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SUMMARY

High-dimensional single cell profiling coupled with computational modeling is emerging as a powerful

tool to elucidate developmental programs directing cell lineages. We introduce tSpace, an algorithm

based on the concept of ‘‘trajectory space’’, in which cells are defined by their distance along nearest

neighbor pathways to every other cell in a population. Graphical mapping of cells in trajectory space

allows unsupervised reconstruction and exploration of complex developmental sequences. Applied

to flow and mass cytometry data, the method faithfully reconstructs thymic T cell development and

reveals development and trafficking regulation of tonsillar B cells. Applied to the single cell transcrip-

tome of mouse intestine and C. elegans, the method recapitulates development from intestinal stem

cells to specialized epithelial phenotypes more faithfully than existing algorithms and orders

C. elegans cells concordantly to the associated embryonic time. tSpace profiling of complex popula-

tions is well suited for hypothesis generation in developing cell systems.

INTRODUCTION

Precursor cells give rise to differentiated progeny through complex developmental pathways. Single cell

technologies hold the promise of elucidating the developmental progression and defining underlying tran-

scriptomic drivers and modulators. Mass cytometry and single cell RNA sequencing (scRNAseq) can cap-

ture a high-dimensional profile of a ‘‘cellular snapshot’’ within analyzed tissue that contains all developing,

renewing, and differentiated cell populations. High-dimensional profiles of cells can then be computation-

ally aligned to reveal developmental relationships.

Here we show that developmental pathways can be reconstructed from single cell profiles by analyzing

cells in ‘‘trajectory space,’’ in which each cell is represented by a profile or vector of its relative distances

along nearest neighbor pathways to every other cell. The concept is illustrated in Figure 1A, with a sche-

matic example of several cells derived from cell A and analyzed with two phenotypic markers. Cells H

and E are phenotypically similar but arise from different developmental sequences and thus are develop-

mentally distant. A dense matrix of cell-to-cell distances along the developmental pathways is constructed,

which when visualized with standard dimensionality reduction tools (e.g., principal component analysis

[PCA]) can be used to explore cell relationships in this novel trajectory space. As illustrated, the method

reconstitutes the correct branching developmental sequences of cells in the simple example.
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RESULTS AND DISCUSSION

Trajectory Space Concept and tSpace Algorithm

To implement the concept, we developed a tSpace algorithm. Its application to single cell datasets relies

on the assumptions that (1) developmental processes are gradual, (2) all developmental stages are repre-

sented in the data, and (3) markers used to profile cells are regulated and sufficiently informative to distin-

guish different developmental pathways. Starting with cell profiles (phenotypes), tSpace identifies the K

nearest neighbors of every cell, constructs a nearest neighbor (NN) graph that provides connections to

all cells in the dataset, calculates distances from each cell to every other cell in the population along NN

connections, and exports a dense matrix of N 3 T dimensions (number of cells N 3 number of calculated

‘‘trajectories’’ T, vectors of cell-to-cell distances within the manifold). Unlike other tools, tSpace determines

the distances within the KNN graph using Wanderlust (Bendall et al., 2014), an algorithm that takes

advantage of subgraphs and waypoints and implements a weighting scheme to reduce ‘‘short-circuits’’
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Figure 1. tSpace Concept and Application on Thymic T cells: tSpace Reveals Developmental Trajectories and Recovers Expression Patterns of

Markers of T Cell Differentiation

(A) The schematic example illustrates the concept of trajectory space. The ‘‘cells’’ are marked with the letters A–I, and their developmental sequences are

marked with arrows. Matrix of cell-to-cell distances along developmental paths is created (each cell is one unit from its nearest neighbor). Visualization of cell

positions in this ‘‘trajectory space,’’ here using PCA, recapitulates the branches. Note that E and H, although similar phenotypically, are most distant in

trajectory space, reflecting their developmental pathways.

(B) Unsupervised tSpace analysis of thymic mouse thymocytes accurately recapitulates thymic T cell development.

(C) t-SNE of thymic T cells defines clusters but not developmental relationships.

(D) Isolated trajectory from DN2 precursors to CD4 thymic emigrants.

(E) Smoothed expressions of measured markers along isolated trajectory (shown in D) reveals patterns of protein regulation during T cell differentiation. The

identities of manually defined cell subsets as well as cell density along the isolated trajectory are shown for reference above the heatmap. DN, double-

negative T cells; CD4 emig., CD4+ T cell poised emigrants; CD8 emig., CD8+ T cell poised emigrants.
in selecting optimal paths. The Wanderlust algorithm has been described in detail (Bendall et al., 2014). It

significantly improves the definition of branching pathways even in simple flow cytometry datasets (Fig-

ure S1). We outline the effects of varying user-defined Wanderlust parameters on tSpace in the Supple-

mental Information (Figure S2). tSpace detection of developmental relationships is robust over a range

of input parameters, allowing implementation of default settings that work well in different applications.

The tSpace output provides principal component and UMAP embedding of cells in trajectory space, suit-

able for visualization and biological exploration of developmental pathways. The cell-to-cell distances,

when exported, provide quantitative measures of phenotype change within the manifold based on user-

selected metrics, useful for ‘‘pseudotime’’ ordering and analysis of, e.g., gene/protein expression changes

along isolated linear developmental sequences. The use of unified metric-defined distances enables

comparison of protein or gene expression dynamics along different trajectories on a common axis.

For samples with large cell numbers (N), tSpace has the option of calculating fewer trajectories, but it is

important that these trajectories start from cells well distributed throughout phenotypical space. K-means

clustering identifies groups of cells that are well distributed within phenotypic space, and we calculate
2 iScience 23, 100842, February 21, 2020



trajectories from one cell from each such cluster. The clusters are not used for further analysis. As illustration

of this feature, tSpace accurately recapitulates simple branching developmental paths from as few as

25–100 trajectories (Figure S1).

To evaluate the algorithm, we applied tSpace to developing populations of lymphocytes analyzed by flow

or mass cytometry, small intestine epithelial cells, and C. elegans analyzed by scRNAseq.

tSpace Analysis of Mouse Thymic T Cells

T cell development in the thymus is well established and allows validation of tSpace in a defined system.We

generated flow cytometric profiles of mouse thymocytes using a panel of 13 antibodies (Transparent

Methods). Our panel detects early T cell populations (so-called double-negative populations DN1-DN4,

which lack CD4 and CD8 and are distinguished by CD44 and CD25 expression), double-positive (DP)

CD4+CD8+ cells, and CD4 or CD8 single-positive (SP) T cells including poised thymic emigrant phenotype

cells, regulatory T cells (CD4+, CD25+, Foxp3+), and a small fraction of SP T cells expressing CD44, an acti-

vation and memory marker. We manually gated on these subsets and labeled them (Figure S3) (Shah and

Zuniga-Pflucker, 2014). Unsupervised tSpace analysis reveals the expected bifurcation of CD4 versus CD8

lineages from the dominant DP population in thymopoiesis and correctly positions T cells from early (DN2)

to mature thymic emigrant phenotype T cells in known developmental relationships (Figure 1B). DN1 cells

were not present in the dataset. In addition to the expected major bifurcation of CD4 versus CD8 cells

arising from the dominant DP pool, the analysis reveals branching of regulatory T cells (Foxp3+) from

the SP CD4 stage of CD4 branch. In contrast to methods based on or using clustering for visualization

(e.g., PAGA, SPADE, p-Creode, see comparisons in Supplemental Information), tSpace highlights a devel-

opmental continuum of cells allowing exploration of intermediate populations. For example, tSpace visu-

alizes DP cells in transition to the more mature SP CD4 and CD8 T cells. The transitional cells co-express

CD4 and CD8, but some have upregulated TCRb and CD3ε, a characteristic of positively selected cells

(Brodeur et al., 2009). Conventional clustering, based on measured markers using t-SNE, identifies the

major subsets, but does not clarify developmental relationships (Figure 1C).

The tSpace output allows evaluation of expression of markers along developmental paths. To illustrate this

for CD4 cell differentiation, we manually gated on cells along the path from DN2 cell to CD4 thymic poised

emigrants (Figure 1D). We identified and averaged trajectories in the exported tSpace matrix (Transparent

Methods) that started from early DN2 cells, and displayedmarker expression along their trajectory distance

from DN2 cells in a heatmap (Figure 1E). The results capture regulation of marker proteins as cells progress

toward maturity, recapitulating known phenotypic progression of thymic T cell development and high-

lighting details of transitional states. For example, protein expression trends confirm upregulation of the

chemokine receptor CCR9 in DN3 cells but reveal notably stronger expression in DN4-DP transitioning

cells. CCR9 binds CCL25 expressed by thymic epithelial cells and promotes T cell cortical positioning

(Wurbel et al., 2006).

tSpace Analysis of B Cell Differentiation in Tonsils and Inter-organ Trajectories with Blood

Single cell analyses hold the potential to provide insights into patterns of cell development in settings not

accessible to experimental manipulation, as in the human. We applied tSpace to the development of B

cells in human tonsils. Naive (IgD+) B cell differentiation toward immunoglobulin A or G (IgA, IgG) class

switched memory or plasma cells has been investigated. However, the sequence of class switch- and

fate-determining decision points and trafficking receptor induction remain poorly defined (Dufaud et al.,

2017; Silva and Klein, 2015). We used a panel of mass-labeled antibodies that detects �25 markers of B

cell subsets and maturation (Transparent Methods) to stain human tonsil lymphocytes. We applied tSpace

(Figure 2A) to tonsil and blood B cells and subsequently used conservative gates based on antibody stain-

ing to highlight classically defined B cell subsets for visualization in the tSpace projections (Figure S4). Cells

not falling within the conservative subset gates, which include bridging populations representing

transitional phenotypes, are not labeled.

tSpace analysis recapitulates developmental sequences leading from naive IgD+ B cells to tonsil IgG and

IgA class switched effector cells. The first trajectory space principal component (tPC1) delineates the

transition from naive to germinal center cells (GCC); tPC2, the differentiation of memory or plasma cells

(Figures 2B and S5A); and tPC3 and tPC4 pathways, to IgA versus IgG class switched cells (Figure 2C).

The distance of cells from naive B cells within the trajectory space manifold is illustrated in Figure S5B.
iScience 23, 100842, February 21, 2020 3



Figure 2. tSpace Analysis of B Cell Differentiation in Tonsils and Inter-organ Trajectories with Blood

(A) tSpace unravels maturation paths of B cells starting from naive B cells in tonsil throughout GC into memory B cells and

plasmablasts (PB). Magenta arrows mark suggested directionalities based on known biology.

(B) tPC1 and tPC2 reveal branches and potential developmental relationships in tonsillar B cell maturation.

(C) tPC3 and tPC4 reveal branches and potential developmental relationships in tonsillar B cell maturation. Ellipses show

80% confidence intervals for indicated clusters.

(D) Blood (BL) PB align as an extension of tonsillar PB trajectories, whereas recirculating bloodmemory B cells overlap with

the major tonsil memory cell clouds. Tonsil B cells are in light gray.
A broad strand of cells connects naive IgD+ B cells to proliferating germinal center (GC) centroblasts and

centrocytes (Figures 2A and S5A). Along this path from naive cells, IgD is downregulated and CD77 is up-

regulated as cells transition to centroblasts (Figures S5A, S5C, and S5D). There are clear, well-delineated

trajectories from GCC to class switched plasmablast (PB): CD38, present on activated B cells and GCC, is

further induced (Figures S5C and S5D), whereas CD20 is lost (not shown), recapitulating established pat-

terns of antigen regulation in plasma cell development.

The regulation of trafficking receptors during B cell activation, isotype switching, and plasma cell genera-

tion in human lymphoid tissues has not been resolved.We evaluated chemoattractant and adhesion recep-

tor expression by cells along the trajectory from naive B cells through the GC population to mature PBs.

Early naive cells express CXCR5, which mediates lymphoid follicle homing, CCR6 (Figure S5C and S5D),

and CCR7 (not shown). These trafficking receptors are downregulated in the transition to GCC, consistent

with observations that GCC are non-migratory (Reichert et al., 1983). CD22 (Siglec2), a B cell-specific lectin

that moderates B cell activation and also participates in B cell trafficking to gut-associated lymphoid tissues
4 iScience 23, 100842, February 21, 2020



(Lee et al., 2014), is maintained on GCC but lost during terminal PB differentiation (Figures S5C and S5D).

Induction of IgA or IgG occurs after initial upregulation of the GC marker CD77, consistent with the known

role of GC in isotype switching (Figures S5C and S5D) (Kraal et al., 1982). Homing receptors for extra-

lymphoid tissue effector sites appear to be induced rapidly upon exit of cells from the GC (CD77+)

pool. CCR10, a chemoattractant receptor implicated in PB migration to pulmonary and colon mucosae,

is upregulated along both IgG and IgA PB lineages, whereas b7 integrin, a component of the intestinal

homing receptor, is highly upregulated in the IgA but not IgG trajectory (Figures S5C and S5D). Isotype-

selective upregulation of tissue-specific adhesion receptors within a single inductive tissue has not been

observed previously: the mechanisms involved may underlie the selectivity of local IgA secretion for

mucosal tissues. CXCR3, implicated in lymphocyte homing to inflamed tissues (Rott et al., 1996; Seong

et al., 2017), is coordinately upregulated in a minor subset of PB and by memory B cells (Figure S5A).

Many tonsil memory B cells also express cutaneous lymphocyte antigen (CLA), a homing receptor for

the vascular addressin CD62E associated with squamous epithelial surfaces including the oral mucosa;

CLA was present on some blood PBs (not shown), but was not detected on PB branches in the tonsil.

In contrast to some other tools, tSpace does not constrain or force cells into specific developmental se-

quences or paths, but instead positions each cell in context with all others even when cell transitions are

biologically diffuse. This is illustrated by the dispersed distribution of class switched IgG+ and IgA+memory

B cells in trajectory space (Figures 2C and S5A; and best visualized in 3D embedding, Video S1): memory

cells constitute a ‘‘cloud’’ of cells, some of which appear to arise from the GC pool as mentioned, whereas

others are closer in trajectory space to the path from naive B cells to GCs. Cell alignment in trajectory space

does not intrinsically provide directional information, thus cells bridging the main memory cell population

with GCs may reflect recruitment of memory cells into the active GC, or generation of memory cells from

the GC reaction. The surprising alignment of many IgG- and IgA-expressing cells between naive and mem-

ory populations (adjacent to the naive to GC path; Figure S5A) suggests that, in steady-state human tonsil,

activated B cells may undergo IgA or IgG class switching and conversion to memory cells without transiting

through the GC reaction. Although class switch recombination is normally attributed to the GC reaction, in

some mouse models class switching can occur before GC formation, and it is observed in T-independent B

cell responses as well (Stavnezer and Schrader, 2014). Low expression of CD27 (Figure S5A) and retention of

naive markers CCR6 and CXCR5 on the class switched cells adjacent to the ‘‘naive to GC’’ sequence is

consistent with this interpretation (not shown). In contrast to their IgG and IgA class switched counterparts,

IgM memory cells (CD27+, CD38-) are more closely connected to naive (IgM+, IgD+, CD27-, CD38-) cells in

most tSpace principal components (tPCs), with tPC2 specifically expanding this trajectory (Figure 2B and

Video S1). Thus, tSpace recapitulates known pathways of tonsil B cell development and differentiation, pre-

sents evidence that human B cells can follow alternative developmental paths that have only been

described in animal studies, and reveals developmental stage(s) and transitions at which tissue- and inflam-

mation-specific trafficking receptors are induced.

Developing PBs generated in lymphoid tissues leave their sites of antigen activation and circulate via the

blood to distant effector sites.We reasoned that trajectoriesmight link terminally differentiated cells, ready

to exit their site of generation, with progeny cells in blood. Indeed, when we applied tSpace to combined

blood and tonsil B cells datasets, blood PB aligned at the termini of tonsillar IgG and IgA PB branches (Fig-

ure 2D and Video S2). In contrast to the unidirectional path of maturing PBs, blood memory B cells and

naive IgD+ B cells exchange between blood and lymphoid tissues through recirculation. Consistent with

intermixing, these subsets overlap extensively with their tonsillar counterparts in trajectory space (Fig-

ure 2D). These results show that tSpace can unfold inter-organ transitions and elucidate developmentally

programmed migration patterns of immune cells in settings wherein experimental analyses of leukocyte

trafficking are challenging, as in humans.
tSpace Analysis of Mouse Small Intestine Reveals Rare Enteroendocrine Progenitor

Population and Defines Transcription Factor Modules of Intestinal Differentiation

scRNAseq is emerging as a powerful tool for the characterization of cell populations and provides rich

cellular profiles for studying cell relationships. We applied tSpace to published scRNAseq data frommouse

intestinal epithelial cells using 2,420 variable genes (Yan et al., 2017) (Transparent Methods). Intestinal

epithelium forms the single cell layer separating the lumen of small intestine from intestinal lamina propria.

Almost all cells in the epithelium have a short lifespan of about 4–7 days (Barker et al., 2012), and continuous

renewal is driven by division of Lgr5+ crypt base columnar (CBC) cells residing at the bottom of the
iScience 23, 100842, February 21, 2020 5



Figure 3. tSpace Analysis of Mouse Small Intestinal Epithelial Cells

(A) tSpace separates trajectories to enterocytes, enteroendocrine (EE), Paneth, and goblet cells. CBC and TA subsets were defined by our analysis, as

described in Figure S7; other subsets are labeled as in Yan et al. (2017). Shaded rectangle highlights the position of short-lived EE progenitors (slEEP) cells.

(B) Isolated enterocyte trajectory.

(C) Isolated EE trajectory.

(D) Expression patterns of selected genes (Clevers, 2013) (known markers or regulators of intestinal crypt development; expanded gene list in Figure S8A)

along the isolated trajectories.
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Figure 3. Continued

(E) Four detected transcription factor modules in early trajectories, identified by comparing gene expression between cells at similar stages in the two

trajectories (Transparent Methods): M1 comprises TFs involved in cell cycle and genome integrity expressed in precursor populations (early in the shared

trajectory). M2 and M3-M4 differentiate the two lineages and comprise TF’s that may determine cell fate or specialization (see text). Cell stage (Transparent

Methods) and cell identities defined in this study (Cell type) or in Yan et al. (Orig. labels) are indicated above the heatmap. ND, fully differentiated

enterocytes, not used in trajectory alignment.

(F) Summary of differences between two branches suggested by gene regulation along the trajectories. Different genes in the transforming growth factor-b

and circadian rhythm pathways are expressed in the two lineages (genes in blue above the cartoon). TFs enriched in the EE branch are involved in endocrine

secretory cell development, whereas TFs associated with enterocyte commitment include regulators of lipid/cholesterol metabolism. Expression ofDll1 and

Sox4 in EE development and Alpi in enterocyte differentiation mark specific progenitor cells located within the +4/+5 position in the intestinal crypt

according to the literature (van Es et al., 2012; Gracz et al., 2018; Tetteh et al., 2016); clear peaks are seen in their expression along the trajectories (Figures 3D

and 3E) near the TA to differentiated cell transitions, likely representing these specific progenitor populations.
intestinal crypts. Transit-amplifying (TA) cells within the crypt differentiate into absorptive (enterocyte) or

secretory (goblet, Paneth, tuft and enteroendocrine [EE] cell) lineages. tSpace delineates absorptive/enter-

ocyte and secretory/EE developmental paths (Figures 3A, S6A, and S6B). Goblet and Paneth cells define

short branches from the proliferating TA pool.

The ability of tSpace to position all cells in developmental relationships allows additional interesting in-

sights. tSpace trajectories reveal a common ‘‘trunk’’ leading to secretory and absorptive branches, but

many slow-cycling CBC (sc-CBC) and cycling TA (c-TA) cells (defined Figure S7) actually segregate to

the early EE or enterocyte branches, suggesting that they are already developing toward if not committed

to EE or enterocyte fates. To illustrate the application of tSpace to explore developmental progression of

gene expression in this context, we isolated trajectories within the tSpace distance matrix starting from the

Lgr5+ CBC cell population, gated on cells of the enterocyte branch and cells within the early segment of the

EE branch preceding EE3 (Figures 3B and 3C), and plotted gene expression of cells versus their trajectory

distance from CBC cells (Figure 3D). We focused initially on genes for known hallmarks of intestinal differ-

entiation (Figures 3D and S8A) (Clevers, 2013). The analysis confirms Ascl2 (van der Flier et al., 2009b),

OlfM4 (van der Flier et al., 2009a), and Prom1 (Zhu et al., 2009) as robust markers of the presumptive crypt

populations (CBC to TA cells) and reveals that the expression of Prom1 extends into the TA pool, confirm-

ing previous findings (Itzkovitz et al., 2011) (Figures 3D and S8A). The Wnt agonist Lgr5 and its homolog

Lgr4 are in resting CBC and dividing sc-CBC cells, but the analysis shows that Lgr4 expression is retained

in post-mitotic cells differentiating toward absorptive enterocytes from c-TA, suggesting that in addition to

its known role in proliferation of TA cells (Mustata et al., 2011) it may contribute to enterocyte fate or

specification.

Further examination revealed Dll1-expressing cells in trajectory space between CBC cells and mature EE

populations (Figure 3A, shaded gray rectangle, Figure 3D). These cells express genes that define short-

lived enteroendocrine progenitors (slEEP) (van Es et al., 2012), which upregulate EE lineage specification

genes Neurog3, Neurod1, and Neurod2 (Figure 3D) (Jenny et al., 2002; Schonhoff et al., 2004). Consistent

with their location in tSpace projection, sIEEP are well-documented precursors of EE cells (Barker et al.,

2012; van Es et al., 2012; Schonhoff et al., 2004). The EE branch proceeds through EE3 cells, recently iden-

tified as EE intermediates, giving rise to specialized mature EE subsets (Yan et al., 2017) (for cell labels see

Transparent Methods and Figure S7). Interestingly, sparse intermediates link a single tuft cell population to

both CBC/TA and to EE3 cells (best visualized when UMAP is applied to trajectory space matrix, Figures

S6A and S6B). Although the number of intermediate cells linking these two pathways to tuft cells would

suggest caution in interpretation, it is noteworthy that a dual origin of tuft cells (directly from Lgr5+ CBC

cells but also from EE3 EE cells) has been proposed from multiple lines of evidence (Gerbe et al., 2012;

Yan et al., 2017). tSpace performed well when compared with SPADE, a minimum spanning tree (MST) al-

gorithm applied to visualize trajectory relationships in the original analysis of this scRNAseq dataset.

SPADE (Yan et al., 2017) and tSpace both delineate the major CBC to enterocyte and EE branches, the rela-

tionship of goblet and Paneth cells to CBC/TA, and the terminal branching of EE subsets. SPADE generates

a 2D representation of an MST structure, an approach that is inherently challenged by non-tree-like devel-

opmental paths, such as the paths from EE3 and CBC that converge on tuft cells (Figures 3A, S6A, and S6B).

tSpace identified a single tuft cell pool with dual connections, whereas SPADE analysis forced tufts cells

into two disconnected populations, one arising from CBC cells and the other from intermediates leading

to EE3 cells. SPADE also failed to detect or properly position slEEP on the path to EE cells (Yan et al., 2017).

In contrast to tSpace, which positions each cell in trajectory space, SPADE and related MST algorithms rely

on prior definition of cell clusters and limited gene sets, features that run the risk of missing or mislabeling
iScience 23, 100842, February 21, 2020 7



Figure 4. Benchmarking of tSpace Performance Using a Developmentally Timed C. elegans Dataset

(A) UMAP of 75 PCs of gene expression matrix, re-creating the UMAP from Packer et al., showing major cell types.

(B) tSpace analysis using 1,000 trajectories, showing the first three tPCs and raw embryonal time; inset shows cell types.
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Figure 4. Continued

(C–F) (C) The same tSpace analysis as in (B) visualized in tPC1, tPC3, and tPC4: this combination of tPCs allows separation of all major lineages, and

interestingly places pharyngeal intestinal valve (PIV) cells in close proximity to intestine and intestine close to rectal cells, relations that resemble spatial cell

positions in C. elegans body: PIV cells link the posterior bulb of the pharynx to the anterior cells of the intestine, and the intestine is eventually connected to

the rectum. The first three tPCs and raw embryonal time using (D) 50 trajectories, (E) 100 trajectories, and (F) 500 trajectories. Arrows and ellipsoids mark

intestinal cell type.

(G) tSpace analysis using 500 trajectories, 3D representation of cell types in tPC1, tPC3, and tPC4. tSpace defines branches for all main lineages.
important cell intermediates (Yan et al., 2017). sIEEP were defined either as cycling CBC or goblet cells in

the published analysis and were subsumed in biologically inappropriate clusters (Figures S7A, S7B, S7D,

and S8A see original labels).

Overall, cell positioning in trajectory space and the patterns of gene expression reflect observations from

decades of research on intestinal development, and also suggest refinements to current understanding.

Many TA cells express gene programs leading to secretory versus absorptive phenotypes (Figures 3D

and S8A), indicating that fate selection is already initiated within the dividing (TA) pool that arises from

Lgr5+ CBC. A global survey of transcription factor (TF) expression during early specification of secretory

versus absorptive fates has not been described. We evaluated gene expression along tSpace-defined

developmental sequences to identify TF that might specify and/or control downstream cell specialization.

Four distinct TF modules were identified (Transparent Methods) based on their patterns of regulation

along early EE or enterocyte branches (M1–M4, Figures 3E and S8C). Genes for proliferation and DNA

maintenance (M1, e.g., Ccna2, Cdk2, Fancd2, Rbl1) are expressed by dividing sc-CBC and TA ‘‘early’’ along

the trajectory, as expected. A second module of TF genes is also expressed by early cells but is maintained

selectively in the EE branch: these include TFs associated with endocrine and pancreatic development

(e.g., Foxa2, Foxa3, Neurog3, Sox4, Sox9) that may coordinate secretory pathways within intestinal EE cells

(Tabula Muris Consortium et al., 2018). Interestingly, among these, tSpace revealed an unexpectedly high

and selective expression of Sox4 in slEEP cells, suggesting it as a novel candidate contributor to EE spec-

ification (Figures 3E, S7C, and S7E): this prediction has been subsequently confirmed (Gracz et al., 2018).

Module 3 and 4 TFs are expressed preferentially in the enterocyte branch. They include TF involved in lipid

and cholesterol metabolism required for mature enterocytes (e.g.,Cebpb, Klf5, Nr5a2, Figures 3E and S8C)

(Degirolamo et al., 2015; Yen et al., 2014), and alsoNfe2l2 andMaf associated with the activation ofNfe2l2/

Nrf2-antioxidant response element (ARE) pathway (Itoh et al., 1997). Enterocytes utilize short fatty acids as a

source of energy; fatty acid metabolism generates reactive oxygen species (ROS), and ROS are also abun-

dant in the intestinal lumen. Upregulation of the Nfe2l2-ARE pathway may help protect differentiating en-

terocytes from oxidative damage (Ferrebee et al., 2018). The analysis also identified Isx and Ski (both within

M3) as putative novel markers of TA cells within the early enterocyte developmental branch; lack of specific

markers has hindered isolation of TA cells and further probing of their plasticity.

Benchmarking of tSpace Performance Using a Developmentally Timed C. elegans Dataset

Finally, we benchmarked tSpace usingC. elegans scRNAseq (Packer et al., 2019), a dataset that can be consid-

ered the gold standard for developmental trajectory inference benchmarking because each cell is associated

with actual developmental time. We run tSpace analysis using all 86,024 cells and 75 PCs in gene expression

space (TransparentMethods). tSpace provides connections to all cell types, unlike UMAP, themethod used by

Packer et al. (Figures 4A and 4B). Using UMAP on gene profiles looks similar, as expected, to the UMAP in

Packer et al. (2019) Major cell populations are well separated from each other without indication of develop-

mental relations: for example, groups of muscle and pharynx cell types are disconnected from the rest of the

cells, as well as intestine or hypodermis and seam cells. Conversely, tSpace analysis using 1,000 trajectories

aligns all cells in the correct order as examined by plotting raw embryonal time associated with every cell in

the dataset (Figure 4B) and separates all major cell lineages (Figures 4B, inset, and 4C). tSpace alignments

using 50 trajectories still retained distinct branching of all major cellular lineages and the correct develop-

mental connections between the cells (Figures 4D–4G). As few as 50 trajectories permits tSpace to order cells

correctly (Figure 4D), but alignments using 100 and 500 trajectories showed progressive improvement in res-

olution and connection between cell types (e.g., compare intestinal cellsmarkedwith an arrow Figures 4D–4F).

Thus, although tSpace ran intomemory limitationswhen the trajectory number T is high (e.g., 5,000 trajectories

failed when applied to the current example), T = 100 is sufficient for even large and complex datasets.

Similar to the UMAP analysis (Packer et al., 2019), we noticed that tSpace provides greater resolution

toward terminally differentiated cell types. Packer et al. iteratively run UMAP on subsets of cell types to
iScience 23, 100842, February 21, 2020 9



achieve resolution and precision in the early developmental stages or specific tissues. To examine tSpace

performance in early development, we focused on ABpxppp sublineage (Figure S9A, for details see Packer

et al., 2019). Indeed, utilizing UMAP on a full dataset does not allow precisemapping and does not preserve

developmental connections of the early cell lineages (Figures S9B and S9C). Remarkably, tSpace

connects and correctly orders ABpxppp sublineage (Figures S9D–S9I). Although the cells are correctly

ordered, unlike in UMAP, the two cycles of division after ABpxppp are difficult to visually dissect.

However, seven daughter cell types (ABpxpppaaa, ABpxpppaap, ABpxpppapa, ABpxppppaa, ABpxppp-

pap, ABpxpppppa, ABpxpppppp), products of the third division after ABpxppp, are separated and easily

recognized as elongated branches (Figures S9E–S9H). tSpace maps one of them, ABpxpppppa, close to,

but not as part of the muscle cell-type branch (Figure S9I) reflecting the true biology. Muscle cell types are

developed from mesoderm MS lineage. UMAP of the full dataset incorrectly suggests ABpxpppppa as a

precursor of the MS lineage and muscle cells. Overall, tSpace preserves developmental cell-to-cell rela-

tions better than UMAP and performs well in real-world complex data with 5+ diverse lineages (MS muscle,

MS pharynx, C and D muscle, and AB-derived lineages) represented by C. elegans.
tSpace Performance and Comparison with Other Trajectory Inference Algorithms

tSpace applied to four different datasets illustrates how the number of trajectories, of cells, and of

measured protein or gene parameters all impact computation time (Table S1), as does the hardware em-

ployed. For cytometry datasets, we generally run tSpace on all measured parameters. For scRNAseq

studies, we often run the algorithm with significant principal components. For any larger data, especially

in number of cells, we suggest use of multicore computers to speed up the analysis. As the examples pre-

sented illustrate, we generally limit T to 100–1,000. Although not illustrated here, for scRNAseq and other

sparse datasets we find that imputation can further improve the definition of branches and branchpoints

along developmental trajectories.

The tSpace approach is conceptually similar to isomap (Tenenbaum et al., 2000). Both methods provide a

global approach to dimensionality reduction, designed to preserve manifold geometry at all scales. Both

algorithms determine geodesic distances along a KNN graph. Isomap embeds the resulting distance ma-

trix in low dimensions using multidimensional scaling (MDS). It has been successfully applied to diverse

high-dimensional datasets (Hannachi and Turner, 2013; Mahecha et al., 2007; Silva and Tenenbaum,

2003; Stamati et al., 2010), but it has not been widely adopted for high-dimensional single cell analyses,

perhaps because of well-described limitations. The algorithm is computationally and memory expensive.

This has been addressed in part in ‘‘landmark isomap’’ by calculating approximate distances using a set of

randomly selected ‘‘landmark’’ cells. To ensure uniform sampling of the manifold, we modify this approach

in tSpace by selecting individual cells from each of T K-means clusters, where T is the number of trajectories

to be calculated. We show that linear trajectories (distance vectors) calculated from 100–250 well-distrib-

uted starting cells are sufficient to recapitulate cellular relationships in each of the datasets here. As

each such trajectory includes all cells and provides estimates of their intercellular distances within the tra-

jectory, a small number of such trajectories provides a surprisingly good approximation of cell relationships

in trajectory space. Isomap suffers also from sensitivity to ‘‘short circuit’’ errors if K is too large or if noise in

the data positions cells aberrantly between valid branches or populations in the manifold. Short circuits

pose a problem with the Dijkstra algorithm, used in isomap to calculate shortest paths between cells.

We take advantage of Wanderlust, which refines distances and avoids ‘‘short circuits’’ by using subgraph

averaging and weighting in shortest path calculations based on waypoints (Bendall et al., 2014). We

show that tSpace with Wanderlust improves the definition of developmental paths (Figure S1). However,

isomap uses MDS, a memory-intensive algorithm, for dimensionality reduction and visualization of mani-

fold relationships, tSpace utilizes PCA and/or UMAP. We find that the first three tPCs often embody the

most important developmental branches (with simple branching development), but higher tPCs can also

reveal critical biological processes. Many methods allow reconstruction of simple developmental branch-

ing sequences, but it is becoming increasingly clear that differentiating cells in development and

cancer can and often do retain multi-potency even as they mature. This leads to complex higher-dimen-

sional ‘‘lineages’’ or developmental pathways that cannot be represented in 2D or even 3D. In this setting,

exploration of PCA projections of trajectory space is valuable, as higher tPCs can reveal additional branch-

ing pathways and relationships. We illustrate, for example, the parallel pathways of IgA versus IgGmemory

and plasma cell development in tonsil B cells, which dominate the fourth tPC. tSpace also implements

dimensionality reduction with UMAP (McInnes et al., 2018). Although UMAP implements a force-directed

algorithm that obscures developmental distances, it is an excellent tool for reducing dimensionality to
10 iScience 23, 100842, February 21, 2020



2-3 dimensions for visualization of the tSpace manifold. We show for our scRNAseq example that UMAP

embedding of trajectory space reveals developmental branches better than UMAP embedding of the orig-

inal gene expression matrix (see Supplemental Information: Comparison of tSpace and Other Trajectory

Inference Algorithms).

We examine the performance of several widely used methods (Reviewed in Cannoodt et al., 2016; Saelens

et al., 2018) with tSpace in Supplemental Information (Figures S10–S14). Few unsupervised methods exist

(we tested Monocle, p-Creode, DPT, PAGA, and because of its speed and usefulness UMAP), and none

combine the scalability and quantitative distance metrics of tSpace. For example, tSpace has advantages

over algorithms that use memory-intensive MST methods to define branch points, as for large datasets

these depend on downsampling of cells or calculation of relationships between clusters (rather than indi-

vidual cells) to reduce computational complexity. Examples include slingshot (Street et al., 2018), p-Creode

(Herring et al., 2017), and SPADE (Qiu et al., 2011). As highlighted above in the discussion of published

analysis of intestinal epithelial cells, downsampling in MST-based methods holds inherent risks of

obscuring important cell subsets, and in most algorithms, fails to position each cell in developmental re-

lationships. tSpace avoids the loss of individual cell resolution associated with cell downsampling, while

retaining the ability to reveal the developmental relationships of all cells to each other even when popular

and faster UMAP fails (e.g., analysis of full C. elegans dataset). Algorithms that focus on computationally

defining branchpoints and tree structures (e.g., Monocle, slingshot) can also limit appreciation of alterna-

tive pathways of differentiation represented by cells that bridge between dominant pathways (e.g.,

converging paths of tuft cells). Moreover, in contrast to algorithms that rely only on local cell relationships

or that use force-directed graph methods, the global approach of tSpace estimates distant as well as

nearby cell relationships within the manifold. Indeed, the algorithm exports a dense matrix of meaningful

cell-to-cell distances that represent measures of the extent of phenotypic change along developmental

pathways. As illustrated in our examples, cells along specific developmental pathways and branches can

be easily gated (isolated) in plots of tPCs using commonly available software such as Flowjo, JMP, or in

R (Transparent Methods). Trajectories starting from branch termini or other desired points within pathways

are readily identified within the tSpace matrix and plotted versus gene/protein expression to characterize

changes in cell phenotypes along isolated developmental sequences (as in Figures 1, 2, and 3).

Conclusions

We have presented the concept of trajectory space and its implementation in the tSpace algorithm for

elucidation of branching or convergent developmental pathways and mechanisms from single cell profiles.

tSpace performs well across different biological systems and platforms, and reveals known and novel

biology. tSpace embodies a combination of useful features including (1) applicability to any type of data

(proteomic, transcriptomic, etc.), (2) simplicity of use, (3) robustness to input parameters, (4) scalability

and independence from the need for cell downsampling, (5) positioning of each individual cell correctly

in developmental relationships (allowing visualization of alternative or minor pathways of differentiation),

(6) retention of global as well as local cell relationships with export of quantitative measures of cell-to-cell

distances in the manifold, and (7) independence from requirements of clustering or prior information. The

tSpace outputs are often more precise than other trajectory inference algorithms, reproducible, intuitive,

and amenable to exploration of biology (gene or protein expression, trajectory isolation, etc.). We believe

that tSpace will prove useful to the rapidly growing field of singe cell analysis.

Limitations of the Study

We highlight some of the practical features and limitations of tSpace and of other published algorithms

designed for multi-branching and complex manifolds (Table S2). tSpace attempts a true representation

of the underlying manifold, without manipulation for graphical expedience, and when visualized in prin-

cipal component projection is highly reproducible and robust to changes of parameters: it allows users

to explore hidden biology and compare results confidently. However, faithfulness to the manifold limits

the ability of tSpace, in comparison to user-optimized UMAP for example, to generate appealing 2D or

3D representations. We discuss UMAP reduction of the tSpace matrix as a compromise solution. Similarly,

whereas UMAP implements features that result in attraction and repulsion to enforce cluster formation and

separation, tSpace does not. Because of this tSpace excels at revealing sparsely populated developmental

trajectories that may be ‘broken’ in cluster-forming methods. However, tSpace can make links between un-

related cell types when biologically valid intermediates are missing, and as in other methods, computation-

ally defined trajectories must be interpreted in the light of prior biological knowledge and/or be validated
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experimentally. tSpace faces memory limits in cases of large datasets (100,000+ cells) when calculating

several thousand trajectories; and tSpace running times in such instances can be a limiting factor. In prac-

tice, we find that T = 100 provides accurate trajectories for most datasets, and tSpace in Matlab with

T = 100, 30,000 cells and 30 principal components from scRNAseq data runs on a personal computer in un-

der 20 minutes. A final limitation of this study is that we lack a quantitative metric to compare the usefulness

of tSpace (vs other methods considered) for manifold exploration and biological interpretation, relying

instead on concrete though anecdotal examples.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

DATA AND CODE AVAILABILITY

This manuscript is accompanied with Supplemental items. Code and data are available upon request.

Previously published dataset of intestinal cell populations was provided by the authors as normalized and

scaled expression values (Yan et al., 2017). C. elegans dataset (86,024 cells) was downloaded from Gene

Expression Omnibus (www.ncbi.nlm.nih.gov/geo) under accession code GSE126954.

tSpace package for R is available on https://github.com/hylasD/tSpace, and MATLAB https://github.com/

hylasD/MATLAB_version_tSpace. tSpace tutorial can be found at http://denisdermadi.com/tspace-

trajectory-inference-algorithm.

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.isci.2020.100842.
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Supplemental materials  
Formal description of the tSpace algorithm 
Every analyzed cell ci is defined by a vector of expression values for each measured marker (v) ci = (v1, 
v2, v3, …, vj), where i is between 1 and the total number of cells (N) and j is the number of measured 
markers (m). Profiles of all cells within a sample form an N-by-m input matrix. Prior to application of 
tSpace, the input matrix has to be cleaned of outliers and artifacts and adequately transformed, e.g. 
logicle for FACS data, the inverse hyperbolic sine function for CyTOF and logarithmic for scRNAseq.  
In the trajectory space concept, each cell is represented as a vector of distances to every other cell in the 
data set. Implementation of the concept through the tSpace algorithm involves three steps.  
In the first step tSpace calculates a K-nearest neighbor (KNN) graph, in which there is an edge from cell ci 
to cj if and only if the distance between ci and cj is one of the K smallest distances between ci and all other 
cells. The user-defined neighborhood size (K), preferably small, is selected to allow inclusion of every cell 
in the graph. Values of K ~ 20-30 works for most data sets in our analysis. In order to reduce “short-
circuits”, which may occur in basic KNN graph, L (L < K) number of connections for every cell is 
preserved and a L-KNN sub-graph is created. User defines how many sub-graphs will be calculated by 
defining a parameter G. 
The second step of tSpace is computation of a trajectory space distance matrix. This step utilizes 
parallelization for performance improvement. tSpace computes distances [dWanderlust(x, y)] from each cell 
to every other cell within the L-KNN graph using a modified Dijkstra algorithm, originally published under 
the name Wanderlust (Bendall et al., 2014). Briefly, for each cell ci, Wanderlust initially calculates interim 
trajectories for each of G sub-graphs. These interim trajectories are averaged to generate a consensus 
distance to every cell. Cell distances within each sub-graph are calculated in relationship to both the start 
cell and to “waypoint cells” that are randomly picked from within uniformly distributed subsections of an 
initial trajectory. The number of waypoints (WP) is user defined. Distances from the start cell to every 
other cell are iteratively refined using the waypoints and an exponential weighting scheme until 
convergence (reaching correlation of 0.9999 between the trajectories). The weight matrix is determined 
using the distances between waypoints and the rest of the cells; this improves calculated distances by 
giving more importance to the distances around neighboring waypoints. The final trajectory space matrix 
M is a dense matrix of refined distances (d) from each cell to every cell in the dataset, where Mij = 
dWanderlust(ci, cj), i & j ∈ [1, N], with N being the total number of measured cells, and each cell is described 
by a vector of distances ci = (d1, d2, d3, …, dj), i & j ∈ [1, N]. We refer to the vector of distances from cell 
ci to every other cell as a trajectory. 
Lastly, dimensionality reduction (e.g. PCA or UMAP) is used to visualize cells and their relationships in 
trajectory space. 
In the ideal situation, the number of trajectories T is equal to the number of analyzed cells (N). However, 
when datasets are large calculation of trajectories starting from every cell can be impractical. In this case, 
trajectories can be calculated starting from a subset of cells that are selected to be representative of all 
regions and subsets in the population. We find that 100-1000 trajectories are sufficient for accurate 
determination of branch points and different developmental paths in all samples we have studied to date 
(Fig. S1). Phenotypically diverse starting cells, representative of all subsets in the population, are 
identified by selecting one cell from each of a number of T K-means clusters. The number of clusters is 
equivalent to user defined number of trajectories (T). Thus, the trajectory space matrix (M) can be defined 
as M = (dij), i ∈ [1, N], j ∈ [1, T], and each cell is described by a vector of Wanderlust distances ci = (d1, 
d2, d3, …, dj), j ∈ [1, T]. MATLAB and R package implementation of tSpace and accompanying 
documentation are available online (https://github.com/hylasD/tSpace & 
https://github.com/hylasD/MATLAB_version_tSpace). A tutorial on application of tSpace is available 
online (http://denisdermadi.com/tspace-trajectory-inference-algorithm) and as a vignette in R package. 
 



 

Robustness and effect of parameters 
To address the robustness of tSpace to parameter selection, we examine (i) the effects of Wanderlust vs 
Dijkstra trajectory calculation for different T (trajectory number) (Fig. S1); and (ii) the effects of varying K 
(L is maintained at 0.75K as default in these examples) and distance metric (Fig. S2) on tSpace 
projections of thymic T cell data. 100 trajectories were sufficient to visualize developmental branching in 
our thymocyte dataset (Fig. S1A-B, N = ~ 95 000 cells) and scRNAseq (Fig. S1C, N = ~3500 cells); with 
only minor refinements in cell positioning with 1000 trajectories (Fig. S1).  
Furthermore, we compare the effect of the varying K, L and different metrics (Euclidean vs Pearson, Fig. 
S2). The tSpace output is expected to be influenced by K, the number of neighbors in the KNN graph: 
Large K, by increasing the number of ‘paths’ between cells, can lead to unwanted connections (short 
circuits) to developmentally more distant or altogether unrelated cells. Conversely, if K is too small the 
neighborhood graph will be unconnected. We find that developmental relationships predicted for 
thymocytes by tSpace are surprisingly robust over a range of K (from 15 to 100 in Fig. S2). At K = 100, 
however, the positioning of terminal Tregs is distorted, with some Tregs beginning to form a bridge to 
early developmental stages (Fig. S2, asterisks & insets). Thus, we suggest a default to K ~ 25. The 
parameter L defines the subset of K connections around each start cell to be used for sub-graphs; thus, L 
must be < K. The ratio of L to K determines the independence of sub-graphs that are averaged to further 
reduce the contribution of short circuits. We suggest L/K ~ 0.75, a value that works well in all datasets we 
have analyzed.  
tSpace implements Euclidean, cosine or Pearson correlation metrics to define local distances between 
cells. Comparison of tSpace using Euclidean and Pearson metrics is illustrated in Fig. S2. 
tSpace running times 
Running times of tSpace will be impacted by the size of the dataset and number of calculated trajectories 
(parameter T) as seen in Supplemental Table 1. Analysis of the C. elegans (86,024 cells) failed when we 
changed parameter T = 5000 trajectories indicating that tSpace have memory limitations, however as 
demonstrated in Fig. 4 D-G, even if tSpace calculates as few as 50 trajectories cells are ordered in 
correct developmental time (Fig. 4 D). However increased number of calculated trajectories (already 100 
and 500) improves resolution and connection between the cell types (e.g. compare intestine cells, marked 
with an arrow Fig. 4 D-F).  
  



 

Supplemental Table 1. Running times of tSpace in minutes for different type of data sets in 
number of cells, variables and trajectories, related to Figure 1. 

Data set Cell no. Variable no.1 Trajectory 
no. 

Waypoint 
no. 

Time [min] 

R MATLAB 

B cell 17 956 26 100 20 40 19 

B cell 17 956 26 1000 20 289 198 

intestine 3521 2419 100 20 90 52 

intestine 3521 2419 1000 20 927 393 

intestine 3521 40 100 20 6 2 

intestine 3521 40 1000 20 324  23 

T cell 94 807 12 100 20 313 85 

T cell 94 807 12 1000 20 1621 860 

C. elegans2 86024 75 50 20 147 NA 

C. elegans2 86024 75 100 20 216 NA 

C. elegans2 86024 75 500 20 811 NA 

C. elegans2 85024 75 1000 20 1515 NA 

C. elegans2 85024 75 5000 20 Memory out NA 

C. elegans2 86024 50 50 20 115 NA 

C. elegans2 86024 50 100 20 146 NA 

C. elegans2 86024 50 500 20 564 NA 

C. elegans2 85024 50 1000 20 1002 NA 

1 variables were measured phenotypic markers (FACS/mass spectrometry) for B and T cell data, variable 
genes and the first 40 principal components for small intestine scRNAseq 
2 C. elegans datasets was calculated on a computer with 48 cores and 254GB memory 
Comparison of tSpace and other trajectory inference algorithms 
We compared the output of tSpace with p-Creode, Monocle2, diffusion maps, PAGA, and UMAP (Fig. 
S10-S14), all trajectory inference algorithms designed to be agnostic towards different single cell 
technologies, and not require any additional input or supervision from the user (e.g. estimates of the 
relative rates of proliferation and loss, start or end cell points). Each of the algorithms provide different 
outputs, therefore it is hard to have standardized mathematical comparison, however we use known 



 

biology to determine (i) how faithfully each one of them reconstructs developmental relations, (ii) how 
deterministic output is and (iii) sensitivity of the algorithm to transient and rare populations.  
p-Creode was originally developed for mass cytometry therefore we hoped to find it easy to apply to our 
FACS and mass cytometry datasets. We found p-Creode, despite the existence of the available tutorial, 
difficult to optimize due to striking changes if parameters are slightly altered as illustrated in Fig. S10 (T 
cell) & S11 (B cell). Moreover, in order to run p-Creode, both of our data sets (94,807 T cells, or 17,916 B 
cells) had to be downsampled below 14 000 cells, impacting detection of rare cell populations (e.g. in Fig. 
S10 Foxp3+ Tregs are not separated as a branch of CD4 T cells, and in Fig. S13 plasmablasts are never 
detected). The inconsistent output of cell cluster relations and marker intensities produced by p-Creode, 
in our opinion, would significantly hinder interpretation of novel datasets. These observed problems are in 
fact consistent with the original p-Creode publication, where the authors show the algorithm yields quite 
different outputs when data is re-sampled (Parks et al., 2006). 
In contrast, tSpace is highly reproducible and robust. Run on the same sample and with the same 
parameters, it is nearly deterministic: the only non-deterministic component of the algorithm is the 
selection of waypoints. It is also robust to the selection of tSpace parameters (Figs. S1 & S2). It is 
significant that Herring et al. independently applied p-Creode to a thymocyte flow cytometry dataset and 
(just as in our own test) p-Creode failed to define Treg branching. Again, this likely reflects the 
unavoidable problems associated with the requirement for clustering or downsampling. 

Monocle2 failed to order T and B cells in a developmentally meaningful way (Fig. S12A, Fig. S13A). In 
addition, Monocle2 also required downsampling of both datasets, probably due to memory reasons. 
Monocle3 provides trajectory inference as one of its applications by utilizing UMAP to embed cells in 
2D/3D and finally fitting principal curves using that embedding. In complex looping datasets 2D or even 
3D embeddings are likely to position independent branches or pathways on top of each other. Thus, in 
contrast to Monocle3 we prefer to select pathways/trajectories of cells manually, using at least the first 3-4 
tPCs. Due to Monocle3 reliance on UMAP please see further below UMAP comparison with tSpace. 
Diffusion Maps ordered cells comparable to tSpace providing developmentally correct relations (Fig. 
S12B, Fig. S13B). However, diffusion maps do not reveal multiple branches as clearly as tSpace (please 
compare Fig. 1B and Fig. S12B). Also, in the diffusion map projection IgM memory B cells are positioned 
as an intermediate state from naïve B cells to memory IgA and IgG B cells, instead of stemming as a 
separate branch from naïve B cells (the latter expected from known biology). The limited ability to reveal 
multiple branches is consistent with the original report (Butler et al., 2018), in which the authors claim that 
for multiple subsequent branches, diffusion maps should be applied iteratively. Interestingly, the first 
diffusion component, for both data sets (mouse T and human B cell), did not reflect developmental 
relations (Fig. S12C & Fig. S13C).  
Diffusion maps (DM) is faster algorithm than tSpace, however empirically we show (Fig. S12 B-C, Fig. 
S13 B-C, Fig S14 D-E), what the authors of DM and diffusion pseudotime (DPT) state in the article, that 
DM & DPT perform well for one bifurcation but for more complex structures identification of branches has 
to happen iteratively, making it impractical for complex data such as mouse intestine or C. elegans. A 
great example is a complex intestinal dataset, which contains ample number of enteroendocrine cell 
subtypes, as seen in tSpace representation (Fig. 3A). DM does not even resolve fully enterocytes, nor 
shows any of the enteroendocrine cell types (Fig. S14 D-E). Here we would like to emphasize that DM 
algorithm lends its time efficiency to matrix operations, which may have its limitations in large datasets. 
Indeed, as implemented in R, diffusion maps cannot handle datasets large as C. elegans. Function 
requires a distance matrix created from the gene expression data, which in this case would require a 
matrix with dimensions of 86024x86024; unlikely to be handled memory-wise by a cluster of 48 cores with 
254 GB memory, even less so by a personal computer.  
Here we would like to clarify that DM-DPT and Wishbone, yet another algorithm related to tSpace 
because of use of Wanderlust, both use diffusion maps embedding. Namely Wishbone applies 
Wanderlust on kNN graph, constructed using diffusion maps embedding, while tSpace applies 
Wanderlust on subgraphs (keep L out of K nodes, each subgraph can be seen as a subset of “random 



 

walks”) of a kNN graph constructed using all informative principal components of gene expression space. 
Haghverdi et al. claim that use of Wanderlust provides unreliable geodesic distances for complicated 
manifolds containing turns, multiple branching and larger amount of noise (Haghverdi et al., 2016). 
However, we demonstrate using real world complex data, such as C. elegans, that tSpace, estimates cell 
positions remarkably well and concordant to the real cell developmental time (Fig. 4 B, D-F), separates all 
major lineages in C. elegans and retains precision in the early developmental stages (Fig. S9). 
Partition-based graph abstraction (PAGA) relies on existing algorithms to unveil data manifolds, such 
as t-SNE or UMAP, (Fig. S12D & Fig. S13D) and the Louvain algorithm to determine clusters (Fig. S12D-
F & Fig. S13E-F). The “novel step” in PAGA analyses determines meaningful connections between the 
clusters and partitions the graph. PAGA analysis of T and B cells is summarized in Fig. S12D-H and 
S13D-G, respectively. PAGA on T cell data used 13 and 26 clusters. While automatic clustering for the 
most part agrees with manual gating (Fig. S12E-F & Fig. S13F), it fails to subset DP TCRb+ CD3e+ 
(DP*), SP CD8 recent emigrants in T cell dataset, and is not always concordant with expert manual 
gating, which remains the gold standard in immunology. PAGA analysis of T cells (Fig. S12G), even after 
optimization, does not connect DN2 and DN3 (cluster 10) to the rest of the T cells, and connects SP CD4 
(cluster 7) and SP CD8 (cluster 9) via Treg (cluster 11). Treg should branch from CD4 cells. [Interestingly, 
at very high K of 100, tSpace begins to make this aberrant connection via Treg as well (Fig. S2; this is 
discussed as an issue with tSpace parameter selection earlier). 
Increasing the number of clusters in PAGA T cell analysis from 13 to 26 only fractionates DP T cells and 
does not improve connectivity between cell populations (Fig. S12H). PAGA analysis of B cells used 23 
clusters and (Fig. S13G) connects clusters similarly to diffusion maps: blood naïve B cells start in cluster 
4 and differentiate via clusters 12, 3, 0, 6, 1 into memory IgM cells (cluster 13), or IgG memory (cluster 7), 
and IgA memory (cluster 9). Memory IgM cells are not connected to germinal center (clusters 5, 14 and 
2). Cluster 15, mix of IgA, IgG memory cells connects to cluster 2, which is a mix of IgA GCB, and to 
lesser extent centroblasts and GCB IgG B cells, already suggesting discrepancy to known biology in 
which GCB IgA or IgG cells should be differentiated out of centroblasts (clusters 5 & 14). Overall, PAGA 
does not agree with known biology completely, which can be problematic. Additionally, as much as the 
abstraction step in PAGA can be useful as a summary, it can also reduce a biologist’s ability to explore 
the data and isolate fine structures or features seen only in single cell/single point representations. This is 
amply illustrated in the confusing connectivity of abstracted relationships by PAGA in our tonsil dataset. In 
contrast, the tSpace projection allows visualization of predominant paths and branches but retains 
positioning of individual cell intermediates that rather intuitively illustrate alternative paths suggested by 
the data.  
Uniform Manifold Approximation and Projection (UMAP) of T cell (thymus) and B cell (tonsil) data 
unveils the manifold (Fig. S12D & Fig. S13D) and aligns cells in developmentally meaningful ways, 
similarly to tSpace. However, tSpace analysis of intestinal single cell RNAseq outperforms UMAP in 
preservation of cellular developmental relations (UMAP clusters cells appropriately but does not retain the 
lineage relationships. Fig S14A & B).  

Although UMAP applied conventionally to phenotypic profiles does not perform as well as tSpace, UMAP 
offers an interesting tool for visualization of tSpace relationships. Please see and compare UMAP 
embedding of cells based on tSpace trajectories (Fig. S6 and S14C) and contrast it with UMAP 
embedding of phenotypic profiles (Fig. S14A & B). UMAP does a good job of reducing trajectory space to 
two dimensions while preserving relationships and branching. 
We also analyzed the intestinal scRNAseq data with diffusion maps, Monocle2 and UMAP (Fig. S14). 
Overall, the diffusion map algorithm performs well in determining major branches but fails to unveil early 
differentiation steps or sub-branching within the absorptive and secretory branches. Additionally, rare 
populations e.g. slEEP cells (express Neurog3), are not easily detectable (Fig. S14D-E). UMAP, 
depending on the minimum distance parameter (minimum value ~0, maximum value 1) will either show 
separated clusters (Fig. S14A, min_dis = 0.1) or gradual connections between them (Fig. S14B, min_dis. 
= 1). Contrary to diffusion maps, UMAP separates rare slEEP cells from goblet cells (Fig. S14B, arrow). 
However, even with the maximum value for minimum distance parameter, UMAP embedding of cell 



 

profiles is not able to show the known connection between slEEP cells and rest of the enteroendocrine 
subsets.  
Conclusions 
Taken altogether, tSpace visually represents all intestinal developmental stages more equally than 
diffusion maps and detects multiple branches better than diffusion maps or UMAP alone. Existing 
algorithms by virtue of clustering (or use of force directed graphing) also limit the ability to visualize the 
existence of individual or scattered cells between major paths, which may reflect the diversity of 
differentiation sequences possible within a population. We believe a major reason for the strong 
performance of tSpace is the Wanderlust algorithm for calculation of distances, which distinguishes it from 
all the other methods here. The representation of cells in the dense matrix of trajectory space rather than 
the sparse matrix of KNN graph space also adds to the robustness of the method.  
 



 

 
Fig. S1. Effect of Wanderlust and of number of calculated trajectories (T) on tSpace output, related 
to Figure 1: A-B thymic T cell data and c scRNAseq of mouse intestine. A tSpace analysis using the 
Dijkstra algorithm to define distances (Dijkstra, 1959). The Dijkstra algorithm calculates shortest distances 
between cells within a KNN, but without the subgraph averaging or waypoint optimization implemented in 
Wanderlust. An increase in calculated trajectories slightly improves the shape of data. Mathematically, 
tSpace with Dijkstra is similar to the isomap (Tenenbaum et al., 2000). B tSpace analysis of thymocyte 
FACS data using Wanderlust (Bendall et al., 2014). Use of Wanderlust to define trajectories results in 
tighter and more distinct branches (compare right to left panels). Increasing the number of calculated 
trajectories improves the definition of developmental sequences as well; but the position of cells in 
trajectory space (in the tSpace output) tends to stabilize between 100 and 1000 trajectories in 
experimental datasets. Breaks between cells (blue lines) seen with very low T (5 or 10 calculated 



 

trajectories) reflect the influence of waypoints. For orientation, we labeled in red DN3 and DP T-cells. C 
tSpace on intestinal scRNAseq dataset illustrating stabilization of developmental relationships between 
100 and 1000 T. For visualization of cell relationships in trajectory space, PCA embedding is used here. 
 
 
 



 

 
Fig. S2. tSpace output as a function of K, L, and distance metric (Euclidean vs. Pearson 
correlation), related to Figure 1 A-D PCA embedding of trajectory space matrices with different 
parameters using Euclidean distance. E-F PCA embedding of trajectory space matrices with different 
parameters using Pearson correlation. Pearson correlation tightens populations and branches compared 
to Euclidean (arrow 1). Overall results are robust to a range of parameters, but smaller K reveals more 
local details and structures of the manifold, and prevents dispersion of cells (e.g. see small DN2 subset, 
arrow 2). With high K (Euclidean metric), some DN2 cells begin to form a bridge inappropriately towards 



 

terminally differentiated Tregs (asterisks and inset panels showing different angle). The choice of distance 
metric (Euclidean vs Pearson correlation) affects the shape of the manifold but developmental 
relationships are retained. The numbers of trajectories (T = 250) and subgraphs (G = 5) were constant. 
Results with 15 subgraphs were similar (not shown). NL – not labeled, DN – double negative, DP – 
double positive. 
 
  



 

 
Fig. S3. Manual gating strategy for conventional definition of T cell subsets in the thymus, related 
to Figure 1. Red gates mark final cell populations used for highlighting in tSpace visualization. Arrows 
mark flow of the gating. 
 



 

 
Fig. S4. Manual gating strategy for tonsil B cell subsets, related to Figure 2. Red gates mark final 
cell populations labeled for visualization in tSpace analyses. Arrows mark flow of the gating. 
 
  



 

 

 
Fig. S5. tSpace reveals tonsil B cell development, related to Figure 2. A Principal component 
embedding of cells in trajectory space: principal components tPC1 (delineating naïve to GC and mature 
memory transition) vs tPC4 (delineating pathways to IgG vs IgA expression) are plotted. Coloring based 
on cell staining for the indicated markers. B tSpace projection using tPC3 and tPC4 with cells colored by 
distance from naïve B cells within trajectory space. C-D Changes in phenotypic markers and trafficking 
markers along B cell maturation trajectory from naïve B cells to IgA (C) or IgG (D) plasmablasts. 



 

  

 
Fig. S6. UMAP embedding of tSpace distance matrix, related to Figure 3. Most developmental 
branching relationships are retained in 2D UMAP embedding of the dense tSpace distance matrix (A-B). 
UMAP of tSpace matrix with min_dis = 1 A Euclidean and B Manhattan distance. slEEP cells are marked 
with an arrow. TA – transit amplifying, CBC – crypt base columnar, sc-CBC slow-cycling CBC, EE – 
enteroendocrine cells. 



 



 

Fig. S7. Proposed labels for the cell populations within the intestinal crypt based on 
developmental distance (distances along isolated cell paths from tSpace) and subset markers, 
related to Figure 3. A t-SNE visualization of cell populations, with the original labels2. B t-SNE 
visualization of cell populations determined using all variable genes and unsupervised clustering provided 
in Seurat package. Annotation of subsets is from Yan et al. based on unsupervised clustering and 
association with known intestinal populations. C Smoothed expression of markers5 that define the crypt 
zone (orange), cell cycle and proliferation (green), and populations (CBC, TA) associated with the 
intestinal crypt along isolated trajectories: these markers were used to re-evaluate cell designations, 
identify putative label retaining cells (LRC, blue), crypt base columnar (CBC, yellow) and transit amplifying 
(TA, pink) cells. We used peaks of expression of multiple subset-associated genes to define specific cell 
types. Vertical black lines are suggested boundaries between cell populations. The combination of 
proliferation markers (green) with CBC and TA cell markers allows separation of slow cycling CBC and 
cycling TA cells. Dll1 and Sox4 are exclusively expressed by TA within the EE branch, while Alpi gene 
and Ppard are specific to TA within the enterocyte branch. The cell identities defined provide landmarks 
for orientation, but tSpace visualization emphasizes that these populations actually exist in the tissue as 
part of a developmental continuum. D t-SNE visualization of the newly tSpace-defined cell populations 
within the crypt. Arrows point to the slEEP cells, delineated in trajectory space and known to exist in 
intestinal crypt, but which are not defined by conventional t-SNE, SPADE or unsupervised clustering 
(Seurat) but rather clustered with goblet cells. Cells labeled with 0 are all cells that did not fall into our 
vertical gates. E Selected markers from C panel, shown in a t-SNE map.  
 
  



 

 
Fig. S8. Trajectory analysis allows identification of candidate TF’s and TF modules for enterocyte 
and enteroendocrine (EE) differentiation, related to Figure 3. A Expression patterns of genes that 
regulate intestinal crypt development reviewed by Hans Clevers, along the isolated trajectories confirm 
known biology. Cell labels from original publication, our proposed cell labels and short lived 
enteroendocrine progenitors (slEEP) are marked along the trajectories. Cell stage (Transparent Methods) 
and cell identities defined here (cell subsets) or in Yan et al. (Original labels) are indicated above the 
heatmap. B Heatmap of single cell correlations between two trajectories and alignment cost (thin black 
contour bars), which is minimal along the thicker black line. Trajectories were aligned with dynamic time 
warping and subsequently sectioned into 6 segments for further pair-wise comparison (e.g. Stage 1 EE 



 

branch vs Stage 1 enterocyte branch). C Co-expression analysis of transcription factors identifies 4 
modules (M1-M4) specific for intestinal crypt and cell commitment to enterocyte or EE lineages. Stages 
shown next to the TFs are the earliest stage when TF was significantly changed in one of the compared 
trajectories. Biological functions of TFs are highlighted in the panel below the correlation heatmap. 
 
  



 

 
Fig. S9. Benchmarking of tSpace performance using full C. elegans dataset demonstrates 
perseverance of developmental relations even in the early developmental phases, related to 
Figure 4. A Lineage tree of the ABpxppp sublineage descendants [recreated from Fig. 2F in (Packer et 
al. 2019)] a – anterior, p – posterior, x – left or right, as part of the standard nomenclature in C. elegans 
development. B and inset C UMAP of 75 PCs of gene expression matrix, recreating the UMAP from 
Packer et al., showing the ABpxppp sublineage scattered and disconnected. In order to create correctly 
connected sublineage cells Packer et al. had to calculate separate UMAP of 8083 neuron, glia, and rectal 
progenitor cells with embryo time ≤250 min unlike D-I tSpace calculation using full C. elegans dataset. D-
E The ABpxpppa sublineage cells seen in tPC1, tPC4 and tPC5 are well connected and correctly ordered 
as expected (A). E Three cell subpopulations are branched out from the correct cell precursors. F tSpace 
showing ABpxpppa, ABpxpppp and their imminent cell daughters, correctly ordered in developmental 
time, but visually not separated. G The ABpxppppp sublineage cells seen in tPC1, tPC4 and tPC5 are 
well connected and correctly ordered. H tSpace showing full ABpxppp sublineage in tPC1, tPC4 and 
tPC5. I tSpace showing full ABpxppp sublineage in tPC1, tPC4 and tPC5 and terminally differentiated 
muscle cells. ABpxpppppa (blue) is close to the muscle branch but very distinct unlike in UMAP (see 
arrow in inset C). All muscle cells develop from MS lineage not AB, a fact hard to conclude in UMAP 
analysis (inset C).  
 



 

 

 
Fig. S10. p-Creode analysis of thymocyte development, related to Figure 1. p-Creode analysis 
requires downsampling, is inconsistent and sensitive to choice of parameters, related to Figure 1. We ran 
p-Creode using (A-C, G-H) originally measured markers vs. (D-F, I-K) principal components, which is 
suggested by p-Creode tutorial. We compared the effect of different values of radius parameter. A and D 
suggested radius, B, C, E and F cell density graphs for different radius. G, H, I, J different p-Creode 
analysis depended on selection of radius (G & I radius 0.1, H & J/K radius 0.2) and measured markers vs 
5 principal components. K p-Creode analysis of the same T cell data with the same parameters as in J, 
showing effect of random downsampling on the final output of p-Creode. 



 

 
Fig. S11. p-Creode analysis of tonsil B cells, related to Figure 2. As for thymocytes, the output is 



 

sensitive to choice of parameters. It also fails to differentiate small populations (plasmablasts), related to 
Figure 2. p-Creode of tonsil B cells. We ran p-Creode using originally measured markers (left panels) or 
principal components (right panels), which is suggested by the p-Creode tutorial; and we compared the 
effect of different values of the critical radius parameter. Red and blue squares mark analyses that are 
closest to real biology. A and D suggested radius, B, C, E and F cell density graphs for different radius. 
Four squares show different p-Creode analysis depended on selection of the radius and on use of 
measured parameters or 15 principal components. Red and blue squares label closest p-Creode solution 
to the real biology. 
 
  



 

 
Fig. S12. T cell data analyzed using A Monocle2, B-C diffusion maps, D UMAP and E-H PAGA, related to 
Figure 1. Monocle2 failed to reveal the relatively simple T cell maturation branching. Diffusion maps, if the 
first diffusion component is ignored (DC1 is shown in panel C) reveals CD4 and CD8 branching as 
appropriate, however subtle sub-branches (i.e. of Tregs vs conventional CD4 mature T cells) are not 
prominent. PAGA fails to connect DN2 and DN3 precursors to DN4 and the rest of more mature T cells. 
 



 

 
 
Fig. S13. B cell data analyzed using A Monocle2, B-C diffusion maps, D UMAP, E-G PAGA, related to 
Figure 2. Monocle2 (A) fails to reveal B cell maturation in tonsil. Diffusion maps (B and C), as in T cell 
data if the first diffusion component is ignored, reveals central developmental paths in B cell development 
but positions IgM memory cells along the core path from naïve cells to germinal center cells (GCC); but 
obscures links from GC to memory cells that are revealed by intermediates in tSpace. UMAP (D) clusters 
cells obscuring intermediate populations and potential alternative differentiation sequences. PAGA (E-G) 
connects naïve cells with germinal center (GC) B cells through IgG and IgA memory B cells, without direct 
connection between naïve and GC. 
 



 

 
 
 

 
Fig. S14. Diffusion map and UMAP analysis of mouse small intestine, related to Figure 3. A-B 
UMAP of gene expression with Euclidean distance and different min_dis parameters A 0.1, B 1. UMAP 
on variable genes, even with the “loosest” setting for min_dis (B) fails to connect slEEP cells to the rest of 
secretory subsets. C UMAP embedding of cell trajectory profiles (tSpace matrix), in contrast to UMAP of 
gene expression profiles (B), distinguishes sIEEP cells and correctly positions them on a path from stem 
cells to EE populations, which are well separated in the trajectory space UMAP projection. UMAP 
embedding, for visualization, of the trajectory space matrix (here and in Fig. S6) and PCA embedding of 
tSpace (as shown in text Fig. 3A) outperform all of the methods we evaluated. Arrow marks position of 
slEEP cells. D Diffusion maps with all cell types. Diffusion map branches Paneth, goblet, tuft and 
enterocytes, while the rest of secretory subsets are not represented, and it fails to show connection 
between crypt base columnar cells and the rest of differentiated cells, suggesting that diffusion maps 
perform well in determination of differentiated cells, however E Neurog3 gene expressing cells, described 
in the manuscript as slEEP cells are lost in the cloud of early stem cells. F Monocle2 reveals only two 
major branches absorptive and secretory, without any subtleties, and sub-branches of the secretory 
branch are missing.  
  



 

Transparent Methods 
 
Lead contact and materials availability  
Datasets generated in this study (FACS and CyTOF) are available upon reasonable request. Further 
information and requests will be fulfilled by the Lead Contact, Denis Dermadi (ddermadi@stanford.edu, 
denisdermadi.com).  
Experimental model and subject details 
Animals 
Two C57BL/6J male mice, used for thymic T cell isolation and immunofluorescent microscopy, were bred 
and maintained in the animal facilities of the Veterans Affairs Palo Alto Health Care System, accredited 
by the Association for Assessment and Accreditation of Laboratory Animal Care. All animal work was 
approved by the Institutional Animal Care and Use Committee at the Veterans Affairs Palo Alto Health 
Care System. Sex and age of the mice are not relevant for this study. 
Human tissues  
Heparinized peripheral blood from one donor (10 - 40 mL) was obtained via venipuncture and processed 
using Ficoll density gradient centrifugation (Histopaque-1077, Sigma-Aldrich). The interface containing 
the peripheral blood mononuclear cells (PBMC) was extracted, washed twice with HBSS without Ca2+ and 
Mg2+ (Corning), and cryopreserved in FBS with 10% DMSO (10 - 20 millions/vial, 1mL). Human tonsils 
were obtained from the Stanford Tissue Bank (IRB protocol number 17204). The tonsils were cut into 
small pieces and the lymphocytes were released with HBSS containing Ca2+ and Mg2+ (Corning). The cell 
suspension was spun at 300 g, 4º C for 5 min; pelleted cells were frozen in FBS with 10% DMSO (10 - 20 
millions/vial, 1mL). Samples were stored in liquid nitrogen until use. Sex, gender, and information about 
age of the samples are not relevant for this study. 
Method details 
Immunostaining for FACS and mass spectrometry 
Flow cytometry of thymic T cells. Thymic T cells from two C57BL/6 male mice were 
immunophenotyped using a panel of antibodies to 13 markers involved in T cell development and 
maturation. Briefly, thymi were homogenized to obtain a single cell suspension. Cells were blocked with 
Fc-block (1:100) and rat serum (1:50) for 15 min at room temperature. We stained cellular surface in two 
steps: first primary antibody cocktail for 40 min, followed by 30 min secondary anti-biotin (streptavidin) 
stain (Key resource table). We fixed cells in 1% PFA for 5 min and stained intracellular content for Foxp3 
in permeabilization buffer (eBiosciences) over night. Antibodies used in this study are indicated in the Key 
Resources Table.  
On average, 100 000 events were collected using BD LSRFortessa™ (BD Biosciences) cell analyzer with 
5 lasers. Some antibodies failed to stain significantly above background: these are not discussed further. 
Antibodies used for tSpace calculations are labeled in bold.  
Mass spectrometry (CyTOF) antibodies. Mass cytometry antibodies were either purchased from 
Fluidigm (Sunnyvale, CA) or labeled in-house using MaxPAR X8 antibody conjugation kits (Fluidigm) 
following the manufacturer’s protocol. Mass cytometry antibodies used are in Key resource table. 
Antibodies were diluted in Candor PBS Antibody Stabilization solution (Candor Bioscience GmbH, 
Wangen, Germany) supplemented with 0.02% NaN3 (final concentration) and stored up to 6 months at 4º 
C.  
Mass cytometry of human B cells in tonsils and blood. Cryopreserved PBMC or lymphocytes from 
tonsil were thawed at 37º C with gentle manual agitation, washed twice with HBSS without Ca2+ and 
Mg2+ supplemented with 10% bovine calf serum and resuspended at 20M cells/ml in CyFACS buffer (PBS 
with no heavy metal contaminants (Rockland Immunochemicals, Limerick, PA) with 1% FBS (Sigma) and 



 

0.1% sodium azide). 5 million cells of each sample were used for staining. Cells were initially blocked for 
10 minutes at 4º C with 0.5 µl normal human serum (Sigma) and 2.5 µl goat serum (Gibco) and then 
washed in CyFACS buffer (all subsequent washes were done with CyFACS buffer unless specified 
otherwise). Cells were incubated with purified, unconjugated anti-GPR15 for 45 minutes 4º C, washed 
once, then incubated with goat-anti-mouse IgG -168 for 30 minutes 4º C and washed. Cells were blocked 
with 2.5 µl normal mouse serum (Sigma) for 10 minutes 4º C, washed once and stained with a cocktail of 
primary antibodies for 45 minutes 4º C. Samples were washed and stained with metal-conjugated 
secondary antibodies against FITC to detect CLA-FITC and APC to detect a4b7-APC for 30 minutes 4º C 
and washed. Live/dead stain was performed for 30 minutes 4º C using 139In-DOTA maleimide 
(Macrocyclics, Plano, TX) diluted 1:2000 in CyPBS (Rockland), washed twice and fixed overnight at 4º C 
in 2% paraformaldehyde (Electron Microscopy Systems). The next day, samples were washed twice and 
barcoded using the 20-plex Cell ID kit from Fluidigm according to the manufacturer’s protocol except for 
two modifications. Cells were fixed overnight in 2% PFA instead of fixed in FixI buffer (for 10 mins at RT) 
provided with the kit and barcoding was performed after surface staining rather than before. After 
barcoding, the samples were washed once in CyFACS, once in fixation/permeabilization buffer 
(eBiosciences) and then combined prior to intracellular staining. Intracellular staining was performed for 
45 minutes 4º C using a cocktail of antibody conjugates against intracellular targets, washed twice with 
CyFACS buffer and DNA content stained for 20 minutes at room temperature using Ir-interchelator 
(Fluidigm) diluted 1:500 in 2% PFA. Final washes were performed (twice with CyFACS, once with CyPBS 
and once with milliQ water) then resuspended in 500 µl milliQ water. 
The samples were filtered through cell strainer cap FACS tubes, counted and the cell concentration 
adjusted to 600 000 - 1 million cells/ml with milliQ H2O containing bead standards (Fluidigm) prior to 
acquiring the sample on the CyTOF 2.0 mass cytometer (Fluidigm). Between 1 - 1.5 million total events 
were acquired. After the samples were manually de-barcoded by gating in FlowJo using the specific 
combination of three metals unique to each individual sample, 30 000 - 70 000 total cellular events 
remained. 

Antibodies used in this study are indicated in the Key Resources Table. Cell markers used for tSpace 
calculation were: CCR6, CD19, IgD, CXCR5, CD20, CD69, CCR4, CD103, CLA, CCR2, CD22, CXCR3, 
CD77, CCR7, CCR9, CD62L, CCR10, CD27, GPR15, a4b7, IgA, IgM, P-selectin, CD38 and IgG. 
Quantification and statistical analysis 
Computational processing of acquired data  
Software. tSpace was performed in R [3.4.+] and MATLAB [9.3.0.713579 (R2017b)]. R language was 
used for other analyses: plots (plotly & shiny packages), t-SNE (Rtsne package) and UMAP (umap 
package), developmental branches isolation. All analysis code is available upon request. For gating of 
cell populations, we used FlowJo (10.2).  
Processing and tSpace analysis of flow cytometry data. We inspected raw FCS files for artifacts and 
outliers in R or FlowJo and filtered out all events with fluorescence values higher or lower than 0.0001% 
quantile of the measured markers. We used t-SNE to filter out cells that were negative for all markers to 
be used in tSpace.  
For thymus, NK1.1+ cells were removed manually in FlowJo. Remaining events were exported in a CSV 
file for tSpace. Thymic data were transformed using logicle (Parks et al., 2006) (included only in the 
MATLAB tSpace package). tSpace parameters were: distance metric = cosine, K = 15, L = 12, G = 5, WP 
= 20 and T = 1000. K-means clustering, as part of tSpace, on expression values of measured markers 
was used to define 1000 clusters for selection of the T (1000) trajectory start cells. 
Processing of mass cytometry (CyTOF) FCS files. Data were normalized using the normalization 
software embedded within the CyTOF software. CyTOF records a value of zero for channels without 
detected metal. For better visualization, all zero values were assigned random values from a uniform 
distribution with minimum -1 and maximum 0 using a script in R. Data was transformed applying inverse 
hyperbolic sine (asinh function in R and MATLAB) with coefficient 5. We used t-SNE to find outliers, which 



 

were gated out in FlowJo. For tonsil, CD19+ or CD38high cells were gated for tSpace. Parameters in 
tSpace analysis were: distance metric = cosine, K = 17, L = 12, G = 5, WP = 20 and T = 1000 (Fig. 2, Fig. 
S6) or T = 100 (Fig. S5). 
Processing of scRNAseq files. In intestinal dataset we used for tSpace calculation 2420 variable genes 
determined by the authors using Seurat R package (Butler et al., 2018). Parameters used for tSpace 
were distance metric = Pearson correlation, K = 20, L = 15, G = 5, WP = 15. We calculated ground truth 
trajectory matrix (for all cells, T = 3521). 
For C. elegans dataset we selected all cells that passed original quality, normalized and scaled data as 
described (Packer et al., 2019) and performed tSpace analysis using 75 principal components in gene 
expression space with the following parameters: K = 25, L = 0.75*K, T = 1000, WP =  20, G = 5, 
distance_metric = pearson_correlation. Analysis was performed on a server with 48 cores and 254 GB 
memory.  
tSpace running times. We measured the (reasonable) time required for tSpace analysis for 100 and 
1000 trajectories (T) for our B cell tonsil dataset (17,956 cells, 26 variables), for the 3521 cell/2420 
variable gene, 3521 cell/ 40 principal components scRNAseq sample and for our thymus dataset 
(~95,000 cells, 12 variables). Run times were obtained on a 2-core personal computer. C. elegans 
dataset (86,024 cells) was used to provide insight in analysis times of large datasets. We run all analysis 
on 48 core-computer with 254 GB memory. 50, 100, 500 and 1000 trajectories were calculated using 75 
and 50 principal components from gene expression space. 
Labeling of literature defined cell populations for tSpace validation. We manually gated on the 
indicated populations of T and B cells in FlowJo as illustrated in Fig. S3. and Fig. S4. Gated subsets were 
used to label and validate cell positions in tSpace visualization. For intestinal data we used cluster 
annotations from the original study for fully differentiated EE and enterocyte populations, however crypt 
associated (stem and transit amplifying) populations were labeled based on accepted markers along the 
developmental trajectories (Clevers, 2013) shown in Fig. S7. We used gene expression along the isolated 
developmental branches to identify and define crypt base columnar (CBC) cells, slowly cycling sc-CBC, 
cycling transit amplifying (c-TA) and TA cells. Examination of markers proposed to mark so-called 
Potten’s “+4 cells” (Potten et al., 2003), suggested that these cells likely co-exist with or are the same as 
sc-CBC cells (Fig. S7C, E). Interestingly, many cells expressing transit amplifying markers and 
proliferation genes were assigned to already differentiated cells or cycling stem cells in the original 
publication (Fig. S7A-C). With tSpace we were able to detect, and position in putative developmental 
sequence, rare and transient populations (e.g. short lived enteroendocrine progenitors, slEEP, Fig. 3D). 
Isolation of developmental branches and calculation of expression changes along them. We 
manually gated on cells along specific developmental branches or pathways as visualized in the first 3-5 
tPCs, using standard gating approaches in Flowjo, R or JMP. An example can be seen in vignette file 
accompanying our R package or online (http://denisdermadi.com/tspace-trajectory-inference-algorithm). 
Trajectories are directionless, thus, for orientation we relied on prior knowledge in the context of manually 
gated cell populations (e.g. thymic T and tonsil B cell developmental sequences) or expression of known 
marker of stem cells in intestine (Lgr5). Trajectory distances along the isolated developmental sequences 
were accessed from the tSpace distance matrices: we identified trajectories within the tSpace cell 
distance matrix that ‘start’ from cells at or near the putative origin of isolated sequences (i.e., trajectories 
for which the chosen start cells have the lowest distance value). Column names of trajectory space matrix 
contain cell indices associated with each trajectory in the distance matrix, facilitating identification of 
desired trajectories (see example online: http://denisdermadi.com/tspace-trajectory-inference-algorithm). 
One or more such trajectories were averaged for each developmental pathway isolated. Cells within 
isolated trajectories were ordered based on their trajectory distances and smoothed values of 
gene/protein expression along trajectories were visualized. 
 
Systems biology analysis downstream of trajectory inference 



 

Alignment of the intestinal trajectories and transcription factor analysis. Absorptive and secretory 
branches share many early cells e.g. CBC, sc-CBC and c-TA (Fig. 3A-C) before they separate fully in 
tSpace projection. In order to compare transcription factors expressed during initial branching of secretory 
and absorptive cells, early segments of secretory and absorptive trajectories were aligned using dynamic 
time warping (DTW) (Giorgino, 2009). DTW aligns sets of data points that can be represented as linear 
sequences, here cells ordered by tSpace along the absorptive and secretory branches. It calculates an 
optimal match between two sequences independently of rates of change. We performed DTW as a 
downstream analysis in R using dtw package and all variable genes to align the two branches, with 
absorptive as template and secretory as a query (Fig. S8B). DTW allowed us to split aligned sequences 
into 6 stages based on commonalities in gene expression. Significant differences in expression of mouse 
transcription factors (TFs, http://tcofdb.org/) within the same stages between the two trajectories were 
determined using a permutation test (Đermadi et al., 2014). Briefly, in permutation test we first define 
observed difference as a difference of medians of the same stage between the two trajectories (e.g. for 
each TF we calculate the difference between medians of TF expression for stage 1 of enterocyte and 
enteroendocrine trajectories). Then, TF expression values for each cell in stage 1 of these two trajectories 
are combined and randomly sampled to create two new groups (A and B) of sizes equal to the original 
groups. Then we calculate for each TF difference between medians of TF expression for group A and B. 
This is repeated 1000 times. Final statistics, p-value is defined as the sum of the absolute values of 
differences from permutation step that are higher or equal to the observed difference between the two 
trajectories and divided by the number of permutations. P-values are finally corrected for multiple testing 
using padjust R function and false discovery rate method. 
TF modules were determined based on correlation of expression of significantly different TFs along the 
aligned trajectories. We define significant TFs with the p-value < 0.001. Highly correlated and 
anticorrelated TFs formed four modules visible in correlation matrix (Fig. S8C). 
Gene ontology of transcription factors. Ontology terms of TFs were accessed using the R package 
Biomart and manually curated for biologically relevant terms highlighted in the Fig. S8. Many of the EE or 
enterocyte lineage TFs lack significant ontology annotation. 
Data and code availability 
Previously published dataset of intestinal cell populations was provided by the authors as normalized and 
scaled expression values (Yan et al., 2017). C. elegans dataset (86,024 cells) was downloaded from 
Gene Expression Omnibus (www.ncbi.nlm.nih.gov/geo) under accession code GSE126954. Sources for 
code used in this study are indicated in the Key Resources Table.  
Additional resources 
An example and tutorial can be seen in vignette file accompanying our R package or online 
(http://denisdermadi.com/tspace-trajectory-inference-algorithm). 
 
  



 

KEY RESOURCES TABLE 

REAGENT or 
RESOURCE SOURCE IDENTIFIER 

Antibodies 

CD90 
TCRb 
CD3e 
CD4 
CD8a 
CD24 
CD25 
CD44 
CD62L-biot 
CD117 
CCR9 
NK1.1 
Streptavidin 
Foxp3 
CCR6 
CD19 
IgD 
CXCR5 
CD4 
CD8 
CD20 
CD69 
CCR4 
CD3 
CD103 
TCRgd 
CLA  
CCR2 
CD22 
CXCR3 
CD14  
CD33 
CD77 
CCR7 
Ki67 
CCR9 
CD62L 
CCR102 

CD27 
GPR15 
goat-anti-mouse IgG 
a4b7-APC 
Anti-APC 
IgA 
b7 
IgM 

BD Biosciences 
BioLegend 
BD Biosciences 
BD Biosciences 
eBioscience 
BD Biosciences 
BioLegend 
eBioscience 
BioLegend 
BD Biosciences 
BioLegend 
BioLegend 
BD Biosciences 
eBioscience 
Fluidigm  
Fluidigm 
Biolegend 
Biolegend 
Fluidigm 
Biolegend 
Fluidigm 
Biolegend 
Fluidigm 
Biolegend 
Biolegend 
Fluidigm 
Biolegend 
Biolegend 
Biolegend 
Fluidigm 
Biolegend 
Fluidigm 
Biolegend 
Biolegend 
Fluidigm 
Produced from Hybridoma 
Produced from Hybridoma  
Produced from Hybridoma  
Fluidigm 
R&D Systems 
Invitrogen 
Produced from Hybridoma 
Biolegend 
BD Biosciences 
Biolegend 
Fluidigm 

53-2.1 
H57-597 
17A2 
RM4-5 
53-6.7 
M1/69 
PC61 
IM7 
MEL-14 
2B8 
CW-1.2 
PK136 
 
FJK-16s 
G034E3 
HIB19 
IA6-2 
RF8B2 
RPA-T4 
SK1  
2H7 
FN50 
205410 
UCHT1 
BerAct8 
11F2 
HECA452 
K036C2 
HIB22 
G02SH7 
M5E2 
WM53 
5B5 
G043H7 
B56 
L053E8 
Dreg200 
1B5 
L128 
367902 
10535 
Act-1 
APC003 
Polyclonal 
FIB504 
MHM-88 



 

P-selectin Ig 
CD38 
CD56 
IgG 
CD16 

R&D Systems 
Biolegend 
Biolegend 
BD Biosciences 
Fuidigm 

137-PS 
HIT2 
HCD56 
Polyclonal 
3G8 

Biological Samples 

Cryopreserved PBMC or 
lymphocytes from tonsil 

Stanford Tissue Bank N/A 

C57BL/6J male mice VA Animal Facility  N/A 

Chemicals, Peptides, and Recombinant Proteins 

HBSS without Ca2+ and 
Mg2+  

Corning 21-021-CV 

Fetal Bovine Serum 
(FBS) 

Sigma-Aldrich ES-009-C 

Dimethyl sulfoxide 
(DMSO) 

Sigma-Aldrich D2650 

HBSS with Ca2+ and Mg2+ Corning 21-020-CV 

Fc-block ThermoFisher - Invitrogen 14-9161-73 

Rat serum Sigma-Aldrich S24-M 

Permeabilization Buffer 
(10X) 

ThermoFisher - eBiosciences 00-8333-56 

MaxPAR X8 antibody 
conjugation kits 

Fluidigm Catalog numbers depending on the metals: 
201141A–201156A and 201158A–201176A 

Candor PBS Antibody 
Stabilization solution 

Candor Bioscience GmbH, 
Wangen, Germany 

130 050 

Sodium azide (NaN3) Sigma-Aldrich S8032 

Phosphate Buffered 
Saline (PBS) 

Rockland Immunochemicals, 
Limerick, PA 

#MB-011 

Normal human serum Sigma-Aldrich S1-100ML 

Goat serum ThermoFisher - Gibco 16210064 



 

Normal mouse serum Sigma-Aldrich NS03L-1ML 

Maleimido-mono-amide-
DOTA 

Macrocyclics, Plano, TX B-272 

Paraformaldehyde Electron Microscopy Systems RT 15700 

Cell ID kit Fluidigm 201060 

Ir-interchelator Fluidigm 201192B 

EQ™ Four Element 
Calibration Beads, bead 
standards 

Fluidigm 201078 

Histopaque-1077 Sigma-Aldrich 10771-100ML 

Deposited Data 

single cell data provided 
by the authors 

Yan et al., 2017  GSE99457 

C. elegans single cell 
data 

Packer et al., 2019 GSE126954 

Software and Algorithms 

tSpace package R 
version 

this study https://github.com/hylasD/tSpace 

tSpace MATLAB version this study https://github.com/hylasD/MATLAB_version_t
Space 

Seurat (v2+) Butler et al. 2018; https://satijalab.org/seurat/ 

R (3.4+) N/A https://www.r-project.org/ 

Rstudio N/A https://www.rstudio.com/ 

MATLAB (2017) N/A https://www.mathworks.com/products/matlab.h
tml 

FlowJo (v10.2) N/A https://www.flowjo.com/ 

ggplot2 N/A http://ggplot2.org/ 

PAGA doi.org/10.1101/208819 https://github.com/theislab/paga 



 

destiny 10.1038/nmeth.3971 https://bioconductor.org/packages/release/bioc
/html/destiny.html 

p-creode 10.1016/j.cels.2017.10.012 https://github.com/KenLauLab/pCreode 

Monocle 10.1038/nmeth.4402 http://cole-trapnell-
lab.github.io/monoclerelease/ 

umap https://arxiv.org/abs/1802.0342
6 

https://cran.r-
project.org/web/packages/umap/index.html 

Rtsne http://lvdmaaten.github.io/publi
cations/papers/JMLR_2014.pdf 

https://cran.r-
project.org/web/packages/Rtsne/index.html 

plotly N/A https://plot.ly/r/ 

shiny N/A https://shiny.rstudio.com 

dtw doi:10.18637/jss.v031.i07 https://dynamictimewarping.github.io 

Biomart 10.18129/B9.bioc.biomaRt https://bioconductor.org/packages/release/bioc
/html/biomaRt.html 

Other 

CyTOF 2.0 mass 
cytometer 

Fluidigm  

tSpace tutorial denisdermadi.com http://denisdermadi.com/tspace-trajectory-
inference-algorithm 

BD LSRFortessa™ BD Biosciences  
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