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ABSTRACT: Particulate matter (PM) air pollution is a major
health hazard. The health effects of PM are closely linked to
particle size, which governs its deposition in (and penetration
through) the respiratory tract. In recent years, low-cost sensors
that report particle concentrations for multiple-sized fractions
(PM1.0, PM2.5, PM10) have proliferated in everyday use and
scientific research. However, knowledge of how well these sensors
perform across the full range of reported particle size fractions is
limited. Unfortunately, erroneous particle size data can lead to
spurious conclusions about exposure, misguided interventions, and
ineffectual policy decisions. We assessed the linearity, bias, and
precision of three low-cost sensor models, as a function of PM size
fraction, in an urban setting. Contrary to manufacturers’ claims,
sensors are only accurate for the smallest size fraction (PM1). The PM1.0−2.5 and PM2.5−10 size fractions had large bias, noise, and
uncertainty. These results demonstrate that low-cost aerosol sensors (1) cannot discriminate particle size accurately and (2) only
report linear and precise measures of aerosol concentration in the accumulation mode size range (i.e., between 0.1 and 1 μm). We
recommend that crowdsourced air quality monitoring networks stop reporting coarse (PM2.5−10) mode and PM10 mass
concentrations from these sensors.
KEYWORDS: Air pollution, aerosols, field validation, particle sizing, light scattering, PMS5003, SPS30

■ INTRODUCTION
Airborne particulate matter (PM) is a major public health
concern. Exposure to PM contributes to over a million
premature deaths worldwide, and populations subject to long-
term exposure suffer from significantly higher cardiovascular
and respiratory morbidity.1−3 The atmospheric fate and
transport of PM is largely determined by particle size (dp, in
μm), as is the penetration and deposition of PM within the
human respiratory tract.4 How particle size relates to PM
health effects remains an active area of research; human
exposure to size modes such as ultrafine (dp < 0.1 μm), fine (dp
< 2.5 μm), and coarse (2.5 < dp < 10 μm) PM have each been
associated with adverse health outcomes.5,6 Traditional
(reference) methods for measuring size-resolved particle
concentrations are expensive (e.g., instrument costs from
$10,000 to $100,000 each) and resource intensive,7 limiting
their use to spatially sparse outdoor monitoring networks in
high-income countries and research studies with short
sampling durations and small samples sizes.

The emergence of low-cost PM sensors (miniaturized, mass-
produced devices that cost ∼$15 to $50 each) has facilitated
the deployment of cheaper (∼$250/each) monitors in
crowdsourced measurement networks (e.g., PurpleAir, Clarity)
that are denser than traditional national/regional-scale net-

works.8 These networks are being leveraged to support
growing interest in PM exposure and health science globally.
Most low-cost PM sensors operate on the principle of aerosol
light scattering: a fan draws PM into a small housing, the PM
passes through a focused beam of light, and a photodetector
measures the intensity of the light scattered by the particles.8

Most low-cost PM sensors report mass and number
concentrations across a range of sizes (e.g., PM0.3−0.5
PM0.5−1.0, PM1.0−2.5 PM2.5, PM10). By including concentrations
across multiple-sized bins as sensor outputs, manufacturers
specify, either explicitly or implicitly, that their sensors can
classify particles by size. However, manufacturer documenta-
tion often omits the working principle of the sensor (i.e.,
whether it functions as an optical particle counter or a
nephelometer) and the bias/precision of size-resolved outputs.

Particle sizing is challenging even for reference-grade
instruments, especially those that rely only on light scattering.9
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For example, the signal produced by a given particle can be
below the limit of detection, saturated, ambiguous (e.g., when
two particles coincide in the detector), or inherently biased by
aspiration or transmission errors during sampling. Sensor
evaluations carried out by manufacturers and third parties
generally involve evaluating the accuracy and precision of
cumulative mass concentrations (e.g., PM1.0, PM2.5, PM10). This
approach does not provide sufficient information to assess a
sensor’s ability to quantify and classify particles in specific size
ranges. Laboratory experiments and physics-based models have
shown that most low-cost PM sensors detect particles larger
than 1 μm with low efficiency.10−12 Additionally, field-based
data suggest that low-cost PM sensors underestimate ambient
concentrations of wind-blown dust (which likely includes
many particles >1 μm).13,14

Here, we compare differential mass concentrations (e.g.,
PM1.0−2.5) from three low-cost PM sensors to differential mass
concentrations measured by a federal equivalent method
(FEM) PM monitor in an outdoor urban environment to
better understand the ability of low-cost sensors to detect PM
in different size fractions. We focus on the most common PM
size ranges (<1.0, 1.0−2.5, and 2.5−10 μm) and compare
performance metrics for differential mass to cumulative mass
to show how the latter can mask sensor limitations.

■ MATERIALS AND METHODS
Low-Cost Sensors. We evaluated three light-scattering

sensor models (two units of each model) with prices and form
factors that would be appropriate for use in large networks
and/or personal exposure monitors (i.e., sensors that cost <
$100 and weigh < 50 g): the PMS5003 (Plantower, Beijing,
China), the SPS30 (Sensirion, Staf̈a, Switzerland), and the IPS-
7100 (Piera Systems, Mississauga, Canada). Specifications,
descriptions, and data logging setups for all sensors are
available in the Supporting Information (see Table S1 and
Figure S1). All sensors were new and operated according to
manufacturer recommendations (without additional calibra-
tion).
A GRIMM EDM 180 (GRIMM Aerosol Technik, Ainring,
Germany) was chosen as the reference monitor due to its
ability to measure PM in 31 particle size channels (0.25−32
μm). For quality assurance, we compared PM2.5 and PM10
measurements between the GRIMM EDM 180 and a
colocated Beta Attenuation Monitor (5014i, Thermo Scien-
tific, Waltham, MA, USA) (Figure S6). Additionally, we
obtained ambient temperature, humidity, barometric pressure,
and wind speed data from a colocated weather station
(Vantage Pro2, Davis Instruments, Hayward, CA, USA) (see
weather data in SI).

Figure 1. Time series graph of PM concentrations (cumulative and differential). A subset composed of the first 14 days of the fall/winter period is
shown to improve readability. A similar plot for the summer period is available in the SI (Figure S7).
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Field Deployment. The instruments were deployed on the
roof of the Colorado State University Powerhouse Energy
Campus in Fort Collins, Colorado, USA (Figure S2a). The
building is located in an urban environment, adjacent to a
major road and a railway, and experiences seasonal dust and
wildfire events, despite having a relatively low background PM
concentration. The GRIMM EDM 180 ran continuously on a
roof above the second floor of the building. The low-cost
sensors were installed on one side of the reference monitor
(Figure S2b).

Data Processing. Data were collected during two periods
with different weather: a fall/winter data set that spanned from
November 23, 2021, to January 9, 2022 (48 days), and a
summer data set that spanned from June 13, 2022, to July 30,
2022 (48 days). Data were aggregated to 1-h averages, and PM
mass concentrations were calculated for each monitor in the
following size ranges: PM1.0, PM2.5, PM10, PM1.0−2.5, and
PM2.5−10 (see variable definitions in SI).

Statistical Analyses. Descriptive statistics, performance
metrics, regression models, and graphical tools (e.g., scatter
plots) were used to assess sensor precision (coefficient of
variation among colocated devices of the same model),
linearity (coefficient of determination vs reference), and bias
(e.g., RMSE, MAE, NMB vs reference) as a function of particle
size range. A complete list and details of the performance
metrics and statistical methods used in this study are available
in the SI.

■ RESULTS AND DISCUSSION
Marked differences were evident in the low-cost sensors’
responses to PM of different size fractions (Figures 1 and 2).
The low-cost sensors measured PM1.0 with relatively low bias
(mean absolute error [MAE] ranging from 1.2 to 2.4 μg/m3;
Table 1) and strong linear correlation (R2 from 0.83 to 0.93).
For PM2.5, the sensors showed slightly worse agreement with
the reference monitor. MAE increased by a factor of 2 for all
sensors (3.0 to 3.9 μg/m3), and linear correlation decreased
(0.65 ≤ R2 ≤ 0.76 compared to 0.83 ≤ R2 ≤ 0.93, as stated
above). A larger disparity was evident for PM10 concentrations
reported between the low-cost sensors and reference monitor
(R2 from 0.07 to 0.23). Consistently low PM10 concentrations
reported by the low-cost sensors, relative to the reference
monitor, indicated that larger particles (i.e., dp > 1.0 μm) were
not adequately detected by the sensor models we evaluated.
Differential mass concentrations provided further evidence of
this limitation. The PM1.0−2.5 and PM2.5−10 signals were noisy
and nearly uncorrelated with the reference measurement
throughout the experiment. Some of these patterns (or lack
thereof) were clearly identifiable from a simple visual
assessment of the time series plots (Figure 1). The readings
from all sensors lost accuracy when going from PM1 to PM2.5
and more so when going from PM2.5 to PM10. In those same
plots, the PM2.5−10 signals from the low-cost sensors remained
flat and nearly zero throughout the campaigns, despite the
reference monitor reporting PM2.5−10 concentrations of ∼10−
50 μg/m3. This unresponsiveness is consistent with a
fundamental inability to sense and/or classify particles in

Figure 2. Regression plots of low-cost sensor PM estimates versus the EDM180 reference measurements. Dashed black lines are identity (1:1)
lines, and continuous red lines are the lines of best fit (for models that complied with linear regression assumptions). All the hourly averages (n =
1763) were used to compute the regression models, but some points are not shown in the plots due to the axes ranges.
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that size range (2.5−10 μm), which has been demonstrated
previously for some of these same low-cost sensor models in
laboratory experiments11 and physical optical models.12 The
regression plots in Figure 2 and performance metrics shown in
Table 1 confirm that all the low-cost sensors tested here miss
almost all particle mass in the PM2.5−10 size range under the
real-world, outdoor conditions in which these sensors are often
used.

Additionally, every sensor demonstrated poor detection of
the intermediate differential size fraction (1.0−2.5 μm). As
shown in Figure 2, PM1.0−2.5 errors appear random with no
clear trends or consistent bias. Qualitatively, this was seen as
large scattering of data points in the regression plots (Figure 2)
and the REU plots (Figure S3). Quantitatively, the very low
coefficients of determination (R2 < 0.1 for all linear regression
models) and large errors were coherent with a signal composed
mostly of noise. Our results indicate that these sensors can
estimate ambient PM mass concentrations in the accumulation
mode (0.1 < dp < 1 μm), but that they cannot reliably detect
particle mass in the 1.0−2.5 μm or the 2.5−10 μm size ranges.
Our results are consistent with Ouimette et al.,12 who
developed a physical−optical model of the PMS5003 and
theorized that this device would struggle to size classify
particles due to signal misclassification from multiangle
scattering within the instrument’s detection zone. Laboratory
evaluations of the SPS30 and the PMS5003 have found that
size detection ranges do not adhere to manufacturer

specifications and that size distribution data from these sensors
are unreliable.10,11 Our results under real-world conditions
confirm these reports. The combined evidence suggests that
the size-resolved data reported by these sensors is based on
mathematical artifices rather than on real measurements of size
distribution. There are several reasons why these optically
based, low-cost sensors fail to respond adequately to particles
larger than 1 μm. First, the sensing zones in these instruments
have truncated viewing angles that fail to capture forward light
scattering from particles.12 Such truncation error has been
shown to produce a dramatic loss in signal as particle size
increases from 0.5 to 5 μm. Second, these devices are likely to
experience inertial losses during aspiration and transmission of
particles from ambient air to their respective sensing zones.15

Finally, the shape and refractive index of aerosol can differ
between the coarse mode and the accumulation mode (and/or
the factory calibration aerosol), which leads to differential
light-scattering response between these size ranges during real-
world use.9,16−19

Ideally, the sensors should provide linear response with
relatively low noise (i.e., good precision). Nonzero intercepts
and nonunity slopes in the regression calibration models are
not a major concern because optical instruments are sensitive
to aerosol characteristics such as shape and refractive index,
which means that they need to be calibrated to specific
sampling conditions in applications where high accuracy is
needed.20 For PM1.0, most points on the regression plots are

Table 1. Size-Resolved Descriptive Statistics and Performance Metrics over the Full Field Evaluation (Fall/Winter and
Summer Periods Combined)a

PM1.0 PM2.5 PM10 PM1.0−2.5 PM2.5−10

Descriptive statistics (EDM180)
Median [μg/m3] 2.9 4.9 12.3 1.4 6.4
Mean [μg/m3] 4.4 6.5 17.8 2.0 11.4
IQR [μg/m3] 4.0 5.4 16.4 1.7 13.1
Range [μg/m3] 0−119.9 0.1−124.7 0.1−351.4 0−51.4 0−295.4

Coefficient of determination (R2)
Piera IPS-7100 0.83 0.65 0.07 0.01 0.07
Sensirion SPS30 0.93 0.72 0.23 0.09 0.22
Plantower PMS5003 0.90 0.76 0.07 0.01 0.00

Slope | Intercept
Piera IPS-7100 0.87 | −1.54 1.70 | −6.51 N/A N/A N/A
Sensirion SPS30 0.88 | −0.54 0.78 | −1.39 N/A N/A N/A
Plantower PMS5003 1.44 | −1.01 1.68 | −3.01 N/A N/A N/A

Mean absolute error [μg/m3]
Piera IPS-7100 2.36 3.87 13.89 2.34 10.42
Sensirion SPS30 1.20 3.00 14.10 1.84 11.26
Plantower PMS5003 1.68 3.45 12.88 2.07 10.88

Normalized mean bias
Piera IPS-7100 −47.8% −31.0% −65.7% 5.2% −85.3%
Sensirion SPS30 −24.4% −43.7% −78.9% −85.3% −98.8%
Plantower PMS5003 21.0% 21.6% −47.2% 22.9% −86.2%

Coefficient of variation
Piera IPS-7100 (2 units) 16.0% 20.4% 18.2% 28.0% 17.3%
Sensirion SPS30 (2 units) 6.0% 6.1% 6.3% 8.0% 50.9%
Plantower PMS5003 (2 units) 22.2% 16.9% 13.4% 16.3% 22.2%

aParameters marked as N/A correspond to models that violated linear regression assumptions.
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close to the 1:1 line indicating good agreement with the
reference monitor, and all the sensors fit the linear model
reasonably well (R2 ≥ 0.83; see also Figures S8, S9).
Additionally, the relatively small scatter in the PM1.0 regression
plots and the narrow band patterns in the REU plots (Figure
S3) denote low noise. The PM2.5 estimates combine the good
performance of PM1.0 with the random noise of PM1.0−2.5. This
translates to more scattering, larger errors, and poorer fit of the
linear models (0.65 ≤ R2 ≤ 0.76), but depending on the
application, a calibrated sensor could produce usable PM2.5
estimates, as has been reported previously.21−23 For instance,
to evaluate PM2.5 data quality, the uncertainty could be
analyzed as the European Commission recommends, which
specifies a 50% REU upper bound as the data quality objective
(DQO) for low-cost sensors.24 Alternatively, PM2.5 could be
estimated from the more accurate PM1.0 output by developing
ad hoc conversion equations for a combination of sensor model
and use case.

On the other hand, the PM10 signals of these sensors are
clearly flawed, incorporating the noise of PM1.0−2.5 and the
systematic bias of PM2.5−10. The regression plots of PM10 show
high scattering, large bias and no linear or other type of trend.
The REU plots of PM10 show extremely large uncertainty with
a combination of bias and noise across all concentrations
(Figure S3). Consequently, the PM10 signal of the sensors we
tested should be disregarded, as it appears to provide no
meaningful output. A field evaluation and calibration by
Kosmopoulos et al. reached similar conclusions and recom-
mended the removal of high PMcoarse events from data sets
collected with PurpleAir to improve the accuracy of the PM1
and PM2.5 signals, but the authors did not find a way to obtain
adequate PM10 estimates.25

Some studies where only cumulative concentrations (e.g.,
PM1.0, PM2.5) were analyzed have found good agreement
between low-cost sensors and FEM monitors for PM2.5 and
even for PM10.

26,27 Nevertheless, our analysis of the differential
concentrations (i.e., PM1.0−2.5 and PM2.5−10) shows that the
PM2.5 performance is driven largely by the performance in the
PM1.0 range. If sensors are tested in environments where PM1.0
constitutes a substantial proportion of PM2.5 and PM10, or
where the particle size distributions resemble the conditions
that the manufacturer used to calibrate the devices, the
accuracy of PM2.5 and PM10 signals can be artificially high.
Hence, evaluations do not provide a full picture of sensor
performance if a wide range of conditions is not covered and if
only cumulative concentrations are analyzed.

Our work does not focus on calibration schemes for
improving low-cost sensor data, for which there are many
potential strategies.14,20,21,28,29 Further, we tested only three
different sensor models; however, these models typify the
state-of-the-art models for low-cost light-scattering devices and
represent the majority of in-use technologies for crowdsourced
measurement networks around the world.30−32 Although our
results are limited to a single geographic location and two
seasons, they are consistent with previous theoretical and
laboratory investigations.9,11,12

The limitations of low-cost sensors presented here should be
acknowledged by sensor manufacturers (or product integra-
tors), and the networks that leverage these sensors should
cease reporting PM10 mass concentrations. Use of inaccurate
particle size distribution data for research applications such as
source apportionment or outdoor-to-indoor air penetration33

could lead to wrong conclusions and, ultimately, to misguided

public health interventions. For everyday applications where
people want to understand local PM1, PM2.5, and PM10 sources
and levels, it is important to understand how effective (or
ineffective) low-cost sensors are at detecting particulate matter
depending on the primary sources (e.g., wildfire smoke, vehicle
exhaust, cooking aerosol, wind-blown dust) and sizes of the
particles. In all cases, clear guidelines for using (or
disregarding) sensor outputs based on their trustworthiness
(i.e., accuracy, precision, uncertainty) will benefit the user
community. Specific applications where low-cost sensors have
been shown to produce reliable estimates of aerosol mass
concentration include calibration schemes for which the
following conditions hold: (1) The aerosol of interest is stable
in terms of size and refractive index. (2) The environmental
conditions are accurately recorded (especially relative humid-
ity). (3) The aerosol mass median diameter (MMD) falls
within the accumulation mode (i.e., 0.1 < MMD < 1 μm).
Applications where these conditions have been met may
include urban fine particulate matter,34,35 wildfire smoke,36,37

and household solid fuel burning.38 When calibration schemes
fail to account for changes in particle size, particle refractive
index, and ambient relative humidity, the responses from these
sensors will be uncertain and subject to bias.20,39 Whenever
possible, calibration schemes should be designed to account for
potential variability in particle characteristics and ambient
conditions, as noted above. Environmental conditions (i.e.,
temperature, relative humidity, barometric pressure) during
calibration should ideally span ranges typical of the environ-
mental conditions under which the sensors will be deployed in
their intended setting(s). Sensor calibration should also occur
in the presence of air pollution sources that are similar in
composition and magnitude to those that the sensors will
experience during deployment. Regardless of the calibration
scheme, fundamental safeguards for the use of sensors should
include protocols that address data handling and initial
processing, outlier detection and removal, sensor detection
limit, and data completeness. Further, calibration schemes
should disclose the kind of reference air quality monitor used,
the duration of the colocation experiment and ambient
conditions, the time-averaging intervals used for processing
the data, and the statistical model(s) selected with appropriate
justification (e.g., evidence of model assumptions being
met).20,29

In summary, we conclude that low-cost PM sensors
commonly used in crowdsourced measurement networks are
best described as accumulation mode PM (PM0.1−1.0) sensors
with little-to-no sizing ability or measurement reliability
outside this size range. None of the devices evaluated here
could detect coarse mode PM (PM2.5−10), and most struggled
to measure the 1.0−2.5 μm range when compared to a size-
resolved reference monitor. Therefore, PM2.5 estimates from
these low-cost sensors should be interpreted with caution, and
PM10 estimates from these sensors should be seen only as a
proxy representing the contribution of the accumulation mode
to the PM10 fraction.

■ ASSOCIATED CONTENT
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.estlett.3c00030.

Descriptions and specifications of the low-cost sensors
that were evaluated. Methods used to collect data from

Environmental Science & Technology Letters pubs.acs.org/journal/estlcu Letter

https://doi.org/10.1021/acs.estlett.3c00030
Environ. Sci. Technol. Lett. 2023, 10, 247−253

251

https://pubs.acs.org/doi/suppl/10.1021/acs.estlett.3c00030/suppl_file/ez3c00030_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.estlett.3c00030/suppl_file/ez3c00030_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.estlett.3c00030/suppl_file/ez3c00030_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.estlett.3c00030/suppl_file/ez3c00030_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.estlett.3c00030?goto=supporting-info
pubs.acs.org/journal/estlcu?ref=pdf
https://doi.org/10.1021/acs.estlett.3c00030?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


the low-cost sensors, including photographs of the
dataloggers, housings, and placement on the testing
location. Equations and values for all the performance
metrics that were calculated, some of which were not
included in the main text due to space constraints.
Relative expanded uncertainty plots (Figure S3) and the
equations that were used to calculate the REU. Weather
data (Figures S4 and S5) and a regression plot (Figure
S6) of PM2.5 and PM10 comparing the GRIMM EDM
180 versus the Thermo Scientific 5014i for quality
assurance. A time-series graph of PM concentrations
over a 14-day period in the summer (Figure S7).
Diagnostic plots for the regression models (Figures S8
and S9) (PDF)
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