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Abstract 
Ripe figs, barks, and wood of Ficus vallis-choudae are used in traditional medicine against several conditions includ-
ing nausea and malaria. However, its use is still to be scientifically documented and validated. Hence, the aim of the 
present work was to evaluate the antiplasmodial activity of the dichloromethane-methanol (DCM-MeOH (1:1)) crude 
extract, their hexane, dichloromethane, ethyl acetate, and methanoli fractions, as well as the isolated chemical constitu-
ents. The chemical study of the DCM-MeOH (1:1) crude extract of F. vallis-choudae figs led to the isolation of fifteen 
(15) known compounds identified based on their spectroscopic data [one-dimensional (1D) and two-dimensional (2D) 
nuclear magnetic resonance (NMR), mass spectrometry] and by comparison of these data with those reported in the lit-
erature. Some of the isolated compounds were assessed in vitro for their antiplasmodial activity against Plasmodium fal-
ciparum chloroquine-sensitive 3D7 (Pf3D7) and multidrug-resistant Dd2 strains. The dichloromethane fraction exhibited 
very good antiplasmodial activity against both strains with  IC50 values of 13.86 μg/mL and 8.18 μg/mL, respectively. 
Among the tested compounds, wighteone (2) was the most active against P. falciparum 3D7  (IC50 = 24.6 ± 1.5 μM) and 
Dd2  (IC50 = 11.9 ± 2.4 μM) strains. The obtained results could justify the traditional uses of F. vallis-choudae against 
malaria. Wighteone appears to be the most active ingredient. However, further consideration of this compound as start-
ing point for antimalarial drug discovery will depend upon its selectivity of action towards Plasmodium parasites. 

Highlights  
• 15 (fifteen) compounds were isolated from the dichloromethane-methanol extract of Ficus vallis-choudae.
• Their structures were determined on the basis of their spectroscopic data.
• The dichloromethane fraction showed promising activities on the Pf3D7 and PfDd2 strains with  IC50 values of 13.86 and 
8.18 µg/mL, respectively.
• Wighteone was the most active compound against PfDd2  (IC50 = 11.9 ± 2.4 μM).
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Introduction

Malaria is an endemic disease in most tropical regions of 
Africa, Asia, and Latin America and its incidence have 
been increasing these recent times due to drug resistance 
and the emergence of the Covid-19 pandemic. An estimated 
228 million cases of malaria occurred worldwide in 2018 
with the largest burden of morbidity (93%) in Africa (WHO 
2019). Chemotherapy remains a key component of malaria 
control and elimination strategies. Artemisinin-based com-
bination therapy was the most commonly used drug-based 
therapy between 2010 and 2018 in African public health 
sectors (WHO 2019), but the high cost and the low avail-
ability in rural areas is still an important health problem. The 
emergence of artemisinin-resistant Plasmodium falciparum 
strains in Africa turned the situation worse (Huayun et al. 
2017). Hence, understanding and controlling the spread of 
antimalarial resistance, particularly to artemisinin and its 
partner drugs remains a top priority. Therefore, alternative 
antimalarial drugs need to be developed, and medicinal 
plants are known as promising sources of potential antima-
larial compounds.

The genus Ficus (Moraceae) is one of the largest genera 
of angiosperms with more than 800 species of trees, shrubs, 
hemiepiphytes, climbers, and creepers in the tropics and sub-
tropics worldwide. It is an important genetic resource due to 
its high economic and nutritional values and also an impor-
tant part of the biodiversity in the rainforest ecosystem. 
Ficus species are also a good source of food for fruit-eating 
animals in tropical areas (Rønsted et al. 2007). Ficus vallis-
choudae Dellile (synonyms Ficus schweinfurthii Miquel) is a 
shrub or small tree up to 8 m tall. It is distributed in tropical 
Africa from Senegal to Cameroon, from Sudan to Ethiopia 
and Malawi (Vivien and Faure 1996). Fruits, bark, and wood 
are the most used parts of Ficus vallis-choudae against sev-
eral conditions including nausea and malaria (Oliver 1960). 
Several phytochemical and pharmacological surveys were 
already done worldwide on different Ficus species. However, 
only a few research studies were conducted on Ficus vallis-
choudae. Our research group has previously reported the 
isolation of one ceramide, steroids, and triterpenoids from 
the methanolic extract of the figs of this plant as well as the 
α-glucosidase inhibitory activity and DPPH radical scav-
enging potency (Bankeu et al. 2017). However, to provide 
scientific validation to the traditional use of this plant to treat 
malaria, in-depth investigation of stem bark and other parts 
of Ficus vallis-choudae for antiplasmodial was required. In 
the present article, we report the antiplasmodial activity of 
the dichloromethane-methanol extract F. vallis-choudae figs, 

its hexane, dichloromethane, ethyl acetate, and methanolic 
fractions, as well as the isolated chemical constituents.

Materials and methods

General experimental procedures

The used equipments were those reported by Chouna et al 
(2021). Column chromatography (CC) was performed on 
silica gel (230–400 mesh). Fractions were monitored by 
thin-layer chromatography (TLC) using Merck precoated 
silica gel sheets (60  F254), and the identification of spots on 
the TLC plate was carried out by spraying with sulfuric acid 
reagent solution and heating the plate to about 80 °C.

Plant material

The figs of Ficus vallis-choudae Dellile were collected in 
May 2019 at Egona II (Center region of Cameroon). Mr. 
NANA Victor, botanist at the National Herbarium, Yaoundé, 
by comparison with the existing voucher specimen No 5115/
HNC4, identified the plant material.

Extraction and isolation

The plant material (1.5 kg) was air-dried, pulverized, and 
extracted three times with 4 L of  CH2Cl2-MeOH (1:1) mix-
ture at room temperature (24℃) (each time for 24 h). The 
solvent was evaporated under reduced pressure to afford 
119.1 g of crude extract. A part of the extract (118.1 g) was 
partitioned with n-hexane, dichloromethane (DCM), ethyl 
acetate, and methanol to afford fractions of 72.9, 6.5, 11.1, 
and 25.6 g, respectively.

The n-hexane fraction (FH) was subjected to column 
chromatography (CC) over silica gel (Merck, 230–400 mesh) 
eluting with the mixtures of n-hexane–EtOAc (1:0 → 0:1) 
and EtOAc/MeOH (1:0 → 0:1) with increasing polarities. 
Fractions of 300 mL each were collected and combined 
according to their TLC profiles to afford five major sub-
fractions labeled FH1–FH5. Sub-fraction FH1 (10.5 g) was 
submitted to CC over silica gel using n-hexane–EtOAc 
(1:0 → 4:6) as solvent systems to yield 7 (50.3 mg) and 8 
(55.2 mg). Compound 14 (40 mg) crystallized in sub-frac-
tion FH2 (9.7 g) and was filtered off by simple filtration. 
Sub-fraction FH3 (13.9 g) was submitted to purified CC 
over silica gel eluted with n-hexane–EtOAc (1:0 → 2:8) to 
afford compounds 5 (9.2 mg), 4 (8.7 mg), and 11 (25.1 mg). 
The purification of sub-fraction FH4 (22.8 g) over silica 
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gel CC using n-hexane–EtOAc (1:0 → 2:8) as elution sol-
vents yielded compounds 2 (20.5 mg), 3 (5.4 mg), and 1 
(6.9 mg). The sub-fraction FH5 (15.4 g) was subjected to 
CC with n-hexane–EtOAc (6:4 → 0:1) and EtOAc/MeOH 
(1:0 → 85:15) over silica gel to afford compounds 6 (5 mg) 
and 15 (30 mg).

Likewise, the DCM fraction (6.5 g) was subjected to 
the CC over silica gel (Merck, 230–400 mesh) eluting with 
n-hexane–EtOAc (1:0 → 0:1) and EtOAc/MeOH (1:0 → 0:1) 
systems of increasing polarities. Fractions of 300 mL each 
were collected and combined according to their TLC profiles 
to afford four major sub-fractions labeled (FD1–FD4). The 
sub-fraction FD1 (1.43 g) was further subjected to CC over 
silica gel and eluted with n-hexane–EtOAc (1:0 → 0:1) to 
afford compound 9 (5.4 mg). Further CC of the sub-fraction 
FD2 (3.21 g) with n-hexane–EtOAc (8:2 → 0:1) afforded 
compounds 10 (20.8 mg) and 12 (6.2 mg). The sub-fraction 
FD3 (1.12 g) was subjected to CC over silica gel with n-hex-
ane–EtOAc (6:4 → 0:1) to yield compound 13 (15.7 mg).

Physical and spectroscopic data of the isolated 
compounds

5,7,4′-trihydroxyisoflavone (Genistein) (1): Yellow pow-
der from n-hexane–EtOAc (1:1), mp 289–291 °C [Litera-
ture (Lit.) 290–292 °C (Mykhailenko et al. 2017)], 1H NMR 
(CD3OD, 600 MHz): δH (ppm) = 8.08 (1H, s, H-2), 7.40 
(2H, d, J = 8.9 Hz, H-2′/6′), 6.87 (2H, d, J = 8.9 Hz, H-3′/5′), 
6.37 (1H, d, J = 2.2 Hz, H-8), 6.25 (1H, d, J = 2.2 Hz, H-6); 
13C NMR (CD3OD, 150 MHz): δC (ppm) = 182.6 (C-4), 
166.0 (C-7), 163.9 (C-5), 159.8 (C-9), 158.8 (C-4′), 154.8 
(C-2), 131.4 (C-2′/6′), 123.8 (C-3), 123.3 (C-1′), 116.2 
(C-3′/5′), 106.3 (C-10), 100.1 (C-6), 94.8 (C-8).

Wighteone (Erythrinin B) (2): Yellow powder from 
n-hexane–EtOAc (4:6), mp 218–220 °C [Lit. 219–220 °C 
(Kinoshita et al. 1990)], 1H NMR (CD3OD, 600 MHz): δH 
(ppm) = 13.03 (1H, s, HO-5), 7.98 (1H, s, H-2), 7.28 (2H, d, 
J = 8.5 Hz, H-2'/6'), 6.74 (1H, d, J = 8.5 Hz, H-3′/5′), 6.31 (1H, 
s, H-8), 5.13 (1H, m, H-2′′), 3.21 (2H, d, J = 7.3 Hz, H-1′′), 
1.67 (3H, d, J = 1.5 Hz, 5′′-CH3), 1.56 (3H, d, J = 1.5 Hz, 4′′-
CH3); 13C NMR (CD3OD, 150 MHz): δC 182.0 (C-4), 163.4 
(C-5), 160.4 (C-7), 158.8 (C-4′), 157.3 (C-9), 154.6 (C-2), 
132.2 (C-3′′), 131.5 (C-2′/6′), 124.3 (C-3), 123.5 (C-2′′), 123.4 
(C-1′), 116.3 (C-3′/5′), 112.7 (C-6), 106.1 (C-10), 94.0 (C-8), 
26.2 (C-4′′), 22.4 (C-1′′), 18.2 (C-5′′).

Lupiwighteone (3): Yellow powder from n-hex-
ane–EtOAc (4:6), mp 133–135 °C [Lit. 133–134 °C (Al-
Maharik and Botting 2003)], 1H NMR (CD3OD, 600 MHz): 
δH (ppm) = 8.16 (1H, s, H-2), 7.40 (2H, d, J = 8.9  Hz, 
H-2′/6′), 6.87 (2H, d, J = 0.8.9.Hz, H-3′/5′), 6.30 (1H, s, 
H-6), 5.23 (1H, m, H-2′′), 3.44 (2H, d, J = 7.1 Hz, H-1′′), 
1.88 (3H, d, s,H-5′′), 1.70 (3H, d, s, H-4′′); 13C NMR 
(CD3OD, 150 MHz): δC (ppm) = 182.6 (C-4), 163.3(C-7), 

161.4 (C-5), 158.8 (C-4′), 156.9 (C-9), 154.8 (C-2), 132.4 
(C-3′′), 131.4 (C-2′/6′), 124.4 (C-1′), 123.4 (C-3), 123.4 
(C-2′′), 116.2 (C-3′/5′); 107.9 (C-8), 106.3 (C-10), 99.6 
(C-6), 25.9 (C-4′′), 22.3 (C-1′′), 17.9 (C-5′′).

Derrone (4): Yellow powder from n-hexane–EtOAc 
(3:7), mp 178–179 °C [Lit. 179–181 °C (Máximo et al. 
2002)], 1H NMR (CDCl3, 600 MHz): δH (ppm) = 12.89 (1H, 
s, HO-5), 7.88 (1H, s, H-2), 7.38 (2H, d, J = 8 Hz, H-2′/6′), 
6.88 (1H, d, J = 8  Hz, H-3′/5′), 6.68 (1H, J = 10.0  Hz, 
H-4′′), 6.33 (1H, s, H-6), 5.60 (1H, d, J = 10.0 Hz, H-3′′), 
5.15 (1H, s, HO-4′), 1.48 (6H, s,  CH3); 13C NMR (CDCl3, 
150 MHz): δC (ppm) = 181.2 (C-4), 162.4 (C-5), 159.7 
(C-7), 156.1 (C-4'), 152.4 (C-9), 130.5 (C-2′/6′), 127.6 
(C-3′′), 123.8 (C-3), 123.1 (C-1′), 115.8 (C-3′/5′), 114.7 
(C-4′′), 106.2 (C-10), 100.5 (C-6), 101.3 (C-8), 78.3 (C-2′′), 
28.4 (C-5′′/6′′).

Alpinumisoflavone (5): Yellow powder from n-hex-
ane–EtOAc (7:3), mp 212–214 °C [Lit. 213–214 °C (Nde-
mangou et al. 2013)], 1H NMR (CDCl3, 600 MHz): δH 
(ppm) = 13.18 (1H, s, HO-5), 7.82 (1H, s, H-2), 7.39 (2H, 
d, J = 8 Hz, H-2′/6′), 6.89 (1H, d, J = 8 Hz, H-3'/5'), 6.73 
(1H, J = 10.0 Hz, H-4′′), 6.33 (1H, s, H-8), 5.62 (1H, d, 
J = 10.0 Hz, H-3′′), 5.15 (1H, s, HO-4′), 1.47 (6H, s,  CH3); 
13C NMR (CDCl3, 150 MHz): δC (ppm) = 181.1 (C-4), 
159.7 (C-7), 157.5 (C-9), 157.0 (C-5), 156.0 (C-4′), 130.5 
(C-2′/6′), 128.4 (C-4′′), 123.7 (C-3), 123.3 (C-1′), 115.7 
(C-3′/5′), 115.6 (C-3′′), 106.3 (C-10), 105.8 (C-6), 96.0 
(C-8), 78.2 (C-2′′), 28.5 (C-5′′/6′′).

Oleanolic acid-28-O-β-D-glucopyranosyl ester (6): 
white amorphous powder from n-hexane–EtOAc (3:7), 13C 
NMR (CDCl3, 150 MHz): Aglycone: δC (ppm) = 174.5 
(C-28), 140.5 (C-13), 122.3 (C-12), 79.7 (C-3), 56.3 
(C-5), 50.3 (C-9), 48.0 (C-9), 47.2 (C-19), 46.0 (C-18), 
42.5 (C-17/14), 39.0 (C-8), 38.6 (C-4), 38.5 (C-1), 36.9 
(C-10), 34.4 (C-21), 34.1 (C-22), 31.9 (C-7), 31.8 (C-29), 
29.9 (C-20), 29.1 (C-23), 27.4 (C-2/15), 23.9 (C-27), 22.8 
(C-11/16), 21.0 (C-6), 19.8 (C-30), 19.5 (C-26), 14.3 (C-25), 
11.8 (C-24), Glucose: δC (ppm) = 94.0 (C-1′), 76.5 (C-3′), 
76.4 (C-5′), 72.2 (C-2′), 69.6 (C-4′), 61.3 (C-6′).
β-palmitate (7): white amorphous powder from n-hex-

ane–EtOAc (98:2), 13C NMR (CDCl3, 150  MHz): δC 
(ppm) = 145.5 (C-13), 121.8 (C-12), 80.7 (C-3), 55.4 (C-5), 
47.7 (C-9), 47.4 (C-18), 46.9 (C-19), 41.9 (C-14), 40.0 
(C-8), 38.4 (C-1), 37.9 (C-4), 37.8 (C-22), 37.3 (C-10), 34.8 
(C-21), 33.5 (C-29), 32.7 (C-17 and C-20), 32.6 (C-7), 28.5 
(C-28), 28.2 (C-23), 27.1 (C-2), 26.3 (C-15 and C-16), 26.1 
(C-27), 23.8 (C-11 and C-30), 18.4 (C-6), 17.0 (C-26),16.8 
(C-24), 15.7 (C-25); Palmitoyl: 173.9 (C-1′), 31.2 (C-2′), 
29.3–29.9 (C-4′-14′), 25.3 (C-3′), 22.8 (C-15′), 14.3 (C-16′).
β-Amiryn acetate (8): white amorphous powder from 

n-hexane–EtOAc (97:3), 13C NMR (CDCl3, 150 MHz): δC 
(ppm) = 145.4 (C-13), 121.8 (C-12), 81.1 (C-3), 55.4 (C-5), 
47.7 (C-9), 47.4 (C-18), 46.9 (C-19), 41.9 (C-14), 38.4 
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(C-1), 38.4 (C-4/8), 37.3 (C-22), 37.3 (C-10), 34.8 (C-21), 
33.5 (C-29), 32.6 (C-7), 32.7 (C-20), 31.2 (C-17), 28.2 
(C-24/28), 27.1 (C-2/16), 26.3 (C-15), 26.1 (C-27), 23.7 
(C-30), 23.6 (C-11), 18.4 (C-6), 16.9 (C-26), 16.7 (C-25), 
15.7 (C-23); Acetyl: 171.2 (C-1′), 21.5 (C-2′).

Cappariside (9): white amorphous powder from n-hex-
ane–EtOAc (7:3), 1H NMR (CD3OD, 600  MHz): δH 
(ppm) = 7.87 (1H, s, H-2), 2.23 (3H, s,  CH3); 13C RMN 
(CD3OD): δC (ppm) = 170.3 (COOH), 151.8 (C-4), 145.8 
(C-3), 142.8 (C-5), 140.4 (C-2), 14.8  (CH3).

5-Hydroxymethylfuran-3-carboxylic acid (10): white 
powder from n-hexane–EtOAc (1:1), mp 144–146  °C 
[Lit. 145–147 °C (Ma et al. 2015)], 1H NMR (CD3OD, 
600 MHz): δH (ppm) = 7.96 (1H, s, H-2), 6.50 (1H, s, H-4), 
4.42 (2H, s,  CH2O); 13C NMR (CD3OD, 150 MHz): δC 
(ppm) = 176.9 (COOH), 170.4 (C-5), 147.4 (C-3), 141.0 
(C-2), 110.7 (C-4), 61.2  (CH2OH).

Oleanolic acid (11): White crystals from methanol, mp 
304–306 °C [Lit. 303.306 °C (Cai and Wu 1996)].

Maslinic acid (12): 13C NMR (CD3OD, 150 MHz): 
white amorphous powder from n-hexane–EtOAc (1:1), δC 
(ppm) = 180.9 (C-28), 144.8 (C-13), 123.4 (C-12), 84.5 (C-3), 
69.5 (C-2), 56.7 (C-5), 48.9 (C-9), 48.1 (C-1), 47.7 (C-17), 47.3 
(C-19), 42.9 (C-14), 42.8 (C-18), 40.5 (C-4), 39.3 (C-8/10), 34.6 
(C-21), 33.8 (C-22), 33.6 (C-29), 33.9 (C-7), 31.6 (C-20), 29.3 
(C-23), 28.8 (C-15), 24.1 (C-11), 24.0 (C-16), 23.7 (C-27/30), 
19.6 (C-6), 17.8 (C-26), 17.4 (C-25), 17.1 (C-24).

Erythrinin C (13): Yellow cristals from n-hexane–EtOAc 
(7:3), 1H NMR (CDCl3, 150 MHz): Yellow amorphous 
powder, 1H NMR (DMSO-d6, 400 MHz): δH (ppm) = 13.18 
(1H, s, 5-OH), 9.64 (1H, s, 4′-OH), 8.10 (1H, s, H-2), 
7.38 (2H, d, J = 8.5 Hz, H-2′/6′), 6.84 (2H, d, J = 8.5 Hz, 
H-3′/5′), 6.43 (1H, s, H-8), 4.81 (2H, m, H-2′′), 3.10 (2H, d, 
J = 8.5 Hz, H-3′′), 1.31 (3H, s, H-6′′), 1.26 (3H, s, H-5′′); 13C 
NMR (DMSO-d6, 100 MHz): δC (ppm) = 182.3 (C-4), 168.1 
(C-7), 159.5 (C-5), 158.7 (C-9), 157.9 (C-4′), 93.1 (C-2′′), 
154.9 (C-2), 131.4 (C-2′/6′), 124.8 (C-3), 123.1 (C-1′), 116.1 
(C-3′/5′), 110.8 (C-6), 107.1 (C-10), 89.9 (C-8), 72.2 (C-4′′), 
27.4 (C-3′′), 25.3 (C-6′′), 23.5 (C-5′′).
β-Sitosterol (14): White crystals from methanol, mp: 

134–135 °C [Lit. 136–137 °C (Sen et al. 2012)].
β-Sitosterol-3-O-β-D-glucopyranoside (15): White 

crystals from methanol, mp: 290‒292 °C [Lit. 290‒291 °C 
(Wang et al. 2009)].

Antiplasmodial assay

Chloroquine-sensitive (Pf3D7) and multidrug-resistant 
(PfDd2) strains of P. falciparum were continuously cultured 
as reported by Chouna et al. (2021). The previously SYBR 
green I-based fluorescence method described by Smilkstein 
et al. (2004) was used to evaluate the antiplasmodial activ-
ity. The growth inhibition percentage for each test sample 

was determined using Microsoft Excel and data analysis 
was performed with GraphPad Prism 5.0 fitting by non-
linear regression and dose–response curves were drawn to 
determine the inhibitory concentration that reduces parasite 
viability by 50%  (IC50).

The degree of resistance was determined by comparison 
of the antiplasmodial  IC50 of inhibitors on the chloroquine-
sensitive and multi-resistant strains of P. falciparum using 
the following formula:

RI =  IC50 multidrug-resistant strain/IC50 chloroquine-
sensitive strain.

Results and discussion

Phytochemical analysis

The dichloromethane-methanol (1:1) crude extract of the figs 
of Ficus vallis-choudae was repeatedly subjected to silica gel 
column chromatography (CC) to yield fifteen compounds 
identified as 5,7,4′-trihydroxyisoflavone (1) (Sordon et al. 
2017); wighteone (2) (Kinoshita et al. 1990); lupiwighteone 
(3) (Al-Maharik and Botting 2003); derrone (4) (Máximo 
et al. 2002); alpinumisoflavone (5) (Rahman et al. 2007; El-
Masry et al. 2002); oleanolic acid-28-O-β-D-glucopyranosyl 
ester (6) (Young et al. 1997); β-amyrin palmitate (7) (Bankeu 
et al. 2017); β-amyrin acetate (8) (Du et al. 2003; Okoye et al. 
2014); cappariside (9) (Yang et al. 2010); 5-hydroxymethyl-
furan-3-carboxylic acid (10) (Evidente et al. 2009); maslinic 
acid (12) (Tanaka et al. 2003); erythrinin C (13) (Chen et al. 
2019). The remaining compounds were identified by co-TLC 
with authentic samples and melting points measurement as 
oleanolic acid (11) (Cai and Wu 1996), β-sitosterol (14) (Sen 
et al. 2012), and 3-O-β-D-glucopyranoside of β-sitosterol 
(15) (Wang et al. 2009) (Fig. 1). The isolation of isoflavo-
noids, triterpenes, and steroids is in agreement with the previ-
ous results obtained from Ficus species (Bankeu et al. 2011, 
2017; Fongang et al. 2015).

Antiplasmodial activity

The crude extract, fractions, and isolated compounds were 
assessed in vitro for their antiplasmodial activity against 
chloroquine-sensitive (Pf3D7) and multidrug-resistant 
(PfDd2) strains of P. falciparum. Out of the tested frac-
tions, the dichloromethane fraction (FVFD) exhibited good 
antiplasmodial activities on the Pf3D7 and PfDd2 with  IC50 
values of 13.86 and 8.18 µg/mL, respectively (Table 1). Four 
compounds (9, 10, 12, 13) were isolated through its repeated 
purification. The multi-targeted activity of maslinic acid 
(12) as an antimalarial natural compound was previously 
demonstrated (Moneriz et al. 2011), and might justify the 
activity observed for FVFD. However, the low amount of 
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12 isolated in this work did not allow the evaluation of its 
antiplasmodial activity against both P. falciparum strains. 
Compound 2 (wighteone) was the most active against PfDd2 
 (IC50 = 11.9 ± 2.4 μM) and Pf3D7  (IC50 = 24.6 ± 1.5 μM). 
However, a recent report indicated that wighteone inhib-
its cell proliferation, suppressed EGFR signalling pathway, 
caused cell cycle redistribution and induced cell apoptosis, 
and could provide a novel potential therapeutic strategy for 
NSCLC patients with T790M mutation (Sun et al. 2021). 
For further consideration of this compound (2) as starting 
point for antimalarial drug discovery, cytotoxicity assess-
ment using normal mammalian cells is required. The main 
structural difference between 1 and 2 is the presence of a 
prenyl group at C-6 of 2, thus suggesting that the prenyl 
moiety may contribute to the high activity of 2. This result 
corroborates previous findings as prenyl moiety including 
isoflavonoids have been reported to considerably increase 
various biological activities such as antiplamodial, anti-
fungal, and anticancer potencies of secondary metabolites 

(Zelefack et al. 2012; Yang et al. 2015). These results could 
support the traditional use of Ficus vallis-choudae for the 
treatment of malaria. Wighteone, maslinic acid, and gen-
istein may be eventually qualified as antiplasmodial active 
principles of this medicinal plant.

Conclusion

Fifteen (15) known compounds including six isoflavonoids, 
five triterpenoids, two steroids, and two furan derivatives 
were isolated from the dichloromethane-methanol (1:1) 
crude extract of Ficus vallis-choudae figs. This is the first 
report of the isolation of these compounds (excepted 7, 11, 
and 14) from Ficus vallis-choudae. The dichloromethane 
fraction showed promising activities on the Pf3D7 and 
PfDd2 strains with  IC50 values of 13.86 and 8.18 µg/mL, 
respectively. Wighteone was the most active against PfDd2 
 (IC50 = 11.9 ± 2.4 µM) and Pf3D7  (IC50 = 24.6 ± 1.5 µM). 

Fig. 1  Sructures of compounds 1–15 
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Wighteone and maslinic acid might be suggested as the 
backbone of the antiplasmodial potency of Ficus vallis-
choudae. However, their safety towards normal mammalian 
cells should be demonstrated.
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