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Aims This work attempts to develop a standalone heart rhythm alerting system for the intensive care unit (ICU), where
life-threatening arrhythmias have to be identified/alerted more precisely and more instantaneously (i.e. with lower
latency) than existing bedside monitors.

...................................................................................................................................................................................................
Methods and
results

We use the dataset from the PhysioNet 2015 Challenge, which contains records that led to true and false arrhyth-
mic alarms in the ICU. These records have been re-annotated as one of eight classes, namely (i) asystole, (ii) ex-
treme bradycardia, (iii) extreme tachycardia, (iv) ventricular fibrillation (VF), (v) ventricular tachycardia (VT), (vi)
normal sinus rhythm, (vii) sinus tachycardia, and (viii) noise/artefacts. Arrhythmia-specific features and features that
measure the signal quality were extracted from all the records. To improve VF detection, an improved, over an
existing, single-lead R-wave detection was developed that takes into account the R-waves detected in all
electrocardiographic (ECG) leads. To avoid false R-wave detection due to pacing spikes, ECG signals were filtered
with a low pass filter prior to R-wave detection, while the raw signals were used for feature extraction.
Random forest was used as the classifier, and 10-time five-fold cross-validation, resulted in a macro-average
sensitivity of 81.54%.

...................................................................................................................................................................................................
Conclusions In conclusion, comparing with the bedside monitors used in the PhysioNet 2015 competition, we find that our

method achieves higher positive predictive values for asystole, extreme bradycardia, VT, and VF; furthermore, our
method is able to alert the presence of arrhythmia instantaneously, i.e. up to 4 s earlier.
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Introduction

Electrocardiographic (ECG) signals remain the most important
means of capturing cardiac activity in real time for the monitoring of
intensive care unit (ICU) patients. While existing bedside monitors
are designed to raise alarms whenever the ECG recordings go out of
the normal range, a persistent drawback is that most of the alarms
raised by the bedside monitors are false alarms, creating an unneces-
sarily noisy environment and contributing to alarm fatigue.1

The ‘PhysioNet/Computing in Cardiology Challenge 2015:
Reducing False Arrhythmia Alarms in the ICU’2 was specifically
designed to foster the development of new methods to filter out false
alarms for asystole, bradycardia, tachycardia, ventricular tachycardia
(VT), and ventricular fibrillation (VF). The PhysioNet data included
physiological signals of 2-lead ECG, arterial blood pressure (BP), and
photoplethysmography (PPG). From this challenge,3–6 several meth-
ods were created that were based upon the prior knowledge of the
alarms’ annotation from the bedside monitor; i.e. they were all
designed to be used as a second stage classifier/filter, after the bed-
side monitor has raised an alarm. Since these methods were only built
to filter out the false alarms of five specific heart rhythms, the design/
training of these methods were limited to small data sets correspond-
ing to the signal records that the bedside monitors considered to be
abnormal. This raises the question on whether these methods could,
by themselves, truly identify an abnormal heart rhythm from all other
heart rhythm classes.

Multi-class heart rhythm classification of ECG signals has been a
persistently challenging problem, and machine learning (ML) techni-
ques have been essential in providing improved outcomes.7,8 One of
the first attempts for arrhythmia analysis was by Guvenir et al.,9 who
used supervised ML to classify 12-lead ECG signals to 16 classes, and
achieved a 10-fold cross-validation accuracy of 68%. The authors
published the extracted feature values from their data to the
University of California Irvine repository,10 and later other studies

have tested their methods on these data.11,12 Recently, the ‘China
Physiological Signal Challenge (CPSC) 2018’13 provided a large, open
repository of 6877 raw 12-lead ECG recordings, with the intent of
building a classifier that can accurately sort the ECG recordings into
nine classes (normal heart rhythm or one of the eight abnormal heart
rhythms). The winner of the challenge14 used convolutional neural
networks to achieve a median F-1 score of 0.84.

Many popular studies15–18 on multi-class classification of ECG
rhythms/beats have utilized the data recorded from ambulatory devi-
ces or single-lead ECG devices. Among these, Hannun et al.15 used a
34 layered convolutional neural network for detecting 10 heart
rhythm classes from one sec of ECG signal from an ambulatory de-
vice. Due to the 1 s limitation, the model missed out some important
heart rhythms that require more time for detection, e.g. sinus brady-
cardia, asystole. The ‘AF Classification from a Short Single Lead ECG
Recording—The PhysioNet Computing in Cardiology Challenge
2017’19 encouraged the development of methods which could iden-
tify from a single short ECG lead recording (30–60 s), whether it
shows normal sinus rhythm (NSR), atrial fibrillation (AF), an alterna-
tive rhythm, or it is too noisy to be classified. The two best scor-
ers20,21 from this challenge used stacked classifiers, wherein first a
deep learning-based classifier was used to obtain the classification re-
sult and the confidence score with which the classification was made;
if the confidence score was below a defined threshold, the second
classifier using handcrafted features was used to determine the class.
It should be noted that most arrhythmia classification methods have
analysed only the morphology of ECG signals to determine the heart
rhythm. However, critical life-threatening arrhythmias—such as VT
and VF—can be detected more accurately by including the BP
signal.22

In this manuscript, we propose a standalone, real-time processing
platform that can detect and categorize life-threatening heart
rhythms by analysing the ECG, BP, and PPG signals of ICU patients,
into one of the multiple classes, such as VT, VF, extreme tachycardia,
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.extreme bradycardia, and asystole. We use signal processing techni-
ques and ML to provide more precise and instantaneous alerts of life-
threatening arrhythmias. Additionally, sinus tachycardia, NSR, and
noise/artefacts have been included as one of the possible output
classes.

Methods

Dataset
We used data from the ‘PhysioNet/Computing in Cardiology Challenge
2015: Reducing False Arrhythmia Alarms in the ICU’. The challenge data
were sourced from four hospitals in the USA and Europe, and employed
bedside monitors from three manufacturers; furthermore, it was ensured
that no manufacturer or hospital contributed to more than half of the
records. The data were made public and are available at https://physionet.
org/content/challenge-2015/1.0.0/ (28 June 2021). The database includes
records of
300 s long physiological signals from ICU patients, taken just prior to the
time when an alarm was raised by the bedside monitor. The physiological
signals included were: 2-lead ECG, BP, and the PPG. We re-annotated
each of these events as belonging to one of the following categories: (i)
asystole, (ii) extreme bradycardia, (iii) extreme tachycardia, (iv) VF, (v)
VT, (vi) NSR, (vii) sinus tachycardia, and (viii) noise/artefact. The defini-
tions/criteria for asystole, extreme bradycardia, extreme tachycardia, VT,
and VF were taken from the PhysioNet 2015 challenge2 and are listed in
Table 1. More information regarding the dataset is available in the
Supplementary material online.

R-wave detection
We used the R-wave peak detection method described by Martinez
et al.23 The method identifies peaks based on the morphological charac-
teristics of the ECG signal, and works well in most ECG records. To fur-
ther improve R-wave peak detection that could impact the accurate
detection of complex rhythms e.g. VF, we have developed a multi-lead
moving window method, which is described in detail in the
Supplementary material online.

To avoid the scenario, that pacing spikes and other high-frequency
noise are identified as R-wave peaks, we designed a finite impulse re-
sponse low-pass filter in MATLAB. The filter has 51 taps and a cut-off fre-
quency of 15 Hz. The raw ECG signal is, accordingly, passed through the
low-pass filter, and the filtered signal is used by the multi-lead moving
window-based R-wave peak detector. Once the R-wave peak locations
are identified, features are extracted from the raw ECG signal.

Feature extraction
Feature extraction was performed on ECG, BP, and PPG signals. We
extracted a set of signal quality indexes (SQIs) to indicate if the signals are
appropriate for further processing or are noisy. Furthermore, a set of
arrhythmia-specific features, which characterize each arrhythmia class,
was also extracted (Table 2).

Many of these features have been used in our recent study on the
reduction of false arrhythmia alarms in the ICU when one has prior
knowledge of the type of the alarm22; more details about the features can
be found in the Supplementary material online of that paper. A major ob-
jective of our work is to perform real-time identification of patients’ heart
rhythms. An implied sub-objective is that detection of these heart
rhythms has to happen as soon as the arrhythmia pattern criteria are met,
so that a timely alarm is raised. By observing the data/annotations from
the PhysioNet 2015 challenge data, we realized that the alarms raised by
the bedside monitors can sometimes be delayed several seconds after
the abnormal heart rhythm criteria have been met. To achieve ‘instant’
detection, we defined window length requirements for each heart
rhythm class. For example, 4 s of vital sign signals is sufficient to determine
whether or not the patient is having VT/VF. Similarly, 8 s is sufficient to
determine if a patient is experiencing asystole. Finally, we found that 15 s
is an appropriate window-length to determine if the patient is suffering
from extreme bradycardia or extreme tachycardia. Accordingly, the cor-
responding arrhythmia-specific features of extreme tachycardia, extreme
bradycardia, asystole, VT, and VF were computed from signals of 15 s, 15
s, 8 s, 4 s, and 4 s window-lengths, respectively. The idea is pictorially pre-
sented in Figure 1, and the motivation for having different window lengths
is illustrated in the Supplementary material online.

Whenever one or more physiological signals were absent or noisy,
while computing features the corresponding feature values were assigned
NANs (missing values). The SQIs were designed such that for noisy sig-
nals they would either have low values or be rendered as not-a-number
(NAN).

Machine learning-random forest algorithm
We tried multiple supervised ML algorithms for classification, namely
artificial neural networks (ANNs), support vector machine (SVM), and
random forest (RF) classifiers. We have found that the RF classifier gave
the best classification performance.

In a scenario in which one or more vital sign signals could be noisy,
resulting in many missing feature values, the ability of a classifier to handle
missing data is of high importance. The RF classifier has an in-built ability
to directly handle missing data, while other classification algorithms,
namely SVM and ANN need data imputation techniques to fill in the miss-
ing values, before they can be used for training and testing over the data.

....................................................................................................................................................................................................................

Table 1 Definitions of the eight classes

Class Definition

Asystole A gap of at least 4 s between two successive R-waves

Extreme bradycardia A heart rate lower than 40 beats per minute for four consecutive beats

Extreme tachycardia A heart rate higher than 140 beats per minute for 17 consecutive beats

Ventricular fibrillation An oscillatory ECG waveform of at least 4 s

Ventricular tachycardia Five consecutive VT beats with heart rate of at least 100 beats per minute

Normal sinus rhythm A heart rate between 60 and 100 beats per minute for 15 s

Sinus tachycardia A heart rate between 100 and 140 beats per minute for 17 consecutive beats

Noise/artefacts All physiological signals are filled with noise or artefacts

Real-time ML-based ICU alarm classification 439
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....................................................................................................................................................................................................................

Table 2 List of extracted features that were fed to the eight-class Random Forest Classifier

Signal Feature Category

Electrocardiogram Periodicity measure

Sharpness measure

Correlation measure

Peak height stability measure

Signal quality indices (8 s)

Max period between consecutive R waves

Histogram analysis mean

Histogram analysis standard deviation

Median neighbourhood swing

Blank area swing

Blank area swing to median neighbourhood swing ratio

Asystole features (8 s)

Minimum heart rate across 4 beats

Number of beats slower than 46 b.p.m.

Extreme bradycardia features (15 s)

Maximum heart rate across 17 beats

Number of heartbeats within the window of analysis

Extreme tachycardia features (15 s)

Complexity measure

Bandwidth

Dominant frequency

Mean frequency

Median frequency

Max power to total power ratio

Number of peaks with normalized power above 0.2

VF features (4 s)

Five consecutive VT beats at >100 b.p.m.

Sharpness measure over 5 beats

Correlation measure over 5 beats

Max heart rate over 5 beats

Max mean diff LF SUB peaks

VT features (4 s)

Blood pressure Periodicity measure

Pulse pressure stability

Correlation measure

Signal quality indices (8 s)

Max period between consecutive onsets of waveform Asystole feature (8 s)

Minimum heart rate across 4 beats

Number of beats slower than 46 b.p.m.

Extreme bradycardia features (15 s)

Maximum heart rate across 17 beats

Not enough beats for calculating maximum heart rate

Extreme tachycardia features (15 s)

No peaks

Decreasing pressure

VF/VT features (4 s)

PPG Periodicity measure

Stability measure

Correlation measure

Signal quality indices (8 s)

Max period between consecutive onsets of waveforms

Max amplitude before onset

Max amplitude after onset

Amplitude decrease

Asystole features (8 s)

Minimum heart rate across 4 beats

Number of beats slower than 46bpm

Extreme bradycardia features (15 s)

Maximum heart rate across 17 beats

Not enough beats for calculating maximum heart rate

Extreme tachycardia features (15 s)

Decreasing PPG VF/VT features (4 s)

Column ‘Signal’ indicates the physiological signal from which the features are extracted, and column ‘Feature’ provides the name of each feature. Column ‘Category’ provides
the context behind the features’ utility. The features have been broadly categorized into six categories: (i) signal quality indices which indicate the quality of the signal (clean or
noisy) and are computed over 8 s of signal, (ii) asystole features which characterize asystole and are computed over 8 s of signal, (iii) extreme bradycardia features which charac-
terize extreme bradycardia and are computed over 15 s of signal, (iv) extreme tachycardia features which characterize extreme tachycardia and are computed over 15 s of sig-
nal, (v) ventricular fibrillation (VF) features which characterize VF and are computed over 4 s of signal, and (vi) ventricular tachycardia (VT) features which characterize VT and
are computed over 4 s of signal. The set of ECG features were computed from each lead, separately. Thus, a total of 74 features (26 features from ECG lead 1, 26 features
from ECG lead 2, 10 features from BP, and 12 features from PPG) were used here, for heart rhythm classification.

440 W.-T.M. Au-Yeung et al.
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.RF is an ensemble learning method that can be used for either regression
or classification. More details regarding the ML RF algorithm are included
in the Supplementary material online.

Results

10-time five-fold cross-validation
We performed five-fold cross-validation (with stratified random
sampling) on the available data to estimate our method’s perform-
ance on the unseen data. To account for the stochastic differences
during cross-validation, we assessed the five-fold cross-validation per-
formance of our method 10 times, and then took the mean
performance.

Performance metrics
The sum of the confusion matrices derived from each five-fold
cross-validation were summed up and are presented in Table 3.
Performance metrics, namely overall accuracy, macro-average
sensitivity, macro-average positive predictive value (PPV), sen-
sitivity of each class, PPV of each class, and the most common
misclassification (when misclassified, which class instead is
most chosen as the result), were derived from the confusion
matrix, and have been noted in Table 4. Overall accuracy is
defined as the ratio of all the true positives and true negatives,
to the total number of all records. Sensitivity for each class is
defined as the ratio of the number of true positives to the total
number of records of that class. PPV for each class is defined as
the ratio of the number of true positives to the total number of
true positives and false positives of that class. Macro-average
sensitivity is simply the sum of sensitivities of all classes divided

by the total number of classes; similarly, macro-average PPV is
the sum of PPVs of all classes divided by the number of classes.

Algorithm performance evaluation
Our algorithm consistently performed well in identifying all arrhyth-
mias. The confusion matrix of the 8-class classification results after
10-time five-fold cross-validation is presented in Table 3. We have
been able to achieve an overall accuracy of 74.7%. The macro-
average sensitivity equalled 81.5% and the macro-average PPV
equalled 66.1%. For asystole, extreme bradycardia, and extreme
tachycardia, the method achieved a sensitivity of 91.4% or above. The
method achieved a sensitivity of 83.8% for VF and a sensitivity of
84.3% for VT. An important note here is that all the unidentified VF
cases were classified as VT, which also is a serious life-threatening ar-
rhythmia. In other words, an alarm was raised for 100% of the VF
cases.

Figure 2 shows the heat map of our results, to pictorially depict the
confusion matrix. It can be observed that the classifier did well in clas-
sifying the five types of life-threatening arrhythmias, with sensitivities
exceeding 83.8%. Many of the errors made by the classifier were
understandable. The most common misclassification of extreme
tachycardia was sinus tachycardia, of sinus tachycardia was extreme
tachycardia, and of extreme bradycardia was NSR; all these classes
are similar morphologically and differ only by heart rate. We found
that most of these misclassifications were actually borderline cases, in
which the heart rate hovered around the cut-off between classes. If
required, the classification result can be enhanced by performing a
simple secondary check on the heart rate. Another understandable
error is that the most common misclassification result for asystole is
extreme bradycardia. The error is understandable because asystole
causes the mean heart rate to drop significantly. Furthermore, since

Figure 1 Presentation of the different window-length strategy used in extracting arrhythmia-specific features characterizing different heart
rhythms.
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extreme bradycardia is also a life-threatening arrhythmia and an alarm
is raised for it, the error is not very concerning clinically.

The proposed method did not perform well in classifying NSR and
noise/artefacts. In our attempt to achieve high sensitivity in detecting

an arrhythmia, many NSR cases were misclassified as arrhythmia; inci-
dentally, the majority of the false positives in asystole, extreme brady-
cardia, and sinus tachycardia classes belonged to the NSR class. Our
experiments were performed on acausal records of different arrhyth-
mic events and NSR; studies suggest that such experiments may pre-
sent over-optimistic results on false alarm suppression, and when
implemented in real time, they may exhibit higher false alarm rates
and poorer NSR classification performance.24 To assess this algo-
rithm for such scenario, we identified long, continuous NSR segments
(noise free signals, at a heart rate 40–100 b.p.m.) from the Physionet
2015 competition, that were not used for training/validation
(amounting to �28.5 K s of data), and evaluated the five classifiers
trained over the five-fold training-sets, on these new NSR segments.
The classifiers identified the heart rhythm in a causal manner, once
every sec, and alarms raised in close succession (i.e. within the next
15 s) were treated as the same alarm (no new alerts were raised).
Our algorithm achieved a mean classification accuracy of 84.29% in
identifying NSR, which is higher than that reported in Table 3. With
the above settings, we estimate experiencing �374 false alarms per
patient, per day.

The class with the poorest performance was noise/artefacts, with
a sensitivity of only 60.8%. Not surprisingly, we found that correctly
identifying noise/artefacts is challenging, as noise appears in a wide

..............................................................................................................................................................

....................................................................................................................................................................................................................

Table 3 Confusion matrix of the eight-class classification result after 10-time five-fold cross-validation

Prediction

Asystole Extreme

brady

Extreme

tachy

VF VT NSR Sinus tachy Noise/

artefacts

Ground truth Asystole 178 9 0 0 0 0 0 3

Extreme brady 10 472 0 0 6 10 1 1

Extreme tachy 0 0 1078 0 22 0 60 20

VF 0 0 0 67 13 0 0 0

VT 0 5 7 2 784 29 72 31

NSR 56 198 33 14 580 3390 378 381

Sinus tachy 1 31 193 1 134 61 1700 99

Noise/artefacts 42 17 57 32 55 21 54 432

....................................................................................................................................................................................................................

Table 4 Sensitivity, most common misclassification, positive predictive value (PPV) for each rhythm, and precision
observed by bedside monitors. NA: Not available

Rhythm Sensitivity (%) Most common

misclassification

[error rate (%)]

PPV (%) PPV (%)

Physionet 2015

challenge

PPV (%)

MIMIC II study

PPV (%)

UCSF study

Asystole 93.7 Extreme bradycardia (4.74) 62.0 16.67 9.33 32.83

Extreme bradycardia 94.4 NSR (2.00) 64.5 50 70.71 NA

Extreme tachycardia 91.4 Sinus tachycardia (5.08) 78.8 94.92 76.93 NA

VF 83.8 VT (16.2) 57.8 10.34 20.33 67.72

VT 84.3 Sinus tachycardia (7.74) 49.2 26.23 53.42 13.00

NSR 67.4 VT (11.53) 96.6 NA NA NA

Sinus tachycardia 76.6 Extreme tachycardia (8.69) 75.1 NA NA NA

Noise/artefacts 60.8 Extreme tachycardia (8.03) 44.7 NA NA NA

Figure 2 Heat map to pictorially show our method’s mean classi-
fication performance across 10-time five-fold cross-validation.

442 W.-T.M. Au-Yeung et al.
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.
variety of forms, such as flat line, high frequency noise, or fluctuating
readings. We therefore found it difficult to design features that can
consistently identify all forms of noise. One other error of particular
concern was that 7.74% of VT events were misclassified as sinus
tachycardia, which does not raise an alarm and thus could be of clinic-
al consequence.

In Table 5, we can see that there is significant imbalance in the num-
ber of cases for each arrhythmia. The classification results however
indicate that the supervised ML model is fairly not affected by the
class imbalance.25

While extracting the arrhythmia-specific features from different
sized windows of signals, though rare, a case may arise wherein two
arrhythmia criteria are being satisfied simultaneously. For example, a
case of asystole (window-length 8 s) may simultaneously satisfy the
criterion of extreme bradycardia (window-length of 15 s). This is not
a major limitation, since asystole and extreme bradycardia, are both
life-threatening arrhythmias and an alarm is raised for both heart
rhythms.

Algorithm performance comparison with
bed-side monitors
While it is hard to compare our classifier’s sensitivities for
life-threatening arrhythmias with ICU monitors (these data are not
available), sensitivities of at least 83.8% are nonetheless very encour-
aging. We now compare the PPVs of our proposed system to those
of the bedside monitors used in the PhysioNet 2015 challenge,2

MIMIC II study,26 and the alarm fatigue study from UCSF27 (Table 4).
It is important to note that the PPVs mentioned here for the bedside
monitors are based purely on the empirical observations of the num-
ber of true alarms to the total number of alarms. Furthermore, we
are assuming that the alarm records included in each of these studies
accurately reflected the monitors’ actual abilities to discriminate true
from false alarms. All PPVs were computed by taking the ratio of the
number of true alarms to the total number of alarms raised for the
relevant arrhythmia. In comparing the various PPVs, the proposed al-
gorithm achieves higher PPVs for most life-threatening arrhythmias.
Across the five life-threatening arrhythmias, the proposed algorithm
achieved a macro average PPV of 62.46%; in comparison, the moni-
tors in the PhysioNet 2015 challenge achieved a PPV of 39.63% and
the Philips monitors in the MIMIC II study achieved a PPV of 57.26%.
With regard to the UCSF study, we compared the algorithm per-
formance across only asystole, VF and VT; the macro-average PPV of

our algorithm was 51.53% and that of the GE bedside monitors in
UCSF study was 18.06%.

Following AAMI (Association for the Advancement of Medical
Instrumentation) recommendations, Philips Healthcare demon-
strated their ‘ST/AR’ (ST-segment and arrhythmia) algorithm (used in
Philips bedside monitors) on the American Heart Association (AHA)
and MIT-BIH (Massachusetts Institute of Technology-Beth Israel
Hospital) databases, and claimed that their algorithm achieved 100%
sensitivity in generating red alarms during episodes of VF. GE
Healthcare similarly claims that their bedside monitors demonstrated
>95% sensitivity and >95% PPV in detecting VF episodes in the AHA
and MIT-BIH databases. In the present study, our algorithm has also
been able to generate a red alert for 100% of VF cases (83.8% as VF
and 16.2% as VT). It is essential to note that an algorithm’s perform-
ance on such test databases do not necessarily reflect its perform-
ance in the real-world clinical settings. For example, GE Healthcare
monitoring system achieved a PPV of >95% in identifying VF in the
AHA and MIT-BIH databases, whereas it achieved a PPV of only
67.72% in identifying VF in the UCSF study.

In the previous subsection, we estimated that our method could
raise �374 false alarms per patient, per day. Placing these results in
context, Cho et al.’s study28 observed �697 false alarms per patient
per day, Graham et al.’s study29 observed 942 alarms per patient per
day, and The John Hopkins Hospital observed �350 alarms per pa-
tient per day.30 It should be noted that the conditions considered as
alarm worthy differed from one study to another; furthermore, most
studies have only mentioned the total count of alarms, but not the
count of false alarms. Thus, while it is difficult to make an exact
comparison between these studies, our method’s high PPV in life-
threatening arrhythmias, provides superior false alarm reduction.

Algorithm efficiency performance
On a regular desktop with an Intel i5 processor, our proposed sys-
tem took only few milliseconds to identify a given heart rhythm; the
system is therefore realistic for real-world implementation and the
heart rhythm classification may be evaluated/updated every sec.
Moreover, our classification system captures arrhythmia-specific,
vital-sign features that manifest themselves in differently sized win-
dows. A sample recording from the PhysioNet 2015 Challenge that
resulted in a VF alarm is presented in Figure 3; notably, our system
was able to detect the presence of VF in this very sample more quick-
ly—in fact 4 s faster—than the bedside monitors used in the
challenge.

Discussion

Although monitors sound alarms when ICU patients experience
abnormal heart rhythms, unfortunately, the majority of such alarms
are found to be false.27 Excessive number of false alarms can create a
noisy environment, and their effects on patients and families pertain
to sleep disturbance, delirium, increased BP, and heart rate, negative
effects on the immune system, slower healing and recovery process,
increased length of stay, and impact on patient satisfaction.27,31 With
respect to the effects on staff, noise increases occupational stress (ir-
ritation, fatigue, and tension headaches), reduces staff work perform-
ance and work satisfaction, delays recognition, and response to

.................................................................................................

Table 5 Number of events in each of the eight classes

Class Number of events

Asystole 19

Extreme bradycardia 50

Extreme tachycardia 118

Ventricular fibrillation 8

Ventricular tachycardia 93

Normal sinus rhythm 503

Sinus tachycardia 222

Noise or artefacts 71
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..medical device alarm signals, which may negatively affect patient
safety, and impairs oral communication and increases errors, which
has a direct impact on patient safety.32,33 Too many false alarms can
also lead to desensitization among caregivers, which could potentially
cause them to mistakenly ignore true alarms as well. A growing num-
ber of research studies, some of which employ ML,3,4,34,35 have aimed
to reduce the number of such false alarms, yet clearly better solutions
are still needed. In this report, we present an arrhythmia alerting sys-
tem that identified life-threatening arrhythmias more precisely and
more efficiently than existing bedside monitors.

Several conclusions can be drawn from this study: first, obtaining
arrhythmia-specific features from different length windows made the
detection algorithm more efficient; second, our method can identify
these arrhythmias with high sensitivity (a minimum of 83.8%); third,
the RF classifier is not much affected by the class imbalance of the
records; fourth, the algorithm does not have high computational
requirements, therefore facilitating real-time implementation, and;
fifth, the algorithm is at least as robust as those of several commercial
bedside monitors.

Many prior heart rhythm classification studies11,12,14,17,18 have
relied on analysing the ECG morphology only. This approach is limit-
ing because arrhythmias, such as VT and VF, can be better detected
with the inclusion of the BP signal. Even though all VT events may not
be accompanied by haemodynamic instability, a fall in BP is expected
w.r.t. to the baseline BP. Our heart rhythm classification algorithm
utilizes the ECG, BP and PPG signals. Many heart rhythm classification
studies that use ECG signals9,13 have not included VF as one of the ar-
rhythmia classes detected. Our study not only included VF, but also
alerted all cases of VF as life-threatening and did so 4 s faster than the
bedside monitors used in PhysioNet 2015 challenge. Finally, some

heart rhythm classification algorithms15 employ a short window of
ECG segments to identify the arrhythmia and are therefore unable to
identify rhythms that need a longer duration of ECG analysis, such as
extreme bradycardia, whereas our algorithm is capable to detect
such rhythms. By comparing the performance of our algorithm with
those of the bedside monitors, one observes that the proposed algo-
rithm achieves PPV for most life-threatening arrhythmias that are at
least as high as the commercial monitors (Table 4).

Study limitations
In the present study, the sample size is small, especially for VF. Also,
the ratios of the number of records among all these classes are not
representative of real-life situations, e.g. even though a large number
of NSRs have been included during training and testing, in reality the
ratio of NSR occurrences to the number of other heart rhythm
occurrences, is expected to be even more skewed, which may affect
performance metrics. We believe a larger scale study on real-world
ICU patient data would be very informative and enable us to refine
our algorithms further.

Conclusions

We have built a standalone algorithm that can successfully utilize live-
streaming data in the ICU to successfully identify multiple life-
threatening arrhythmias in real time, and may be of significant clinical
benefit. False alarms could be further reduced, by wrapping the pro-
posed method with false alarm detection mechanisms22,35; however,
it should be noted that false alarm detection mechanisms are general-
ly built over small data sets,2 and methods built for one type of

Figure 3 The figure shows the plot of recording f563l between 285 and 301 s. The figure for this recording then compares the latency of bedside
monitors and that of proposed system in alerting for ventricular fibrillation. The bedside monitor identifies the presence of ventricular fibrillation at
300th s, as visualized by the red dashed line. On the other hand, the proposed system can identify the presence of ventricular fibrillation at 296th s
itself (4 s earlier), as visualized by the green line.

444 W.-T.M. Au-Yeung et al.
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.
monitor may not work well for another. In our study, we designed
features that measured the signal quality of ECG, BP, and PPG, and
designed arrhythmia-specific features to identify the presence of a
particular characteristic and/or morphology. The engineered features
provided a reasonably good classification performance. Moving for-
ward, we would like to explore augmenting the proposed system
with features derived from deep learning architectures, in order to
improve classification performance and clinical utility.

Supplementary material

Supplementary material is available at European Heart Journal – Digital
Health online.
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