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Abstract: Foodborne salmonellosis is a global threat to public health. In the current study, we
describe the isolation and characterization of two broad-spectrum, lytic Salmonella phages: SPHG1
and SPHG3 infecting a multidrug-resistant Salmonella Typhimurium EG.SmT3. Electron microscopy
and whole genome analysis identified SPHG1 as a Myovirus, while SPHG3 as a new member of
the genus “Kuttervirus” within the family Ackermannviridae. SPHG1 and SPHG3 had a lysis time
of 60 min. with burst sizes of 104 and 138 PFU/cell, respectively. The two phages were robust at
variable temperatures and pH ranges that match the corresponding values of most of the food storage
and processing conditions. A phage cocktail containing the two phages was stable in the tested
food articles for up to 48 h. The application of the phage cocktail at MOIs of 1000 or 100 resulted
in a significant reduction in the viable count of S. Typhimurium by 4.2 log10/sample in milk, water,
and on chicken breast. Additionally, the phage cocktail showed a prospective ability to eradicate and
reduce the biofilm that formed by S. Typhimurium EG.SmT3. A phage cocktail of SPHG1 and SPHG3
is considered as a promising candidate as a biocontrol agent against foodborne salmonellosis due to
its broad host ranges, highly lytic activities, and the absence of any virulence or lysogeny-related
genes in their genomes.
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1. Introduction

Foodborne infections that are caused by non-typhoidal Salmonella denote a consid-
erable public health threat worldwide [1]. Salmonella is a Gram-negative bacilliform bac-
terium, which belongs to the family of Enterobacteriaceae. It is responsible for one of the
most common food-borne illnesses, known as Salmonellosis. Previously, salmonellosis
outbreaks were associated with the consumption of contaminated food products, and beef,
pork, poultry, and dairy products were the major causative agents. Salmonellosis symp-
toms are abdominal cramps, fever, vomiting, inflammatory diarrhea, and nausea occurring
within 12–72 h of infection and last from 2–7 days. Severe invasive Salmonella infections,
such as bacteremia and septicemia, often arise in immunocompromised people, leading to
hospitalization and death [2].
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Globally, it is estimated that Salmonella spp. outbreaks are annually responsible for
nearly about 85% (80.3 million cases) of diseases that are associated with foodborne diseases
(93.8 million cases), resulting in over 100,000 deaths [3]. In 2007, the Unites States De-
partment of Agriculture Economic Research Services (USDA-ERS) estimated an economic
losses of US $2.5 million, due to 1.4 million cases of salmonellosis [4]. Throughout the
world, different types of Salmonella serotypes have been associated with foodborne illness,
including S. Enteritidis and S. Typhimurium [5].

Salmonella species are frequently depicted as environmental persisters [6,7], and has
the ability to form surface-associated complex communities that are known as biofilms
on food [8]. Salmonella biofilm may serve as bacterial reservoir for recurrent bacterial
contamination in a food processing facility, and cause many food-borne outbreaks [9].
A consumption of Salmonella biofilm-contaminated chicken resulted in Salmonella outbreaks,
with about 2138 cases of infection [9]. According to the Centers for Disease Control and
prevention, biofilms are responsible for about 80% of most bacterial disease [10]. Microbial
biofilms pose a serious threat to food industry, as they are difficult to inactivate or eradicate,
owing to their inherent resistance to traditional physical and antimicrobial treatments.

Conventional intervention strategies to control and eliminate Salmonella serovars and
biofilms in food products are predominantly carried out while using certain biocides,
chemical sanitizers, heat treatments, and other special preservatives [2,11–13]. Although
those strategies are effective, they develop undesirable impacts on the quality of food
products. Of these, chemical residues can alter the taste, texture, and aroma [14], and some
preservatives can cause side effects, such as asthma, rashes, allergies, and hemorrhagic
diarrhea [15,16]. In addition, certain essential vitamins may be destroyed following heat
treatment, which renders the food to be less nutritive [17–19].

Because most conventional methods showed undesirable outcomes, as well as having
limited impact on Salmonella control, antibiotics were once considered as an effective
method to reduce Salmonella in animals used for food production, however, later this was
showing to lead to the emergence of multidrug-resistant Salmonella spp [20,21]. Antibiotics
usage was restricted from Sweden in 1986, by the Danish Pig Production Committee in
1995 and the European Union in 1999 [22]. Subsequently, the application of antibiotics
in food production has become largely discouraged. Notwithstanding many attempts
to develop effective methodologies to eliminate microbial contamination, food safety is
still a challenge because of the prevalence of antibiotic-resistant bacteria as well as food
market globalization [23]. Thus, novel, or alternative, safe and effective agents are essential
to solve the dilemma of food safety without altering the nutritive quality. As a novel
strategy, bacteriophages have emerged as a promising natural approach for food safety
and preservation [24–27].

Bacteriophages or viruses of bacteria are ubiquitous [28,29], with approximate titers
of 1031 phage particles on the planet [30]. As a novel strategy, lytic (virulent) phages
are promising candidates as antimicrobial agents in the food industry, as they replicate
exponentially in their susceptible hosts, regardless of any multidrug resistance [26,27,31,32].
Phage applications are safe, because they are environmentally friendly; moreover, phages
can easily be detected from healthy humans, animals, and foods with to date no reported
phage infection of humans [33–37]. Phages have been applied to combat salmonellosis in
different foods including chicken [38–40], raw and cooked beef [41], pig skin [42], sprout
seeds, fresh-cut fruits [43], as well as in cheese production [44]. Currently, some phage
products have been granted Generally Recognized as Safe (GRAS) status, by the FDA,
for example, SalmoFresh™, ListShield™, and PhageGuard S™ are commercially available
products for food applications [27].

To be applied as biocontrol agents in the food industry, phages should have certain
features, as a broad host range, persist the food processing environment, and do not have
any pathogenic or allergic-associated properties [45,46]. Moreover, temperate, or lysogenic
phages are disqualified as biocontrol agents, because they are less effective and can in-
tegrate into their hosts, which facilitates the transferring of antibiotic-resistant genes or
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virulence genes to their bacterial host that increase the potential of generating pathogenic
strains [27,47].

Prior to this study, five Salmonella enterica serovars were isolated from a poultry farm
with a history of diarrhea in Benha city, Qalubiya governorate, Egypt. Antibiotic sensitivity
testing of the isolated Salmonella spp identified a multidrug-resistant isolate (Salmonella
Typhimurium strain EG.SmT3). In this study, we depict the isolation and characterization of
Salmonella phages from Egypt against S. Typhimurium EG.SmT3 with the aim of developing
biocontrol agents to combat food-borne salmonellosis in diverse food samples. Two strictly
lytic phages, SPHG1 and SPHG3, were selected due to their high lytic activity and broad
host ranges for further investigation and genome sequencing.

2. Materials and Methods
2.1. Bacterial Strains and Growth Conditions

The current study was performed on a multi-drug resistant Salmonella enterica serovar
(Salmonella Typhimurium strain EG.SmT3, GenBank Acc. No. MW310702). All of the
Bacteria in this study were kindly taken from the culture collection of the Microbiology lab,
Botany and Microbiology Dept., Faculty of Science, Benha University, Egypt.

The bacteria were stored at −80 ◦C in Brain-Heart-Infusion broth that was supple-
mented with 20% (v/v) glycerol. Before every experiment, fresh overnight cultures were
prepared by inoculating a single colony into 10 mL tryptic soy broth (TSB, Difco, Detroit,
MI, USA) and incubating for 16 h at 37 ◦C with shaking at 200 rpm.

2.2. Mitomycin C induction to Identify Prophage-free Salmonella

Bacteriophages isolation, propagation, and all of the following experiments were
performed using the antibiotic-resistant strain Salmonella enterica subsp. enterica serovar
Typhimurium EG.SmT3. Prior to the isolation of lytic bacteriophages, prophage-free
(non-lysogenic) S. Typhimurium EG.SmT3 was identified using mitomycin C induction
protocol [48]. Briefly, 5 mL of a mid-log phase Salmonella culture grown in TSB media was
subjected to a final concentration of 0.2 µg/mL of mitomycin C (Sigma-Aldrich, St. Louis,
MO, USA). The bacterial growth was monitored by measuring the absorbance at OD600nm.
Regularly, 500 µL aliquots of the sample was collected, centrifuged to remove residual
bacteria, and assessed for prophage induction. Briefly, prophage induction was detected
by spotting a 10 µL from each supernatant onto a lawn of S. Typhimurium EG.SmT3 and
then incubated for 24 h at 37 ◦C [49,50].

2.3. Bacteriophages Enrichment and Isolation

Different environmental samples were collected from Benha city, Qalubiya gov-
ernorate, Egypt, including a wastewater treatment plant, an agricultural farm ditch,
and chicken feces, as described previously [51]. Solid particles were removed from the
collected water samples by centrifugation at 10,000× g for 10 min., cellular microorganisms
in the samples were excluded by membrane filtration using 0.22 µm membrane filters
(Mixed Cellulose Ester, MF-Millipore, Burlington, MA, USA). Chicken feces were dissolved
in 10 mL tryptic soy broth (TSB), and then processed in the same way as the environmental
water samples.

The enrichment of phages and isolation were performed, as described previously [52].
Briefly, 5 mL of a 0.22 µm-filtered sample was mixed with 5 mL double-strength TSB
medium and 100 µL of S. Typhimurium EG.SmT3 and then incubated for 24 h at 37 ◦C
with shaking at 200 rpm. The enriched tubes were then centrifuged at 5000× g for 10 min.,
and the supernatants were filtered using a 0.22 µm membrane filters. Phages activity was
detected by spotting a 10 µl from each supernatant onto a lawn of the indicator Salmonella
strain and incubated for 24 h at 37 ◦C [49,50]. The plates were examined for the presence of
lysis zones, and any lysis zones were cut from the TSA plates using sterile pipette tips and
then transferred into separate clean tubes containing 200 µL salt-magnesium (SM) buffer
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(0.05 M Tris-HCl; 0.1 M NaCl; and, 0.01 M MgSO4; pH 7.5) and stored overnight at room
temperature to allow for the phage particles to diffuse into the SM buffer.

2.4. Bacteriophages Purification and Propagation

The purification of the isolated phages was done using the double agar overlay
method [53]. Individual plaques with different morphologies and sizes were picked from
the overlay plates using sterile toothpicks, separately resuspended in 200 µL SM buffer
and held overnight at room temperature. The resuspended plaques were plated using the
double agar plate and the isolation of single plaques was repeated three successive times.

Propagation of the purified phages was performed, as previously described [54,55].
Double agar overlay method was used with multiple phage dilutions, plates with full lysis
were washed with 5 mL of SM buffer at 4 ◦C overnight, shaking at 90 rpm. The surface
liquid was removed, vortexed, and centrifuged at 5000× g for 15 min. at 4 ◦C. The super-
natant was filtered using a 0.22 µm membrane filters (Millipore, Ireland). Highly purified
phage particles were obtained, as described previously [54,55]. Phage titer (PFU/mL) was
determined using the double agar overlay method [53]. All of the isolated and purified
phages were stored in SM buffer at 4 ◦C for further analysis.

2.5. Virulence and Lytic Activity

The virulence of the isolated phages against S. Typhimurium EG.SmT3 was investi-
gated, as described previously [49], in a 96-well microplate and a multiplicity of infection
of 1 by measuring the optical density (OD600nm) for 6 h post-infection. Each test group
contained a mixture of equal volumes (100 µL each) of exponential-phase S. Typhimurium
EG.SmT3 cultures (7 log10 CFU/mL) and diluted phage lysates (7 log10 PFU/mL). The neg-
ative control consisted of a mixture of equal volumes of S. Typhimurium EG.SmT3 and
TSB. All of the plates were incubated at 37 ◦C with shaking at 120 rpm for 6 h and optical
densities were measured at 600 nm while using a microplate reader (680 XR reader, Bio-Rad,
Hercules, CA, USA). Phages with high lytic activities were selected for further experiments.

2.6. Characterization of the Selected Phages
2.6.1. Determination of Host Range by Efficiency of Plating (EOP)

The host range for the two selected phages (SPHG1 and SPHG3), as well as a cocktail
of those two phages (with a ratio of 1:1), was determined against a collection of fifteen
Salmonella strains and a cohort of six non-Salmonella strains (Table S1). To determine
the host range, efficiency of plating (EOP) was performed, as previously described with
some modifications [56,57]. Each isolated phage was serially ten-fold diluted and tested,
in triplicates, on the TSA bacterial lawn plates and the incubated at 37 ◦C for 16–18 h.
The number of plaques forming units (PFUs) was counted, and the efficiency of plating
was calculated, as follows:

EOP = average of PFUs on test bacteria/average of PFUs on the host bacteria. EOP was
classified as high efficiency, EOP 0.5 to 1.0; moderate efficiency, EOP 0.2 to <0.5; low effi-
ciency, 0.0001 to <0.2; and, inefficient < 0.001 [56,57].

2.6.2. Transmission Electron Microscopy (TEM)

Ten microliters of each highly purified phage (~1012 PFU/mL) were fixed onto copper
grids (Electron Microscopy Sciences) that were supported by carbon-coated Formvar
film [58]. Phages were then negatively stained with 2% (w/v) aqueous phosphate tungsten
acid, pH 7.2 for 1 min. and then air-dried for 1 h at room temperature. A JEOL JEM-2100
transmission electron microscope was used for acquiring the phage particle images at the
Electron Microscope Facility, Al-Mansoura University, Egypt.

2.6.3. One-Step Growth Curve

Phages growth kinetics and burst size were determined, as described previously [49].
A known number of S. Typhimurium EG.SmT3 cells were infected with phages individually
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at a MOI of 1. After 5 min. of adsorption at room temperature, the infected bacteria were
centrifuged at 5000 × g for 5 min. and the supernatant was discarded to remove free-
unbound phages. The phage-bacteria pellet was then washed twice and resuspended in
10 mL of TSB and then incubated at 37 ◦C with continuous shaking. At appropriate times,
phage titers were enumerated using plaque assay [53]. The experiment was independently
repeated three times, mean burst size (plaque-forming units per cell) at different times
were calculated and plotted against time to determine the latent period and burst size.

2.6.4. Genomic Analysis of the Isolated Phages

Genomic DNAs of the isolated phages (SPHG1 and SPHG3) were extracted and
purified, as described previously [59]. Nucleotide sequencing was performed employing
the Illumina HiSeq 4000 platform (Illumina, San Diego, CA, USA) by means of a pair-
end library with a 150 bp read length. The reads were assembled using MicrobeTrakr
plus (v 0.9.1) software (ShangHai, China) resulting in a unique contig for each phage.
Open-reading frames were detected using NCBI ORF finder search server. Functional
annotation of the putative coding sequences (CDSs) was identified using the BLASTp
search against the NCBI non-redundant database. The annotated genes for each phage
were then manually curated and listed in Supplementary Table S4. Genes encoding tRNAs
were detected using tRNAscan-SE v.1.3.1 [60]. The Genomic circular map of each phage
was prepared using CGView [61]. The annotated complete genome of phages SPHG1
and SPHG3 have been deposited in the GenBank database under accession numbers of
MW413353.1 and MW388005.1, respectively.

2.6.5. Thermal and pH Stability

Thermal and pH-stability testing of the selected phages was performed, as described
previously [49]. For thermal-stability, 900 µL of pre-heated sterile 2 × TSB medium were
mixed with 100 µL of phage lysates (10 log10 PFU/mL). The tubes were incubated in a
water bath ranging from 30 ◦C−80 ◦C for either 30 min. or 60 min., respectively. For pH-
stability assessment, phage lysates (10 log10 PFU/mL) were diluted in 2 × TSB tubes at a
pH range of 2–13 and then incubated 24 h at 37 ◦C. Each temperature and pH treatment
was performed in triplicate, and the average of triplicate counts was calculated. Thermal
and pH tolerance rates were calculated by determining phage titers using the double-layer
agar plate, as follows:

Phage thermal/pH stability (%) = (Remaining phage titers following the treatment / Phage titer before treatment) × 100% (1)

2.7. Biological Control of Salmonella in Food Using Phage Cocktail
2.7.1. Development of Phage Cocktail

A phage cocktail was developed by mixing the SPHG1 and SPHG3 phages with a
ratio of 1:1, each phage at a titer of 10 log10 PFU/mL. The cocktail was later diluted in
sterile SM buffer to reach the objective concentration.

2.7.2. Stability of Phage Cocktail in Food

Pasteurized milk and boneless chicken breasts were purchased from local stores and
the water used is sterile faucet water from Benha city, Egypt. Prior to the experiment,
chicken breast slices (1 cm2) were washed thoroughly with sterile water to reduce the
background bacteria.

The stability of phage cocktail in milk, water, and on chicken breasts at different tem-
peratures (4 ◦C and 25 ◦C) was evaluated for two days, as described previously [62]. Briefly,
phage cocktail (8 log10 PFU/mL) was added into sterile milk and water, phage cocktail was
spotted on the surface of chicken breast at a final titer of 8.3 log10 PFU/cm. The infected
food samples were then incubated at 4 ◦C and 25 ◦C for 2 days. At appropriate times,
phage titers were enumerated using the plaque assay [53].
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2.7.3. Recovered Bacterial Load from Treated Foods

Salmonella biocontrol experiments using a phage cocktail were performed, as described
previously [62]. Briefly, 10 µL of S. Typhimurium EG.SmT3 (4 log10 CFU/mL) was indi-
vidually added to milk and water, and then the phage cocktail was added at a MOI of
100 (6 log10 PFU/mL) or a MOI of 1000 (7 log10 PFU/mL). To assay on chicken breast,
each 1 cm2 slice of the chicken breasts was spotted with 10 µL of S. Typhimurium EG.SmT3
(4 log10 CFU/mL), dried for 30 min., and finally, the phage cocktail was added at MOIs
of 100 and Phages-free SM buffer was added to the food samples in the control group.
Samples were incubated at either 4 ◦C or 25 ◦C for 48 h. The aliquots were collected at a
designated time post-infection to determine the recoverable bacteria counts.

2.8. Effect of Phage Cocktail against Biofilm of Salmonella Typhimurium EG.SmT3

The effectiveness of the phage cocktail to reduce biofilm of S. Typhimurium EG.SmT3
was quantitatively determined according to the previously described colorimetric
method [62,63], with some modifications. In each well of the 96-well microplate, S. Ty-
phimurium EG.SmT3 (final concentration of 4 log10 CFU/mL) was inoculated into LB
medium without NaCl, and then the plate was incubated under static condition at 30 ◦C for
three days, medium was renewed every 24 h. Subsequently the bacterial wells were chal-
lenged with the phage cocktail at a final titer of 7 log10 and 8 log10 PFU/mL, for negative
controls phosphate buffer saline (PBS) was used instead of the phage cocktail. Plates were
further incubated under static condition at 30 ◦C for 24 h, and then the wells were rinsed
five times with PBS and allowed to air-dry. The air-dried plates were then treated with 98%
methanol for 10 min., the methanol was removed, and then plates were air dried again.
The plates were then stained with 1% crystal violet for 45 min. and eluted using 33% acetic
acid. Optical densities were measured at 600 nm using a microplate reader (680 XR reader,
Bio-Rad). Biofilm reduction percentages were calculated, as follows:

Biofilm reduction (%) = [(Average OD600 nm of the control − Average OD600 nm of phage-treated wells)/Average OD600 nm of the control] × 100% (2)

3. Results
3.1. Bacteriophages Isolation, Selection and Lytic Activity

To avoid mixed (lytic and lysogenic) phage populations within the individual plaques
because of probable prophage induction, S. Typhimurium EG.SmT3 was checked for
lysogeny by inducing potential prophages using mitomycin C. S. Typhimurium EG.SmT3
was found to be negative for prophage induction by mitomycin C, which suggested that it
is suitable as a phage isolation host.

A total of five phages were successfully isolated, purified, and propagated using
S. Typhimurium EG.SmT3 as a target host for isolation and enrichment. Phages SPHG1
and SPHG3 were isolated from Benha wastewater treatment plant; phages SPHG2, SPHG4,
and SPHG5 were isolated from chicken manure. The five isolated phages showed discrete
differences in plaque size and turbidity shape.

To select the most effective phages, an examination of the lytic activity was conducted
against S. Typhimurium EG.SmT3, as shown in Figure 1A. The results showed that all of
the phages inhibited the host growth 2 h post-infection (p.i.); however, the SPHG2, SPHG4,
and SPHG5 phages lost their activity 2.5 h p.i. Two phages (SPHG1 and SPHG3) were
found to have high and retained lytic activities after prolonged incubation. These two
phages (SPHG1 and SPHG3) and a cocktail of them were selected for further analysis in
order to confirm their lytic activity at different multiplicities of infection (MOIs).
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Phages SPHG1 and SPHG3 inhibited the growth of S. Typhimurium, EG.SmT3 6 h
p.i. when used at 0.1, 1, and 5, as shown in Figure 1B,C; however, a lower MOI of 0.01,
bacterial growth was seen 2 h p.i. Interestingly, the phage cocktail constantly inhibited the
growth of S. Typhimurium EG.SmT3 with an extended inhibition for 6 h p.i. (Figure 1D)
and it exhibited intense activity; therefore, it could be a potential candidate for the control
of Salmonella.

3.2. Characterization of S. Typhimurium Selected Phages
3.2.1. Host Range of Phages by Efficiency of Plating (EOP)

The host range pattern of phages chosen, as well as a cocktail of those phages, was de-
termined by EOP (Table 1). The phage cocktail established the most significant and broadest
spectrum of lytic activity as compared with single phages in our study. Phage cocktail
lysed thirteen of the tested Salmonella strains (n = 15). Phage cocktail had a high efficiency
(0.5–1.0) against all of the tested S. Typhimurium, but the EOP values were low to moderate
(0–0.5) when other bacteria were challenged with the phage cocktail mix. For the single
phage efficiency, SPHG3 showed the broadest spectrum of lytic activity against the assessed
host strains. Neither the individual phages nor the phage cocktail mix broke the boundary
of the genus and lysed other bacterial genera tested. which were Staphylococcus aureus and
Escherichia coli.



Microorganisms 2021, 9, 423 8 of 18

Table 1. The efficiency of plating (EOP) by phages SPHG1, SPHG3, and cocktail mix of these phages against different
bacteria.

Species Strain ID Number
Lysis by Bacteriophage

Phage SPHG1 Phage SPHG3 Phage Cocktail

S. Typhimurium

EG.SmT1 0.67 0.88 0.92
EG.SmT2 1 0.93 1

EG.SmT3 (phages enrichment host) Host Host Host
101SM 0.002 0.27 0.89

S. Enteritidis

EG.SmE1 0 0.02 0.20
EG.SmE2 0 0.2 0.25
EG.SE1 0 0 0
331SM 0.04 0.18 0.5

S. Kentucky
7 0.12 0.004 0.42

12 0.013 0.005 0.24
51 0 0.10 0.44

S. Typhi
SamTph1 0 0.16 0.34
SamTph2 0 0.21 0.27
SamTph5 0 0.09 0.12

S. para Typhi 102 0 0 0

E. coli
BE1 0 0 0
BE2 0 0 0
BE3 0 0 0

S. aureus
SA101 0 0 0
SA1E 0 0 0

EG-AE1 0 0 0

High efficiency, EOP 0.5 to 1.0; moderate efficiency, EOP 0.2 to <0.5; low efficiency, 0.0001 to <0.2; and inefficient <0.001.

3.2.2. TEM Morphology and Growth-Kinetics of the Isolated Phages

The morphologies of the two selected phages were observed by TEM. All of the exam-
ined phages have isometric heads with contractile or non-contractile tails. Phage SPHG1
in Figure 2A belongs to the Myoviridae family, having a contractile tail. In contrast,
phage SPHG3 has a long, flexible non-contractile tail, and, consequently, suspected to
belong to the Ackermannvirindae family as displayed in Figure 2B. The respective diameters
of the head and tail lengths were calculated and are shown in Figure 2. One-step growth
curves were performed to characterize the two phages’ infection cycle, in order to deter-
mine burst sizes and latent periods (Figure 2C,D). The SPHG1 phage had a higher latent
period (25 min) with smaller burst size (104 PFU/cell), as compared to SPHG3, which had
a latent period of 15 min. with an average burst size of 138 PFU/cell.

3.2.3. Analysis of Phage Genomes

The complete genomes of phages SPHG1 and SPHG3 have been sequenced, deposited in
the GenBank database, and designed the accession numbers MW413353.1 and MW388005.1,
respectively.

SPHG1 has a double-stranded DNA of 47,119 bp with an overall G + C content of
46% and it is presented in a linear topology in Figure 3. Blastn alignment against the
previously sequenced phages (Table S2) shows that the genome of SPHG1 has a 97.59%
degree of identity with the Salmonella phage VB_SenM-1 (GenBank Acc. No. MT012730.1).
The determination of the open reading frames (ORFs) applying the standard genetic
code and using ATG as initiation codon, identified sixty-two putative protein-coding
genes and no tRNAs, among which twenty-two predicted proteins have known potential
functions that are responsible for assigned functions: lysis, DNA packaging, structural
genes, and DNA replication (Table S3). SPHG1 has 29 ORFs on the leading strand and
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33 ORFs on the complementary strand. BLASTn analysis confirmed that SPHG1 is a
member of the Myoviridae family, in the order Caudovirales.
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Sequencing of the SPHG3 genome established that it was 149,831 bp long with
a G + C content of 44%; Figure 4 displays the linear map of the genome organiza-
tion. The SPHG3 is predicted to encode 149 CDSs and 5 tRNA genes at the (Table S5).
Within the total ORFs, SPHG3 has 52 ORFs on the leading strand, and 97 ORFs on the
complementary strand. BLASTp analysis identified 64 predicted proteins with putatively
known functions. Among which, they could classify as structural proteins, DNA repli-
cation/transcription/repair proteins, cell lysis proteins, nucleotide metabolism proteins,
and DNA packaging proteins. BLAST search (Table S4) identified a 99% nucleotide sim-
ilarity of the SPHG3 genome with the previously sequenced Salmonella phage ST-W77
(GenBank Acc. No. NC_049378.1). SPHG3 is classified as a member of the genus Kutter-
virus, subfamily Cvivirinae, family Ackermannvirindae, order Caudovirales.
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The BLASTp search indicated that the SPHG1 and SPHG3 genome do not encode any
genes that are related to lysogeny (virulence factors, toxins, antimicrobial-resistant genes,
repressors, transposases, or integrase encoding genes), which suggests that the SPHG1 and
SPHG3 are virulent and are safe for the application.

3.2.4. pH and Thermal Stability

The thermal and pH stability patterns of phages SPHG1 and SPHG3 were determined
based on residual phage titers after incubation under various conditions, as presented
in Figure 5. Phages exhibited a high degree of thermal stability from 30 ◦C to 70 ◦C,
as in Figure 5A,B. However, after heating at 80 ◦C for 30 min., phage titers decreased
by 80% for both phages, and no viable phages were detected after heating at 80 ◦C for
60 min. Regarding pH stability, SPHG1 and SPHG3 phages were found to be resistant to
inactivation at a pH range of 4–12 after 24 h with most survival seen at pH values of 7, 8,
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and 9, as illustrated in Figure 5C,D. Although no phages were detected at pH < 4 or >12 for
the SPHG1 phage, the SPHG3 phage retained some activity at pH 3.0.
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Figure 5. Thermal and pH stability test of phages SPHG1 and SPHG3. (A,B) Thermal tolerance of
SPHG1 and SPHG3 phages respectively, and (C,D) pH stability of SPHG1 and SPHG3 phages, respec-
tively. Temperature experiments were performed for 30 min., and 60 min. at pH 7. pH experiments
were performed for 24 h at 37 ◦C. The data showed the percentages of the remaining phages after
each treatment, as normalized from the control. The data reported are means of three independent
trials and error bars show the deviation in the values.

3.3. Application of Phage Cocktail to Control Foodborne Multi-Drug Resistant S. Typhimurium

A phage cocktail composed of 1:1 mixture of phage SPHG1 and SPHG3 was evalu-
ated for the biological control of experimentally S. Typhimurium EG.SmT3 contaminated
milk, water, and chicken breasts. The stability tests were determined at two different
temperatures representative of storage temperature of most food articles (at 4 ◦C) and the
temperature at which the food is being processed or consumed (at 25 ◦C). The results in
Figure 6 indicated that the phage cocktail remained stable in the tested food matrices.
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The food samples were artificially contaminated with S. Typhimurium EG.SmT3 at
a final concentration of 4 log10 CFU/mL at either 4 ◦C or 25 ◦C. In the milk biocontrol
assay, the viable count of S. Typhimurium EG.SmT3 was reduced below the detection limit
(<1 CFU/100 µL) after 2 h and 12 h at 25 ◦C using MOIs of 1000 and 100, respectively
(Figure 7A). While at 4 ◦C, there was a complete elimination of Salmonella after 6 h and
16 h using MOIs of 1000 and 100, respectively (Figure 7D). The effectiveness of the phage
cocktail to inhibit the degree of experimentally contaminated Salmonella in water was also
investigated (Figure 7B,E). No viable bacterial counts were detected in water after 2 h
and 6 h at 25◦C upon adding the phage cocktail at an MOI of 1000 and 100, respectively.
While at 4 ◦C, the bacterial count completely declined after 6 h and 12 h using an MOI of
1000 and 100, respectively.
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In Chicken breasts experiments, at 25 ◦C, the Salmonella counts were reduced com-
pletely after 2 h and 6 h upon application of the phage cocktail at an MOI of 1000 and 100,
respectively (Figure 7C). However, the time that is required to achieve complete bacterial
lysis increased at 4 ◦C to 12 h and 16 h when MOIs of 1000 and 100 were used, respectively
(Figure 7F).

3.4. Effect of Phage Cocktail against Biofilm of S. Typhimurium

The effectiveness of phage cocktail against biofilm of S. Typhimurium EG.SmT3 in
96-well microplate was evaluated at 30 ◦C using titers of 7 log10 PFU/mL and 8 log10 PFU/mL
for 24 h (Figure 8). Biofilm removal activities of 64.34% and 74.26% were respectively detected
when phage cocktail was applied to a final titer of 7 log10 PFU/mL and 8 log10 PFU/mL.
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4. Discussion

Guaranteeing the microbiological safety of food is an increasing concern among produc-
ers and consumers at all levels of the food production chain. The situation is becoming more
complex with the emergence of foodborne multi-drug resistant bacteria [20,21]. Foodborne
salmonellosis is the second most reported bacterial zoonosis. The European Union (EU)
categorized Salmonella to be a major cause of foodborne illness [64].

MDR Salmonella serovars were previously isolated from Egypt [65–69]. Traditional
intervention methods for combating Salmonella have not been able to solve the dilemma
of food quality and food safety [14–17]. Bacteriophages have emerged as a promising
alternative to chemical antimicrobial agents among the numerous attempts to improve
food safety currently under exploration [24–27].

Previously, three lytic bacteriophages infecting MDR S. Typhimurium have been
isolated from sewage in Egypt [69]. In the current study, five bacteriophages were iso-
lated from different environmental samples targeting the MDR S. Typhimurium EG.SmT3.
Two out of the five isolated phages were selected for further phage biocontrol experiments
based on their inhibition activity. The data revealed that, the higher the MOIs over the
bacterial concentration, the greater the relevance to the outcome of the treatment. The two
phages, SPHG1 and SPHG3, as well as a cocktail of these two phages, exhibited broad host
range activity and high efficiency to inactivate the tested Salmonella in the current study.

Host range analysis identified that SPHG3 had a broader host range and it was able to
infect 86% of the tested Salmonella serovars, although SPHG1 only infected 53% of the strains
tested, respectively. This difference in the susceptibility pattern of the isolated phages
may result from unsuccessful infection, non-specific binding receptors, modification of the
restriction endonuclease system [70–72], and the formation of bacterial insensitive mutants
(BIM) [73]. Here, a cocktail mix of the two isolated phages was used. Phage cocktails
overcome the limitation of phages with narrow host range [26]. Moreover, different phages
recognize different receptor sites on the host cell wall; subsequently, this will delay or even
prevent the development of host resistance [74–76].

Whole genome sequencing of both SPHG1 and SPHG3 was performed to screen
for integrase genes as well as well virulence-associated genes. SPHG1 and SPHG3 have
double-stranded DNA genomes of 47,119 bp and 149,831 bp long, respectively. Remark-
ably, SPHG1 and SPHG3 did not encode any integrases, virulence associated-factors,
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or antimicrobial-resistance genes. For biocontrol applications in food, strictly lytic phages
are used to avoid potential threats (e.g., the transduction of virulence factors) that are
associated with the lysogenic (temperate) phages [45,77,78]. Genome analysis identified
SPHG1 and SPHG3 as virulent phages in the Myoviridae and Ackermannvirindae families,
respectively. Previous literatures suggested that phages belonging to these families have
the potential to be used as biocontrol agents against different Salmonella [59,69,79–81].
As such it is important to note that a mix of phages with distinct biological and genetic
features can improve the effectiveness of a phage cocktail [82].

Phage applications in the food industry are of success based on the stability of the
selected phage/s on different food matrices. Previously, insignificant losses were observed
in phage titers in various food matrices [81,83], and the current results (Figure 6) showed
that the phage cocktail was effectivity stable, with only small losses being seen after
exposure for up to two days in milk, water, and on chicken breast. A recent study also
reported the stability of a Salmonella phage cocktail in milk and on chicken breast [62].
Phages were reported to be more active at higher MOIs in a very short time [39,62,84]. In the
current study, an MOI of 1 was considered the critical threshold level for the application of
the isolated Salmonella phage cocktail. It has been established that, the higher the MOI value,
the greater the reduction rate [85,86]. Moreover, using a high MOI of the applied phages
has been shown to be effective, as it favors rapid attachment to the host cell wall receptors
and it can result in the degradation of the cell wall without multiplication [42,62,87] via the
“lysis from without” phenomena [88].

The results of the current study indicated a reduction in the growth of the MDR
S. Typhimurium EG.SmT3 in artificially contaminated food matrices by the phage cocktail
for up to 48 h as compared to the non-challenged samples, especially at 25 ◦C. The phage
cocktail effectively reduced the initial count of Salmonella (~4.2 Log10 unit) below the
detection limit (<1 CFU/100 µL) either at 4 ◦C or 25 ◦C using an MOI of 100. The efficiency
of the phage cocktail was found to be relatively lower at 4◦C, when compared with that
at 25 ◦C. Storage at a lower temperature (4 ◦C) could prevent the regrowth of the host
bacteria after phage treatment [41,89]. Previous studies detected a significant reduction in
the recovered S. Enteritidis by up to 3 log10 while using phage cocktail at an MOI of 10,000
and 1000 in milk, chicken breast, and cabbage detected [62,83], and the application of phage
cocktails has also been shown to reduce Salmonella spp. in different food matrices [26,39,90–95].

The biofilm assay has shown that the phage cocktail has the potential to eradicate and
reduce the biofilm formed by S. Typhimurium EG.SmT3. The results indicated that the
phage cocktail eradicated post-treated biofilm in 96-well microplate (64.34–74.26%) at the
tested titers. A previous study on S. Typhimurium and S. Enteritidis showed significant
biofilm eradications in the 96-well microplate (44–63%) [62]. The results in this study
demonstrated the efficacy of lytic Salmonella phage cocktail to combat the multi-drug
resistant S. Typhimurium in milk, water, and chicken breast. The established features of
isolated phages in this study have shown that they could potentially reduce Salmonellosis
in ready-to-eat food and reduce biofilms on food contact surfaces that are very crucial in
maintaining public health.
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