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Abstract: Angiogenesis has long been recognized as an essential element in tumor growth. 

Since the conception of antiangiogenesis for cancer therapeutics, great strides have been 

made in understanding the molecular biology underlying angiogenesis, both in cancer and in 

physiology. By capitalizing on these advancements through bench-to-bedside research, potent 

antiangiogenic agents have been developed and tested. To date, the clinical results of most of 

these antiangiogenic agents have not met expectations. Even with the most successful agents, 

such as bevacizumab, used either as single agents or in combination with chemotherapy, gains 

in overall survival of cancer patients have been modest in most cases. In this article, the authors 

present the evolving views of antiangiogenic therapy, review recent experimental and clinical 

studies on antiangiogenesis, and address the fundamental role of hypoxia in tumor progression, 

which may be key to improving the efficacy of antiangiogenic therapy.
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Angiogenesis, tumor growth, and antiangiogenesis
Recognition of the association between vigorous neovascularization (angiogenesis) 

and tumor growth dates back to the first half of the 20th century.1,2 However, the sig-

nificance of this finding and the relationship between new vessel growth and tumor 

growth were not fully appreciated until many years later. Folkman and others first 

showed that, in the absence of vascularization, tumor growth arrested when the tumor 

reached 2–3 mm in diameter, presumably owing to limited diffusion of oxygen, nutri-

ents, and waste products. Furthermore, small, dormant tumors would quickly resume 

expansion when allowed to initiate neovascularization.3–5

An angiogenic factor was later isolated from human and animal tumors that is 

mitogenic to endothelial cells and stimulates the rapid formation of new capillaries in 

animals.6 Folkman proposed targeting this angiogenic factor for angiogenic inhibition 

as a strategy for cancer therapy, which is the fundamental premise of antiangiogenesis 

therapy. This unconventional approach seemed promising for several reasons. First, 

fewer side effects were expected from inhibiting angiogenesis than from traditional 

cytotoxic agents, presumably because new vessel growth in an adult patient is less 

important under most physiologic conditions (eg, in the absence of wound heal-

ing). Second, it seemed plausible that, in addition to restricting tumor growth to the 

limits of direct diffusion of nutrients and waste metabolites, reduced access to the 

vasculature would decrease distant metastasis. Third, by targeting the vasculature, 

one would expect less likelihood of developing resistance from endothelial cells than 

from tumor cells.7,8
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Identifying this angiogenic factor, however, proved 

to be challenging. In time, it became apparent that there 

were many different factors involved in stimulating angio-

genesis. The first to be identified was the basic fibroblast 

growth factor (bFGF),9 which was shown to directly 

stimulate endothelial cell proliferation.10 A few years later, 

vascular endothelial growth factor (VEGF) was identi-

fied, cloned,11,12 and characterized as a potent regulator of 

angiogenesis via mitogenic and antiapoptotic signaling in 

endothelial cells.13,14 As an increasing number of angiogenic 

regulators were identified and characterized, including 

the angiopoietins,15,16 interleukin 8,17,18 and others, a more 

cohesive view of the mechanisms of angiogenesis in tumor 

growth developed.

Angiogenic switch
In 1991, Hanahan and colleagues further developed the 

theory that angiogenesis is required for continued tumor 

growth by demonstrating a switch from low to high vessel 

density during the multistep process of fibrosarcoma progres-

sion in transgenic mice.19 It was found that cells cultured 

from advanced preneoplastic lesions secreted bFGF into the 

growth medium, whereas cells derived from lower-grade 

lesions did not. This ‘angiogenic switch’ correlated not 

only with histologically higher-grade tumors but also with 

tumorigenicity. Similar results seen in islet cell carcinoma 

and epidermal squamous cell carcinoma mouse models added 

additional evidence to the idea that the switch to an angio-

genic phenotype is a discrete step during tumor progression 

and essential for solid tumor growth.20

The importance of tumor angiogenesis became more 

apparent as the underlying mechanisms began to come 

into focus. Folkman’s vision of developing antiangiogenic 

cancer therapies also began to seem within reach as interest 

increased. This step forward, however, did not come without 

hindrance.

Setbacks for antiangiogenic therapy
Despite the promising preclinical and animal model data, 

almost none of the early agents identified and tested have 

made it past clinical trials. A new use for thalidomide, 

which was originally introduced as a sedative and antiemetic 

drug, was postulated after its metabolites were found to 

inhibit angiogenesis in a rabbit cornea micropocket assay.21 

 Unfortunately, early trials showed only modest clinical 

effectiveness in prostate cancer patients and no antitumor 

activity in recurrent or metastatic squamous cell carcinoma 

of the head and neck.22,23

Trials of a host of other antiangiogenic drugs followed 

with similar results. TNP-470, an analog of fumigillin, gener-

ated only one short-lived partial response in 33 patients with 

metastatic renal carcinoma,24 and a later study also failed to 

show clinical benefit for prostate cancer.25 In two phase I clini-

cal trials, angiostatin, which is a naturally occurring angio-

genesis inhibitor,26 showed no clinical response with several 

types of solid tumors.27,28 Likewise, endostatin, another 

natural angiogenesis inhibitor,29 showed only minor antitumor 

activity in a phase I trial30 and no significant tumor regres-

sion in patients with advanced neuroendocrine tumors in a 

phase II trial.31 In a phase II clinical trial of ABT-510, which 

is a peptide mimetic of thrombospondin type 1 (yet another 

endogenous angiogenesis inhibitor), only 3 out of 21 late-

stage malignant melanoma patients showed stable disease, 

and no definite clinical efficacy was demonstrated.32 Another 

phase II trial also showed only one objective response out of 

88 patients with advanced soft tissue sarcoma.33

The mechanisms of action for all the previously dis-

cussed drugs are poorly or only partially understood. Agents 

with specific molecular targets in the angiogenic signaling 

pathways were explored as alternatives. This approach, 

however, also had several disappointments before any 

measure of clinical success was achieved. SU5416, which 

is a small synthetic receptor tyrosine kinase inhibitor of the 

VEGF receptor VEGFR-2, produced no objective response 

in 27 patients with refractory multiple myeloma. Two other 

phase II trials showed either no or rare responses in patients 

with advanced soft tissue sarcomas and recurrent head and 

neck cancers.34 PTK787/ZK 222584, which is another small 

molecule tyrosine kinase receptor inhibitor targeting all of the 

VEGF receptors, also failed to produce significant responses 

in patients with acute myeloid leukemia.35

Signs of success
In 2003, an anti-VEGF humanized monoclonal antibody, 

bevacizumab, made its debut with only slightly better results 

as a monotherapy in metastatic renal cancer patients;36 when 

compared with a placebo, high-dose bevacizumab had only 

a 10% response rate with modestly prolonged progression-

free survival but no overall survival benefit. Although these 

initial results were disappointing, evidence of the efficacy of 

bevacizumab came shortly thereafter, leading to an eventual 

paradigm shift in the concept of antiangiogenic therapy. 

In June 2004, Hurwitz et al reported a phase III trial showing 

substantial improvement in overall survival (about a 5-month 

increase) in patients with metastatic  colorectal cancer 

when treated with bevacizumab combined with  irinotecan, 
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fluorouracil, and leucovorin.37 Although a handful of phase III 

trials involving treatment of different cancers by combining 

bevacizumab with various regimens have shown improvement 

only in progression-free survival but not overall survival,38–40 

most reported studies have shown increased overall survival 

along with increased progression-free survival when beva-

cizumab is added to the treatment regimen. These include a 

2-month overall survival benefit in patients with metastatic 

renal cell carcinoma when treated with bevacizumab in 

combination with interferon α-2a;41 in patients who had 

previously been treated for metastatic colorectal cancer when 

combined with oxaliplatin, fluorouracil, and leucovorin;42 and 

in patients with non-small-cell lung cancer when combined 

with paclitaxel and carboplatin.43 A 3-month overall survival 

benefit was also reported in patients with metastatic colorec-

tal cancer treated with bevacizumab in combination with 

fluorouracil and leucovorin.44 Therefore, in most cases, an 

apparent synergy is seen in which bevacizumab has clinical 

benefit when combined with cytotoxic chemotherapies.

It is also interesting to note that thalidomide, as discussed 

earlier, has not been proven effective as a monotherapy, 

but, when combined with melphalan, a cytotoxic alkylating 

agent, and prednisone, an immunosuppressing corticosteroid, 

it increases median overall survival by nearly 18 months 

in elderly patients with multiple myeloma,45 possibly by 

 reducing bone marrow vascularization.46 Still, even with these 

first signs of success involving bevacizumab and thalidomide, 

tumors did become resistant relatively quickly and overall 

improvement was modest.

Normalization of tumor vasculature
With these clinical data has come a paradox. If antiangio-

genic therapy destroys tumor vasculature, a reduction of drug 

delivery would be expected. Why then does antiangiogen-

esis enhance tumor killing when combined with cytotoxic 

agents? Perhaps even more puzzling is the observation that 

anti-VEGF therapy can increase tumor irradiation efficacy,47 

which is largely dependent on tissue oxygenation.

To account for these apparently conflicting findings, 

Jain posited that, in addition to destroying vasculature for 

depriving the tumor of oxygen and nutrients, antiangiogenic 

agents also transiently ‘normalize’ the abnormal structure 

and function of tumor vasculature to make it more efficient 

for oxygen and drug delivery.48 Vasculature maintenance 

involves a homeostatic interplay between pro- and antiangio-

genic signals. In normal tissue these signals are balanced, but 

during neoplastic growth the proangiogenic signals are over-

expressed, thereby stimulating inappropriate  vessel growth 

and leading to characteristically disorganized,  inefficient, 

and leaky tumor vasculature. Jain proposed that using a low 

dose or ‘judicious’ application of antiangiogenic agents 

could restore the balance in the angiogenic regulation by 

pruning immature, nonproductive vessels, decreasing vessel 

permeability, and reducing abnormal dilation. The expected 

functional consequence of vasculature normalization is 

decreased interstitial fluid pressure, relieved hypoxic stress, 

and improved penetration of drugs in the tumor.

Although vasculature normalization has been shown to 

improve vascular function in preclinical models through intra-

vital imaging studies,49 it is not straightforward to ascertain 

in patients the changes in blood flow and distribution within 

a tumor during antiangiogenic therapy, making it difficult 

to verify this process. Many questions, such as why there is 

only a transient ‘normalization window’ and how to identify 

it, remain unanswered.

Negative sequelae of targeting  
tumor vasculature
As mentioned earlier, a potential advantage of targeting 

endothelial rather than tumor cells is the avoidance of drug 

resistance, because endothelial cells, unlike those of tumors, 

are genetically stable.7 However, tumor revascularization 

following a transient decrease in vessel density with an anti-

VEGF receptor agent has been reported, resulting at least in 

part from increased levels of bFGF.50

It has become increasingly clear that VEGF-targeted 

therapy probably involves multiple mechanisms.51 A pos-

sible explanation for the activation of alternative angio-

genic pathways, however, is that antiangiogenesis induces 

hypoxia, resulting in activation of the hypoxia-inducible 

factor α (HIF-α), which in turn triggers revasculariza-

tion of the tumor. HIF-α is known to transcriptionally 

upregulate a host of pro- and antiangiogenic genes encod-

ing placental growth factor, angiopoietin 1, angiopoietin 

2, stromal-derived factor 1, platelet-derived growth factor, 

and bFGF, as well as VEGF.52 Given that overexpression 

of HIF-1α, one of the HIF-α family members (see below), 

induces nonleaky hypervascularity in transgenic mice,53 

it is conceivable that activated HIF-α could upregulate 

both pro- and antiangiogenic factors for neovasculariza-

tion in tumors. Indeed, mice haplodeficient in Egln1, 

which encodes a negative regulator of HIF-α (see below), 

showed normalized endothelial lining and vessel matura-

tion, thereby resulting in improved tumor oxygenation with 

decreased tumor invasiveness, even though tumor growth 

was not inhibited.54
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Irrespective of vasculature regression and/or normalization, 

a more serious concern with antiangiogenic therapy is that 

vessel regression may drive tumors toward a more locally 

invasive and distantly metastatic phenotype. Indeed, 

increased invasiveness in glioblastoma models was observed 

after systemic antiangiogenic therapy with an antibody 

against VEGFR-2, despite a marked inhibition of tumor 

growth and microvessel density.55,56 Similar results were seen 

after treatment with bevacizumab in another glioblastoma 

preclinical study.57 In addition, increased invasiveness after 

anti-VEGFR-2 treatment was also seen in a pancreatic neuro-

endocrine cancer mouse model, along with increased liver and 

lymph node metastases.58 Furthermore, short-term  treatment 

with a potent angiogenic inhibitor, sunitinib/SU11248, also 

accelerated metastasis into multiple organs in a preclini-

cal study using breast cancer and melanoma cells.59 More 

troubling is that the invasive nature of the tumors seemed 

to be permanently established, as removal of treatment did 

not relieve the aggressive phenotype, possibly suggesting a 

genetic transformation. Although this increased invasiveness 

in response to antiangiogenic therapy has not been unequivo-

cally confirmed in patients, partially because of imaging 

limitations in evaluating these tumors (ie, FLAIR magnetic 

resonance imaging), it has nonetheless been observed at least 

subjectively.60 A review of literature indicates that although 

glioblastoma patients benefit greatly from reduced cerebral 

edema and intracranial pressure through angiogenic inhibi-

tion, tumor invasion continues.61 Additional concerns include 

that the normalization of tumor vasculature by antiangiogenic 

agents may restore the blood–brain barrier function, thereby 

antagonizing the efficacy of chemotherapeutic drugs.

HiF-1α, genetic alteration,  
and tumor progression
Hypoxia has long been implicated in genetic instability and 

tumor progression, which may account for the inevitable 

failure of antiangiogenesis as a monotherapy. Although the 

mechanisms underlying hypoxia-induced tumor progression 

remain to be elucidated, recent evidence indicates that HIF-α 

plays an essential role in tumor growth and progression.

In human cancers, both HIF-1α and HIF-2α, two of 

the prevalent members of the HIF-α family, are frequently 

dysregulated, resulting in their overexpression.62 Under 

physiological conditions when oxygen tension within cells 

is high, HIF-α is hydroxylated at specific proline residues 

by the prolyl hydroxylases EGLN1, EGLN2, and EGLN3 

(better known as PHD2, PHD1, and PHD3, respectively).63,64 

This allows HIF-α to be ubiquitinated by a pVHL-directed 

E3 ligase and targeted to the proteasome for degradation. In 

hypoxia, however, the hydroxylation reaction is  inhibited; 

HIF-α accumulates within the cell, translocates to the 

nucleus, and, upon dimerization with its binding partner aryl 

hydrocarbon receptor nuclear translocator (ARNT), acts as 

a transcription factor for the activation of a diverse group of 

hypoxia-responsive genes.52 This canonical HIF-α–ARNT 

pathway (Figure 1) has accounted for hypoxic activation of 

many genes directly related to tumor growth and survival, 

such as those involved in glycolysis, cell migration, apopto-

sis, multidrug resistance, extracellular matrix modification, 

epithelial–mesenchymal transition, and angiogenesis.62,65

Despite these extraordinary insights into the mechanisms 

underlying tumor biology, how hypoxia drives genetic altera-

tion, the underlying cause of tumor progression, has yet to 

be elucidated.66,67 Interestingly, we and others began to show 

recently that HIF-1α and HIF-2α have opposing effects on 

DNA repair; HIF-1α inhibits, whereas HIF-2α stimulates, 

DNA repair.68,69 Although how these conflicting effects 

between HIF-1α and HIF-2α are reconciled within tumor 

cells needs further investigation, our results demonstrated that 

HIF-1α, but not HIF-2α, is essential to hypoxic downregula-

tion of the DNA mismatch repair genes MSH2 and MSH6 70 

and the double-strand break repair gene NBN.71 Interestingly, 

HIF-1α does so by a distinct mechanism that is independent 

of the HIF-1α–ARNT pathway but involves HIF-1α func-
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Figure 1 A schematic representation of the HiF-1α–ARNT pathway and the 
HiF-1α–c-Myc pathway. Stabilized HiF-1α participates in the canonical HiF-1α–
ARNT pathway (–ARNT) through dimerization with its binding partner ARNT, 
recruitment of the transcription coactivator p300/CBP, and binding to the HRe in 
the promoter of the angiogenic and glycolytic genes for transcriptional activation. 
Alternatively, the HiF-1α–c-Myc pathway (–c-Myc) involves HiF-1α competing with 
c-Myc for binding to the transcription factor Sp1 in the promoter of DNA repair 
genes, resulting in selective c-Myc displacement and gene repression.
Abbreviations: HiF, hypoxia-inducible factor; ARNT, aryl hydrocarbon receptor 
nuclear translocator; HRe, hypoxia-responsive element.
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tionally counteracting c-Myc, a transcriptional activator for 

maintaining DNA repair gene expression. This HIF-1α–c-

Myc pathway72 accounts not only for hypoxic inhibition of 

DNA repair but also for resultant DNA damage and genetic 

alterations (Figure 1). By uncoupling these two distinct, 

independent pathways of HIF-1α, we have recently shown 

that the HIF-1α–c-Myc pathway is essential to drive tumor 

progression, whereas the HIF-1α–ARNT pathway is more 

involved in tumor growth.73 Therefore, the dual functions of 

HIF-1α may account on the one hand for vasculature normal-

ization resulting from regulated expression of both pro- and 

antiangiogenic genes via the HIF-1α–ARNT pathway, and 

on the other hand for tumor progression driven by genetic 

alterations via the HIF-1α–c-Myc pathway.

With this gained knowledge, we propose that in addition 

to its important role in angiogenesis and glycolysis for tumor 

growth and survival, HIF-1α is essential to drive genetic 

alteration for tumor progression, which is a negative aspect 

of the hypoxic response74 enabling tumor cells to evolve 

through increased genetic heterogeneity. This could explain 

the ease with which many cancers are able to adapt to a 

wide variety of therapeutics (including antiangiogenics) and 

develop resistance. It could also explain the apparent genetic 

changes that lead to increased invasion and metastasis in 

antiangiogenic-treated tumors.

Future directions  
of antiangiogenic therapy
Although antiangiogenic therapy remains promising,51 a 

durable antitumor activity for an improved overall survival is 

desired. To this end, several hypotheses have been  proposed. 

Pietras and Hanahan suggested the use of broader-spectrum 

 angiogenesis inhibitors or ‘cocktails’ of specific inhibitors 

as a method of blocking alternative angiogenic pathways 

that may be activated under a VEGF blockade.75 They have 

demonstrated the efficacy of this tactic in an animal model 

of islet cell carcinogenesis. Treatment with anti-VEGFR-2 

antibodies led to an initial decrease in tumor vascularity as 

well as tumor size. This was followed by revascularization and 

regrowth of the tumors. Greater response was seen, however, 

by coinhibiting bFGF, which was suspected in an alternative 

angiogenic pathway. This resulted in a further decrease in 

tumor growth after the initial regression.

On the other hand, it stands to reason that if HIF-α can 

be targeted alongside antiangiogenic agents to prevent the 

induction of genetic alteration and/or angiogenesis, this 

could greatly improve the efficacy of antiangiogenic therapy. 

Interestingly, Melillo and Rapisarda et al have identified a 

potential HIF-α inhibitor, topotecan.76,77 When used alongside 

bevacizumab in U251 glioma xenografts, topotecan showed 

considerable synergistic antitumor activity. Not only was 

tumor volume decreased but intratumor vasculature was 

also decreased compared with tumors treated with either 

topotecan or bevacizumab alone.78 Considering the increased 

invasive nature of tumors following antiangiogenic treat-

ment, HIF-α targeting may prove to be an effective way of 

maximizing antiangiogenic therapy in the future. Likewise, 

drugs that potentially block genetic alteration and thereby 

tumor progression may greatly improve overall survival when 

combined with  antiangiogenic agents.

Conclusions
Antiangiogenic therapy was initially based on the notion 

that angiogenesis is required for tumor growth, and thus 

Vessel
regression

Genetic
alteration

Malignant
progression

Figure 2 A hypothetic model illustrates that malignant progression results from antiangiogenic therapy. Angiogenic inhibition deprives tumor cells of oxygen and nutrients, 
resulting in vessel regression and thereby death of the majority of the tumor cells. However, hypoxic cells harbored within the solid tumor are able to tolerate severe 
hypoxia by undergoing genetic alterations for malignant progression via the HiF-1α–c-Myc pathway and by inducing angiogenesis and glycolysis for cell proliferation via the 
HiF-1α–ARNT pathway.
Abbreviations: HiF, hypoxia-inducible factor; ARNT, aryl hydrocarbon receptor nuclear translocator.
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 destruction of the tumor vasculature would deprive the 

tumor of oxygen and nutrients, resulting in growth inhibi-

tion. However, tumor vasculature is structurally abnormal 

and functionally inefficient, and the resultant hypoxic 

microenvironment is associated with tumor progression 

and resistance to therapies (Figure 2). Therefore, thera-

peutic destruction of the tumor vasculature is expected to 

yield more severe hypoxia, which on the one hand induces 

additional angiogenic responses through the activation of 

HIF-α for normalizing vasculature, and on the other hand 

drives genetic alteration for malignant progression. This view 

accounts for the unexpected clinical outcomes when single 

antiangiogenesis agents are used, some clinical benefits 

when antiangiogenesis agents are used in combination with 

chemotherapy, and fundamentally the inevitable problem of 

angiogenic therapy, which is that hypoxia promotes tumor 

progression. Thus, targeting tumor hypoxia may improve the 

efficacy of angiogenic therapy.
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