being an acceptable threshold for predictions [79]. The 
variable importance of predictors, based on decreasing 
accuracy, was extracted from the biomod2 output [56]. 
Each importance value was normalized by dividing the 

value by the total sum of importance values to compare 
the most powerful variables. Partial dependency plots 
were generated to show the predictors’ estimated effects 
on tick distributions. Prediction uncertainty was assessed 
by the coefficient of variation (CV) of predictions, with 
a high CV value indicating high uncertainty in the pre-
dicted distributions [56].

Results
Additional tick collections in 2021
We identified the tick species from the additional data 
collections in 2021, and the ticks were screened for 
TBEV and Borrelia pathogens. We sampled 89 new 
locations, which included 25 new presences and 63 
absences for I. ricinus, and only one presence and 88 
absences for I. persulcatus. Collections were not con-
ducted in 11 locations because of the tight collection 

Table 1 Descriptions of geospatial data used in the study

FMI Finnish Meteorological Institute, SYKE Finnish Environment Institute, ESA European Satellite Agency, VIIRS Global Visible Infrared Imaging Radiometer Suite, LUKE 
Natural Resources Institute Finland

Data layer(s) Modifications Year Spatial resolution References

Mean monthly air temperature (°C) Calculated mean monthly air tempera-
ture during the activity season of I. rici-
nus (May–September) and I. persulcatus 
(April–June) in 2014–2021

2014–2021 1000 m FMI [55]

Mean monthly precipitation (mm) Calculated mean monthly precipitation 
during the activity season of I. ricinus 
(May–September) and I. persulcatus 
(April–June) in 2014–2021

2014–2021 1000 m FMI [55]

Mean monthly snow depth (cm) Calculated mean monthly snow depth 
in January–April 2014–2021

2014–2021 1000 m FMI [55]

Mean precipitation during the growing 
season (mm)

Calculated mean precipitation during 
the growing season

Averages for 1981–2010 1000 m FMI [56]

Mean heat summation during the 
growing season (°C day)

Calculated mean heat summation dur-
ing the growing season

Averages for 1981–2010 1000 m FMI [56]

Growing season length (GLS) (days) Calculated growing season length 
(GLS)

Averages for 1981–2010 1000 m FMI [56]

CORINE land cover 2018 Euclidean distances to water, meadow, 
and forest from tick species pres-
ence–absence points were calculated 
in ArcGIS

2018 20 m SYKE [49]

Human population density (persons/
km2)

Calculated as a sum 2019 1000 m Statistics Finland [57]

Digital elevation model (DEM) (m) Calculated mean elevation 2019 10 × 10 m NLS of Finland [58]

Normalized difference vegetation index 
(NDVI)

Mean NDVI 2012–2020 1000 m Global VIIRS data [59]

Enhanced vegetation index (EVI) Mean EVI 2012–2020 1000 m Global VIIRS data [59]

Land surface temperature (LST) (°C)
Middle-infrared Reflectance (MIR)

Mean day and night LST
Mean MIR

2012–2020
2012–2020

1000 m
1000 m

Global VIIRS data [59]
Global VIIRS data [59]

Abundance indexes of red fox (Vulpes 
vulpes), roe deer (Capreolus capreolus), 
European hare (Lepus europaeus), 
mountain hare (Lepus timidus), moose 
(Alces alces), and white-tailed deer 
(Odocoileus virginianus)
Habitat suitability data of I. ricinus/ I. 
persulcatus

Average snow track densities in a 
50-km radius. Annual average values 
were averages over 2014–2021. Based 
on wildlife triangle census
Habitat suitabilities for I. ricinus and I. 
persulcatus were estimated based on 
environmental and host data

2014–2021
Estimations based on 
2014–2021 data

1000 m
1000 m

LUKE [60]
Produced in this study
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schedule. A total of 502 ticks (35 adults, 375 nymphs, 
and 92 larvae) were collected from 26 locations and 
were pooled into 120 pools according to locality, spe-
cies and development stage. Five hundred one ticks 
were identified as I. ricinus and only one nymph as I. 
persulcatus. We found no tick pools positive for TBEV. 

In contrast, 56 (47%) of the 120 tick pools were positive 
for B. burgdorferi (s.l.), consisting of 220 ticks, all iden-
tified as I. ricinus. The minimum infection rate (MIR) 
calculated for pooled ticks was 11.2%. Results from the 
additional collections in 2021 are shown in Additional 
file 1: Fig. S1b.

Fig. 3 The relative contributions of the explanatory variables in the data set of a the environment and host and b the environment, host, and 
habitat suitability for the other species (I. ricinus/I. persulcatus) based on the mean ensemble models
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Predictive model accuracies
We used four variable compositions for the predictions: 
environment only, host only, combined data on environ-
mental and host variables, and combined data on envi-
ronmental and host variables with suitability data of 
either tick species. The suitability data of I. ricinus and I. 
persulcatus for the previous variable composition were 
first produced using combined data of environmental 
and host variables.

The means and ranges of the predictive performances 
over 400 model runs by eight individual modelling tech-
niques and four variable compositions are shown in 
Additional files 2 and 3: Figs. S2–S3. In all variable com-
positions, the GBM and RF models gained the highest 
model performances. The mean ensemble models were 
built over several modelling techniques, and the number 
of times they contributed to the final ensemble are seen 
in Additional file 4: Table S1. The mean ensembles esti-
mating the habitat suitabilities yielded AUC values in the 
range of 0.90–0.94 (Table 2) for I. ricinus and 0.91–0.96 
for I. persulcatus. The highest predictive performances 
from the four variable compositions were obtained with 
the combined data sets for both species in both the indi-
vidual models and mean ensembles, and the lowest pre-
dictive performances were obtained with environmental 
data only (Additional files 2 and 3: Figs. S2–S3; Table 2).

Sensitivity and specificity (by AUC) for estimating the 
distributions of I. ricinus and I. persulcatus varied based 
on the variable compositions. To estimate I. ricinus dis-
tributions, the mean ensemble model better identified 
unsuitable environments in all variable compositions 
(sensitivity = 75.2–78.3%, specificity = 84.2–89.5%), 
excluding the variable composition with environmen-
tal, host, and habitat suitability data of I. persulcatus 

(sensitivity = 92.2%, specificity = 79.2%). In contrast, 
when estimating I. persulcatus distributions, we found a 
better ability to identify suitable environments (sensitiv-
ity 89.3–92.7%) than unsuitable environments (specific-
ity 78.1–83.8%). The highest sensitivity and specificity 
rates were obtained from the variable composition that 
contained all the variables for I. persulcatus (sensitiv-
ity = 91.9%, specificity = 83.8%).

Predictor contributions to tick species distributions
Variable importance, which indicates the influence of 
the variable to the mean ensemble model, is referred to 
here as the relative contribution of the predictor (%). The 
higher the value, the more influence the variable has on 
the model. The relative contributions varied between the 
species and the variable compositions. Here, we present 
the relative contributions of the predictors used in the 
combined data sets (Fig.  3a, b), which gained the high-
est model performances. The relative contributions of the 
environmental only and host only data sets are shown in 
Additional file 5: Fig. S4a–b.

The highest relative contributions for I. ricinus pre-
dictions based on combined host and environmental 
data were obtained from the mean temperature of the I. 
ricinus activity season (42%), precipitation sum (16%), 
and red fox (15%), white-tailed deer (6%), and roe deer 
(4%) densities. For I. persulcatus, red fox density (24%), 
precipitation sum (23%), the densities of mountain hare 
(13%), white-tailed deer (10%), and European hare (9%), 
the mean precipitation for the I. persulcatus (5%) activ-
ity season, and roe deer density (4%) were the variables 
with the highest relative contributions. Predictions based 
on host, environmental, and habitat suitability data of the 
other species (Fig. 3b) indicated slightly different relative 
contributions. When predicting I. ricinus distributions, 
the highest relative contributions were obtained from the 
habitat suitability for I. persulcatus (74%), the mean tem-
perature of the I. ricinus activity season (6%), and the red 
fox (5%), mountain hare (4%), and white-tailed deer (3%) 
densities. In contrast, the habitat suitability for I. ricinus 
(80%), night land surface temperature (6%), elevation 
(3%), and roe deer density (3%) were the most important 
predictors for I. persulcatus.

We analysed partial dependency plots for I. ricinus 
and I. persulcatus based on the combined data set of 
environmental and host data (Fig.  4) because of the 
high influence of other species in the combined data 
set of environmental, host, and suitability data for the 
other species (see Fig.  3b). Partial dependency plots 
based on environmental only data, host only data, 
and a combined data set of environmental, host, and 
suitability data for the other species are shown in 
Additional file  6: Figs. S5–S7. Locations with higher 

Table 2 The predictive accuracy of the mean ensemble models 
in different variable compositions

AUC Sensitivity Specificity

I. ricinus

 Environmental 0.90 78.3 84.2

 Host 0.90 76 86.8

 Environmental + Host 0.91 75.2 89.5

 Environmen-
tal + Host + Habitat suit-
ability for I. persulcatus

0.94 92.2 79.2

I. persulcatus

 Environmental 0.91 89.3 78.1

 Host 0.92 91.4 78.7

 Environmental + Host 0.93 92.7 78.3

 Environmen-
tal + Host + Habitat suit-
ability for I. ricinus

0.96 91.9 83.8
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Fig. 4 Partial dependency plots for a I. ricinus and b I. persulcatus based on combined host and environmental data produced by the mean 
ensemble model
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relative humidity (> 75%), mean air temperature dur-
ing the activity season (> 13  °C), precipitation sum 
(> 300 mm), middle-infrared reflectance (MIR, > 0.25), 
and higher white-tailed deer (> 30 individuals/km2), 
European hare (10–40/km2), and red fox (> 10/km2) 
densities were associated with higher habitat suitabil-
ity for I. ricinus (Fig.  4a). However, higher mountain 
hare density (> 10/km2) was negatively associated with 
I. ricinus suitability. For I. persulcatus, higher mean 
precipitation (> 40  mm) and white-tailed deer (> 5/
km2), roe deer (> 5/km2), and mountain hare (> 10/
km2) densities were associated with high suitabilities 
for I. persulcatus (Fig.  4b). However, an excessively 
high precipitation sum (> 320  mm), higher mean air 
temperature during the activity season (> 9  °C), and 
day land surface temperature (DLST, > 10  °C) at the 
locations began negatively influencing the suitability 
for I. persulcatus. Furthermore, higher moose (> 8/
km2) and red fox (> 10/km2) densities indicated lower 
suitabilities for I. persulcatus in the locations.

Habitat suitabilities for I. ricinus and I. persulcatus based 
on variable compositions
The habitat suitability maps for I. ricinus and I. per-
sulcatus in four variable compositions are shown in 
Figs.  5 and 6. We focus on analysing the results from 
the combined data set of environmental and host data 
for I. ricinus (Fig. 5c) and I. persulcatus (Fig. 6c) based 
on the high predictive performance and the influence 
of the predictors contributing to the final ensemble 
model. In this study, low suitability for species pres-
ence is interpreted as 0–30%, moderate suitability as 
31–60%, and high suitability as 61–100%. Figure  5c 
shows that the areas with moderate to high suitabil-
ity for I. ricinus were located southwards from Central 
Ostrobothnia, with the following exceptions: narrow 
areas located in southern Pirkanmaa and southern 
coast of Ostrobothnia. Northern regions of North 
Savo, North Karelia, North Ostrobothnia, and Kainuu 
were estimated to have a low to moderate suitability 
for I. ricinus. Areas with moderate to high suitability 
for I. persulcatus were located mainly northwards from 
Ostrobothnia up to southern Lapland, including areas 
along the western coast, and eastern Finland (Fig. 6c). 
The moderate to high suitability areas for I. persulca-
tus in southern Finland were located across Pirkan-
maa and in narrow areas of Kanta-Häme, Päijät-Häme, 
South Karelia, South Savo, and Uusimaa. Other areas 
in southern Finland, the northern part of Kainuu, and 
the eastern part of North Ostrobothnia were estimated 
to have a low to moderate probability for I. persulcatus.

Discussion
Study validity
No earlier SDM studies have estimated tick species dis-
tributions in Finland. However, there is a greater need 
for studying tick distributions when tick abundances and 
TBD incidences are increasing [80]. We used the mean 
ensemble model approach over several modelling meth-
ods, which are generally found to yield more accurate 
estimates than single-model estimates [81, 82] and are 
widely used to estimate the potential distributions of vec-
tors and TBDs [83–85]. We assessed model performance 
using variable compositions and predictions uncertain-
ties by using the coefficient of variation approach. Pre-
diction uncertainties are often not considered in SDM 
studies, although the uncertainty assessment is highly 
recommended in SDM literature [86, 87]. This study 
obtained results at a 1-km resolution, which provides 
higher accuracy than generally in the SDM studies. The 
analyses utilized host data, which are often unavailable 
and thus are not included in a majority of tick SDM stud-
ies. Furthermore, species data were not aggregated from 
big data repositories, such as the Global Biodiversity 
Information Facility (GBIF),  which are widely used but 
may affect results, e.g. due to spatial bias [88]. The results 
can be utilized as predictor data in future studies estimat-
ing the TBD risk in Finland.

Predictive performance
Predictive performance of the mean ensembles over sev-
eral modelling methods yielded model performances 
with minimum AUC values of 0.90 for both I. ricinus 
(Fig.  5) and I. persulcatus (Fig.  6). The mean ensemble 
models showed improvements of the AUC values com-
pared with individual models (Additional files 2 and 3: 
Figs. S2–S3). Model performances can be classified into 
different categories: AUC values of 0.7–0.8 are consid-
ered fair model performance, 0.8–0.9 are good model 
performance, and > 0.9 are excellent model performance 
[89]. Mean ensembles yielded good to excellent model 
performances, while individual models resulted in fair to 
good model performances. Of the four variable composi-
tions, ensemble models with combined data sets yielded 
the highest predictive accuracy for both I. ricinus (Fig. 5) 
and I. persulcatus (Fig. 6). Ecological and vegetation data, 
together with climatic data, are recommended for inclu-
sion in the predictor data set when modelling species and 
disease distributions [86]. The ensemble model better 
identified unsuitable environments (i.e. specificity) in I. 
ricinus predictions in contrast to I. persulcatus predic-
tions, in which suitable environments were better iden-
tified (i.e. sensitivity, Table  2). The high specificity rate 
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Fig. 5 Estimated habitat suitabilities for I. ricinus in mainland Finland by the ensemble mean method over several modelling methods based on a 
environment only data, b host only data, c combined environmental and host data, and d combined environmental, host and, habitat suitability 
data for I. persulcatus 
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Fig. 6 The estimated habitat suitabilities for I. persulcatus in mainland Finland by the ensemble mean method over several modelling methods 
based on a environment only data, b host only data, c combined environmental and host data, and d combined environmental, host, and habitat 
suitability data for I. ricinus 
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for I. ricinus ensured that the proportion of true absences 
predicted as presences was minimized, and in contrast, 
the high sensitivity rate for I. persulcatus indicated that 
the proportion of true presences predicted as absences 
was minimized.

The uncertainty assessment
Other influential factors are not included in this study 
such as microclimate and vertebrate density data. Verte-
brate data, including e.g. rodent, bird, and raccoon dog 
densities, were not available in similar accuracy or spa-
tial scale. Bank vole abundance in particular has previ-
ously been found to closely relate to questing I. ricinus 
abundances in Finland [12]. Along with rodents, birds 
are important hosts for Ixodes ticks [90]. However, bird 
density data covering the whole country are not avail-
able. Furthermore, some uncertainty arose from tick 
absences. The collections in 2021 resulted in 88 true 
absences for I. persulcatus. However, to obtain enough 
absences for I. persulcatus, we needed to use randomly 
selected points from the I. ricinus presences, obtained 
with the Wallace package. Only one thinned data set was 
obtained with Wallace, so we were unable to assess the 
occurrence-related uncertainty. True absences are diffi-
cult to obtain, and we are aware that the absences used 
in this study may not be true absences but may rather 
depend on e.g. collection time or weather conditions. 
As the ensemble model was better at identifying suit-
able than unsuitable environments for I. persulcatus, fur-
ther studies are needed to bring new insights to whether 
this is an indication that the species is still spreading or 
whether this is due to modelling-specific reasons. Using 
presence-absence data instead of tick abundance data 
loses information on the relative suitability of habitats 
when all presences are treated as equal, regardless of the 
abundance of the individuals that the habitat supports. 
We excluded the Åland Islands and most of Lapland from 
the study due to the following reasons. The Åland Islands 
have abundant tick populations, and we did not have 
enough tick samples to reliably estimate their distribu-
tions. Only occasional tick observations have been made 
from Lapland, excluding the south-eastern municipalities 
of Kemi, Tornio, Keminmaa, and Simo.

Hereafter, we focus on analysing the results based on 
the combined data set of environmental and host data 
due to high predictive performance (Figs. 5, 6), variable 
influences in the ensembles (Fig. 3a, b), and the recom-
mendation to use ecological and vegetation factors 
with climatic factors in SDM [86]. The model-driven 
uncertainty of the predictions was presented using the 
coefficient of variation to assess the uncertainty of the 
suitability maps (Figs.  7, 8). In this study, low uncer-
tainty is interpreted as 0–30%, moderate uncertainty as 

31–60%, and high uncertainty as 61–100%. The areas 
with highest uncertainty for I. ricinus suitability were 
mainly located in North Ostrobothnia, southern Lapland, 
and Kainuu, and in narrow areas of Ostrobothnia, Pirkan-
maa, and southern Uusimaa (Fig. 7c). High uncertainty in 
the northern and eastern parts of the study area may be 
associated with climatic factors of the areas characterized 
by shorter growing seasons, lower relative air humidity 
rates, and lower mean monthly air temperatures than in 
southern Finland. The lowest uncertainties were obtained 
from southern, eastern, central, and south-western Fin-
land, indicating more reliable prediction results. For I. 
persulcatus, the areas with high uncertainty were some-
what larger in geographical extent than in the I. ricinus 
predictions (Fig. 8c). The highest prediction uncertainties 
were located across southern Finland, South Ostroboth-
nia, Central Finland, South Savo, Northern Kainuu, and 
north-eastern parts of North Ostrobothnia. In contrast, 
the areas with highest prediction confidence for I. persul-
catus were located in coastal Finland northwards from 
Ostrobothnia up to southern Lapland, in Pirkanmaa, 
southern Kainuu, North Savo, and North Karelia.

Influential factors
Consistent with previous research, the environmental, 
host, and climatic variables were important determi-
nants for I. ricinus and I. persulcatus occurrence. Our 
study suggests that climatic factors, such as higher rela-
tive humidity, mean air temperature, and precipitation 
sum during the growing season, were associated with 
higher I. ricinus occurrence. Higher air temperatures 
[36, 37] and precipitation, especially in spring [91], have 
previously been found to positively influence I. ricinus 
presence. Based on our study results, higher red fox, 
white-tailed deer, and European hare densities were 
associated with higher habitat suitabilities for I. ricinus, 
which is mainly consistent with earlier findings (Fig. 3a) 
[92–95]. Although previous studies have found red foxes 
to be suitable hosts for ticks in Europe [96, 97], they were 
not considered suitable hosts in a recent study from Nor-
way [93]. Mountain hare density had a negative effect 
on I. ricinus presence. This is obvious, as mountain hare 
densities have significantly declined in southern and 
western Finland during the past 30  years. However, as 
host densities may be directly and indirectly affected by 
climate, it is difficult to separate causal and confounding 
factors from one another [98, 99]. Consistent with pre-
vious research [36], our study suggests that high middle-
infrared reflectance (MIR) levels positively influenced I. 
ricinus occurrence.

Similar to I. ricinus, I. persulcatus suitabilities were 
higher in locations with higher mean precipitation and 
air temperature during the activity season. However, 
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Fig. 7 A coefficient of variation in the predictions estimating the uncertainty of the ensemble predictions over several modelling methods for 
I. ricinus in mainland Finland based on a environment only data, b host only data, c combined environmental and host data, and d combined 
environmental, host, and habitat suitability data for I. persulcatus 
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Fig. 8 A coefficient of variation in the predictions assessing the uncertainty of the ensemble predictions over several modelling methods for I. 
persulcatus in mainland Finland based on a environment only data, b host only data, c combined environmental and host data, and d combined 
environmental, host, and habitat suitability data for I. ricinus 
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when precipitation, mean air temperature, and daily land 
surface temperature (DLST) increased to a particular 
point, the suitability for I. persulcatus began decreasing. 
This finding may demonstrate the characteristics of I. 
persulcatus to prosper in slightly drier and colder habitats 
than I. ricinus [24]. However, the expansion of I. persul-
catus’ range has been found to correlate with the increase 
in mean annual air temperatures, which determine com-
patible temperature conditions for I. persulcatus estab-
lishment in new territories [100, 101]. As warmer winters 
and hotter summers are estimated to change the dynam-
ics and pattern of seasonal tick activity [102], it remains 
to be seen whether I. persulcatus adapts to warmer and 
wetter habitat conditions. Some adaptation has already 
occurred with recent range expansion to southern parts 
of Finland [10]. In contrast to I. ricinus, higher red fox 
density negatively affected I. persulcatus. This is prob-
ably related to spatial variation in red fox density across 
the country; highest densities occur in southern parts 
decreasing steadily northward, to I. persulcatus-domi-
nated area. Our study also suggests that higher densities 
of white-tailed deer, roe deer, and mountain hare were 
associated with higher habitat suitabilities for I. per-
sulcatus, which is in line with previous findings [14, 99, 
103]. Notably, white-tailed deer and roe deer populations 
have rapidly increased in southern Finland during the 
past few years, especially in the south-west [104], which 
may potentially affect not only the rise in I. ricinus abun-
dances but also the southward spread of I. persulcatus.

Habitat suitabilities for I. ricinus and I. persulcatus 
in Finland
Ixodes ricinus and I. persulcatus have their own envi-
ronmental and other limits for surviving and repro-
ducing, which restrict their geographical distributions. 
Based on our study results, moderate to high suitability 
areas for I. ricinus occurred throughout southern and 
Central Finland up to Central Ostrobothnia (64°N), 
excluding narrow areas in Ostrobothnia and Pirkanmaa 
(Fig.  6c). In neighbouring Sweden, only areas south-
wards from the capital region (60°N) were predicted 
to have abundant I. ricinus populations [36], despite I. 
ricinus having been found up to 66°N [99]. Based on 
recent I. ricinus studies from Russian Karelia, the spe-
cies was absent already north of 63°N [105]. The nar-
row areas in Ostrobothnia and Pirkanmaa, considered 
sympatric areas, were estimated to have low suitability 
for I. ricinus, which may, partly, be explained by the 
moderate uncertainty in the prediction (Fig.  8c). The 
dominance area of I. persulcatus is known to be more 
northerly than that of I. ricinus. We note that the suit-
ability for I. persulcatus was highest northwards from 
Ostrobothnia along the northern coast up to southern 

Lapland, Kainuu, North Savo, and North Karelia 
(Fig.  7c). Southern Finland, excluding areas in Pirkan-
maa, western Päijät-Häme, northern Kanta-Häme, and 
southern Uusimaa, were estimated to have low habitat 
suitability for I. persulcatus. Also, there is a moderate 
to high uncertainty in the predictions for I. persulcatus 
across southern Finland (Fig.  8c), which may indicate 
that more areas with high suitabilities for the taiga tick 
may exist. Notably, I. persulcatus have only been found 
up to 63°N in Russian Karelia [43, 106]. In Sweden, the 
species was first observed in 2015 close to the Finnish 
border at ≈ 66°N [8].

Conclusions
An increased risk of vector-borne pathogens and the 
spread of invasive and naturally spreading species due to 
changing weather patterns adds to the needs and require-
ments for increased research and concrete actions. In our 
study, habitat suitability areas for I. ricinus and I. persul-
catus were identified for the first time in Finland. From 
additional tick collections in 2021, 25 new presences and 
63 absences were found for I. ricinus, and 1 presence and 
88 absences for I. persulcatus. A total of 502 ticks were 
analysed for pathogens, with no ticks positive for TBEV 
and ≈ 47% of tick pools positive for Borrelia burgdor-
feri (s.l.). High suitability areas for I. ricinus occurred 
throughout southern and Central Finland up to Central 
Ostrobothnia, excluding narrow areas in Ostrobothnia 
and Pirkanmaa. For I. persulcatus, the regions north-
wards from Ostrobothnia along the northern coast up to 
southern Lapland, Kainuu, North Savo, North Karelia, 
and areas in Pirkanmaa and Päijät-Häme were estimated 
to be suitable areas. Based on the predictions, locations 
with higher air temperature, relative humidity, precipita-
tion sum, and MIR and higher densities of white-tailed 
deer, European hare, and red fox were suitable for I. rici-
nus. For I. persulcatus, higher mean precipitation and 
higher densities of white-tailed deer, roe deer, and moun-
tain hare indicated a higher occurrence probability. The 
data produced in this study have implications for improv-
ing knowledge on disease prevention and for assisting 
authorities in decision-making concerning vector control 
strategies. Our results can be used as predictor data to 
estimate the risk for TBDs in Finland. In future studies, 
our aim is to focus on studying tick distributions at vari-
ous spatial scales: in microhabitats and at larger scales 
covering all of Scandinavia. Our aims are to use in  situ 
measurements to achieve more accurate microclimate 
data, to conduct more extensive tick sampling to enable 
tick abundance modelling, to model the distribution of 
TBPs in ticks, and to forecast tick distributions in the 
future climate.
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ated depending on the relative shares of forest and meadow categories 
in each area. (b) The map showing the 2021 results indicates the locations 
where I. ricinus was found with B. burgdorferi (s.l.)-positive locations.

Additional file 2: Figure S2. The range (lines) and mean (dots) of model 
performances over 50 model runs in each model algorithm estimating 
habitat suitabilities for I. ricinus in different variable compositions: (a) 
environmental only, (b) host only, (c) environmental and host, and (d) 
environmental, host, and suitability for I. ricinus.

Additional file 3: Figure S3. The range (lines) and mean (dots) of model 
performances over 50 model runs in each model algorithm estimating 
habitat suitabilities for I. persulcatus in different variable compositions: 
(a) environmental only, (b) host only, (c) environmental and host, and (d) 
environmental, host, and suitability for I. ricinus.
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variables in the data set of (a) host only, (b) environment only based on 
the mean ensemble model.
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to the final ensemble in different data sets.

Additional file 6: Figure S5. Partial dependency plots for (a) I. ricinus and 
(b) I. persulcatus solely based on environmental data.

Additional file 7: Figure S6. Partial dependency plots for (a) I. ricinus and 
(b) I. persulcatus solely based on host data.

Additional file 8: Figure S7. Partial dependency plots for (a) I. ricinus and 
(b) I. persulcatus based on combined host and environmental data, and 
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