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Alpine ski analysis has always been very challenging, mainly due to the environmental
conditions, large field and rapid and dynamic skiers’ movements. Global navigation
satellite system (GNSS) offers a solution adapted to outdoor testing, but the relationship
between the point where the antenna is attached and the real centre of mass (CoM)
position is still unknown. This article proposes to compare different points of the body
used to quantify the performance of alpine skiers. 3D models of seven elite skiers
performing giant slalom (GS) were built using multiple camera system and dedicated
motion tracking software. CoM as well as pelvis, head and feet trajectories were
deduced from the data. The potential and kinetic energies corresponding to these
points were calculated, as well as the evolution of the turn radius during the turn
cycle. Differences between values given by the CoM and the other morphological points
were analyzed. The pelvis offered the best estimation of the CoM: No differences were
found for the biomechanical parameters, except for the kinetic energy, where 2% of
the turn cycle had significant different values. The head was less accurate compared
to the pelvis, showing significant differences with CoM between 7 and 20% of the
turn cycle depending on the parameter. Finally, the feet offered the worst results, with
significant differences between 16 and 41% of the turn cycle. Energies and turn radius
calculated by using pelvis in place of CoM offered similar patterns, allowing the analysis
of mechanical and dissipation energy in GS. This may potentially enable easier testing
methods to be proposed and tested.

Keywords: centre of mass, potential energy, kinetic energy, GNSS, giant slalom

INTRODUCTION

Human movement analyses are usually based on the body centre of mass (CoM) position
determination. Mechanics of different sports have widely been studied, showing the necessity to
calculate the CoM with a good accuracy to perform precise analysis [e.g., walking (Cavagna et al.,
1963; Saibene and Minetti, 2003; Willems et al., 1995), running (Kyröläinen et al., 2001), cycling
(Chèze et al., 1995)]. However, CoM calculations usually require large infrastructures such as 3D
camera system (Richards, 1999) or a force platform (Barbier et al., 2003). Kinematic arms (Belli
et al., 1993) and global navigation satellite system (GNSS) (Terrier et al., 2005) have also been
used in running and walking analysis, but these methods use a point situated on the back of the
subject to approximate the CoM. Slawinski et al. (2004) analyzed the use of a lumbar point for the
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estimation of potential and kinetic mechanical power in
running. With this method, they found an overestimation of
the kinetic power and underestimation of the potential power.
Nevertheless, results obtained by using either a fixed point
on the back or the CoM were well correlated. Gard et al.
(2004) compared three methods (i.e., force platform, marker
on the sacrum and full body model) to determine vertical
displacement of the CoM during walking. They highlighted an
overestimation of the vertical displacement of the CoM with
the sacrum marker. In alpine skiing, the CoM has also been
used as a reference to perform technical analysis (Kagawa,
2001; Schiefermüller et al., 2005), trajectories and speed analysis
(Lešnik and Zvan, 2003) and to analyze energy balance of skiers
performing turns both in giant slalom (GS) (Supej et al., 2005;
Supej, 2008) and in slalom (Reid et al.2009). More recently,
Fasel et al. (2016) used both GNSS and inertial sensors to
determine CoM in alpine skiing. An accuracy and precision
of 0.08 and 0.04 m respectively were reported for the CoM
position.

Multiple camera systems are commonly used to reconstruct
3D models of the athlete, and CoM is then calculated, with de
Leva adjustments (De Leva, 1996), using mathematical models
of the body based on Hanavan (1964), Clauser et al. (1969),
or Zatsiorsky (1983). However, this method only enables the
recording of a small acquisition volume (usually one or two
gates) and suffers from the approximation induced by the model.
Alternatively, the use of low cost, high accuracy GNSS have
expanded, allowing analyzing trajectories during a whole run
(Waegli and Skaloud, 2007; Gomez-Lopez et al., 2009; Waegli and
Skaloud, 2009; Waegli et al., 2009). However, since the CoM is
not a fixed body point, the link between the antenna trajectory
and the real CoM of the skier need to be determined. Gilgien
et al. (2013) used the pendulum principle to estimate the distance
between the real CoM position and the position given by a
GNSS antenna placed on the helmet. Another solution could
be to place the antenna to different positions. Therefore, the
aim of this work was to compare the use of either the CoM or
other morphological points to determine delta of potential energy
(1Epot), kinetic energy (Ekin) and turn radius (Trad) of alpine
skiers performing GS.

MATERIALS AND METHODS

Participants
Seven European Cup and FIS racers [mean± standard deviation
(SD): body mass 98.8 ± 9.1 kg; height 1.82 ± 0.07 m; GS FIS
points 26.45 ± 14.58] participated in the study. All participants
were healthy males without any joint motion problems (World
Medical Association, 2013).

Experimental Design and Setting
A GS run was set up with a total of six gates, with a linear
gate distance of 24 m and a lateral offset of 9 m. The first three
gates were used to initiate the rhythm, and the next three were
recorded. The slope angle was approximately 22 degrees. Six
panning and tilting cameras, 1004∗1004 pixels resolution, 48 Hz

(PiA1000, Basler, Switzerland) were positioned around the GS
run, about 35 m from the center of the zone of acquisition (i.e.,
video captured). Each camera was mounted on a special tripod
head, especially built to always keep the sensor center of the
camera at the same 3D coordinate, even when the camera was
rotated to track the skier. Reference markers mounted on poles
were positioned around the run to act as calibration and reference
points for the panning and tilting reconstruction. The capture
volume was around 60 ∗ 20 ∗ 2 m (Figure 1A). The positions of
each reference marker, gate and camera were measured with a
reflectorless total station (theodolite + laser range finder, LQTS-
522D, Longqiang, China). The cameras’ 3D coordinates were
calculated as the median of two points on either side of the
tilting axis of the camera. Each camera was connected with
Gigabit Ethernet to a dedicated laptop which directly recorded
the frames in the RAM memory of the computer, using a
software developed for this specific purpose (Swistrack, Thomas
Lochmatter, Switzerland). Cameras were also connected to battery
packs and dedicated synchronization boxes (Meyer et al., 2012).
These boxes use GNSS signal to achieve wireless synchronization
of the cameras recording system and ensure images from the
six cameras are taken simultaneously with an error of less than
2.00 µs.

The athletes used their own GS skis to completed three trials
of the GS. The runs were recorded and the time needed to
go through three considered gates was estimated by counting
the number of images captured on video. The fastest run of
each skier was then analyzed (typical speed around 20 m/s).
The selected runs were processed with SIMI motion software
(SIMI motion, SIMI, Germany), using the panning and tilting
modules. The camera’s internal (e.g., focal length, image format
and principal point) and external (e.g., camera position and
orientation) parameters needed for the analysis were determined
using the DLT 11 calibration method (Hatze, 1988; Abdel-Aziz
and Karara, 2015).

Participants had to wear a white racing suit previously
equipped with 14 black markers, a black helmet, and black
gloves. CoM of both ski poles were also marked with black
markers. In total, 19 markers were identified, and 3D models
composed of 14 segments were built (Figure 1B). The CoM of the
skier was calculated using the model proposed by Clauser et al.
(1969) modified to take the material’s weight into account. Tree
morphological points that could be used for further analysis (e.g.,
GNSS antenna placement) were also defined: The Pelvis position
was defined as the middle point between the 2 trochanters’
markers, the Feet position as the middle point between the 2
ankle-bone markers and the Head position as the center of the
helmet.

The accuracy of the reconstruction method was measured in
two different ways. First, the positions of three gates as given by
the total station were compared with the positions calculated by
the software. Second, the error in the length of each body segment
was determined.

Parameters Analysis
The 1Epot (J/kg), Ekin (J/kg), and Trad (1/m), were calculated
for the CoM and the three morphological points (i, with
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FIGURE 1 | (A) Slope setup showing the cameras, the gates and the reference points positions, (B) skier suit, markers and body segments.

i = {CoM, Head, Pelvis, Feet}). For analysis purposes, each trial
was normalized to fit a 100% temporal turn cycle, where 0 and
100% were the time points when the projection of the CoM was
between the two skis. A cubic B-splines interpolation method
was used to achieve the normalization (Greville, 1964; Lee et al.,
1997).

Potential Energy
As the different morphological points are positioned at different
heights of the body, the 1Epoti was calculated at each percent of
the turn cycle, using the mass of the skier including equipment
(M), the acceleration due to gravity (g) and the delta height
(1Hi(t)) of the analyzed point in a global reference system:

1Epoti(t) = M · g ·1Hi(t) (1)

Kinetic Energy
The Ekini evolution during the turn was calculated using the
speed (Vi) of the analyzed points (calculated as the time derivative
of the point coordinate) and M, using the following equation:

Ekini(t) = 0.5 ·M · Vi(t)2 (2)

The mean Ekin (Ekinm) was also calculated over the whole
turn cycle, to show the overall error when using a morphological
point instead of the CoM.

Turn Radius
The Tradi were calculated directly with SIMI motion, using the
Frenet-Serret formula (Serret, 1851; Frenet, 1852). The turn entry
(Tentryi) was defined as the instant where the Tradi dropped
below the natural radius of the skis (i.e., 25 m) and the turn
exit (Texiti) as the instant where the turn radius went over 25 m
again.

Statistical Analysis
Statistical parametric mapping (SPM) was used on paired Student
T-Tests (Pataky, 2010; Pataky et al., 2015) to analyze data over the
whole turn cycle, to compare 1Epot, Ekin and Trad obtained for
the morphological points to the CoM reference. The fit between
the curves was assessed by summing percent of time of a turn
cycle where SPM indicate significant differences (tt values with
p < .05). Paired Student T-tests were also used to assess statistical
differences between the CoM and the morphological points for
the Ekinm, Tentry, and Texit, given as mean ± SD. For all
statistical analyses, significance was accepted at p < .05.

RESULTS

3D Accuracy
For the global gates position reconstruction using the
3D reconstruction software, a horizontal mean error of
14.0 ± 8.0 mm was calculated, giving a 95% limit of agreement
of 27.1 mm. For the vertical error, the absolute mean of
5.9 ± 3.5 mm gave a 95% limit of agreement of 11.6 mm.
Adding the horizontal and the vertical errors led to a total 3D
reconstruction error of 15.7 ± 7.8 mm, and a 95% limit of
agreement of 28.3 mm. The segments lengths mean error of
13.0± 12.0 mm led to a 95% limit of agreement of 32.7 mm.

Potential Energy
Using the Head instead of the CoM to estimate 1Epot led to
significantly different values for 12% of the time course of the
turn during the turn cycle. The corresponding curves are plotted
on Figure 2A with the corresponding SPM results on Figure 2B
(tt threshold at±5.90).

When the Pelvis was used instead of the CoM to calculate
1Epot, no significantly different values were obtained. Figure 2C
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FIGURE 2 | (A) The evolution of the delta of potential energy (1Epot) for the CoM (in black) and the Head (in dark gray) during the turn cycle, with the corresponding
standard deviation (SD) (in light gray). (B) Evolution of statistical parametric mapping (SPM) values (tt) during the turn cycle, with light gray area representing the
portions of the turns were it is statistically possible to differentiate the CoM with the Head (the horizontal dash lines correspond to tt = 6.79, p = 0.05). (C) The
evolution of 1Epot for the CoM (in black) and the Pelvis (in dark gray) during the turn cycle, with the corresponding SD (in light gray). (D) Evolution of SPM values (tt),
with light gray area representing the portions of the turns were it is statistically possible to differentiate the CoM with the Pelvis. (E) The evolution of 1Epot for the
CoM (in black) and the Feet (in dark gray) during the turn cycle, with the corresponding SD (in light gray). (F) Evolution of SPM values (tt), with light gray area
representing the portions of the turns were it is statistically possible to differentiate the CoM with the Feet.

shows the evolution of the 1Epot between the CoM and the Pelvis
with the corresponding SPM curve on Figure 2D (tt threshold at
±6.16).

Concerning the use of the Feet to estimate the 1Epot, 41%
of the measures during the turn cycle had significantly different
values (tt threshold at ±6.33) compared to the values obtained
using the CoM, as seen in Figures 2E,F.

Kinetic Energy
From the Ekin calculation, it can be seen that the Head induced
significantly different values for 20% of the measures during
the turn cycle compared to the results obtained using the CoM.
Figure 3A represents the evolution of the curves during the turn
cycle, while Figure 3B shows the corresponding SPM results (tt
threshold at ±5.99). Compared to the CoM, the Head induced
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FIGURE 3 | (A) The evolution of the kinetic energy (Ekin) for the CoM (in black) and the Head (in dark gray) during the turn cycle, with the corresponding standard
deviation (SD) (in light gray). (B) Evolution of statistical parametric mapping (SPM) values (tt) during the turn cycle, with light gray area representing the portions of the
turns were it is statistically possible to differentiate the CoM with the Head (the horizontal dash lines correspond to tt = 6.79, p = 0.05). (C) The evolution of Ekin for
the CoM (in black) and the Pelvis (in dark gray) during the turn cycle, with the corresponding SD (in light gray). (D) Evolution of SPM values (tt), with light gray area
representing the portions of the turns were it is statistically possible to differentiate the CoM with the Pelvis. (E) The evolution of Ekin for the CoM (in black) and the
Feet (in dark gray) during the turn cycle, with the corresponding SD (in light gray). (F) Evolution of SPM values (tt), with light gray area representing the portions of the
turns were it is statistically possible to differentiate the CoM with the Feet.

a significant underestimation of −2.57 ± 1.22 J/kg (p < 0.001)
when calculating Ekinm.

Compared to the CoM, The Pelvis induced significantly
different values for only 2% of the Ekin measurement during the
turn cycle (Figures 3C,D) (tt threshold at ±6.31). No significant

difference were found between the CoM and the Pelvis for Ekinm
(−0.22± 0.93 J/kg, p = 1.000).

For the Feet, Ekin calculation led to significantly different
values for 36% of the turn cycle compared to the CoM.
Figures 3E,F displays the evolution of the Ekin curve and SPM
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FIGURE 4 | (A) The evolution of the turn radius (Trad) for the CoM (in black) and the Head (in dark gray) during the turn cycle, with the corresponding standard
deviation (SD) (in light gray). (B) Evolution of statistical parametric mapping (SPM) values (tt) during the turn cycle, with light gray area representing the portions of the
turns were it is statistically possible to differentiate the CoM with the Head (the horizontal dash lines correspond to tt = 6.79, p = 0.05). (C) The evolution of Trad for
the CoM (in black) and the Pelvis (in dark gray) during the turn cycle, with the corresponding SD (in light gray). (D) Evolution of SPM values (tt), with light gray area
representing the portions of the turns were it is statistically possible to differentiate the CoM with the Pelvis. (E) The evolution of Trad for the CoM (in black) and the
Feet (in dark gray) during the turn cycle, with the corresponding SD (in light gray). (F) Evolution of SPM values (tt), with light gray area representing the portions of the
turns were it is statistically possible to differentiate the CoM with the Feet.

results (tt threshold at ±6.29). The Feet induced a significant
overestimation of Ekinm [5.77± 4.00 J/kg (p < 0.001)] compared
to the result obtained with the CoM.

Turn Radius
The results obtained using the Head instead of the CoM for the
calculation of Trad indicated significant differences for 7% of the

turn cycle. Evolution of Trad is described in Figure 4A, with the
corresponding SPM values Figure 4B (tt threshold at±6.67).

The calculation of Trad using the Pelvis instead of the CoM
induced no significant differences during the whole turn cycle
(tt threshold at ±6.79). The corresponding curves are plotted on
Figures 4C,D.

Using the Feet instead of the CoM to estimate Trad revealed
that 16% of the measures had significantly different values
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during the turn cycle. Figures 4E,F displays the evolution
of the Trad curve and SPM results for the comparison of
the CoM and the Feet during the turn cycle (tt threshold at
±6.76).

Comparison of Tentry and Texit between the CoM and the
morphological points can be found in Table 1.

DISCUSSION

The most important finding of this study was the high level
of agreement between the Pelvis and the CoM. Indeed, when
looking at the different parameters analyzed, the Pelvis offered
the best estimation for the 1Epot, Ekin and Trad calculation. No
significant differences were found for the 1Epot and Trad during
the whole turn whilst only 2% of the turn cycle significantly
differed in the case of the Ekin. The difference was encountered
only at the beginning of the turn.

As a global observation, it is quite intuitive to see the Feet
and the Head as extreme points of the skier, while the Pelvis
is more centered and near the CoM. Nevertheless, the Head
allowed slightly better estimations than the Feet for the analyzed
parameters showing more similar patterns of the CoM. The
angulation of the hips during the second half of the turn can
probably explain this result, as the Head is more centered
vertically on the CoM while the Feet follow an external trajectory.
The best morphological point to estimate 1Epot and Ekin is
therefore the Pelvis, followed by the Head and finally by the Feet
that offer poor reliability.

Energy
As Epot is directly correlated to vertical displacement, the curves
of 1Epot obtained in this study can be compared to the work
proposed by Pozzo et al. (2005), who calculated the vertical
displacement of the CoM compared to the ground. As expected,
the CoM was higher during transitions between turns and lower
at gate crossings. This corresponds well to the interpretation
of 1Epot curves calculated using the CoM and the Feet in the
present study.

As the Ekin values depend on the square power of the speed,
the shape of the curves obtained in this study can also be
compared to those obtained by Pozzo et al. (2005) for the speed
of the skiers during the turns. The measured speed attained its
maximal value during gate transition, as it does in the present
study.

TABLE 1 | Moment of the turn cycle (in %) when the radius falls below 25 m
(Tentry) and exceed 25 m again (Texit).

Tentry Texit

mean ± SD [%] mean ± SD [%]

CoM 12.33 ± 2.88 84.67 ± 2.58

Head 14.50 ± 3.02 74.67 ± 4.64∗

Pelvis 13.17 ± 3.19 13.17 ± 3.19

Feet 6.50 ± 3.02† 90.50 ± 1.98†

Paired T-Test comparing CoM to Head, Pelvis and Feet. ∗p < 0.001, †p < 0.05.

FIGURE 5 | (A) Mechanical energy (Emech) calculated using the CoM and the
morphological points, (B) Energy dissipation (Edissip) during the turn.

Supej (2008) and Reid et al. (2009) analyzed the mechanical
energy of skiers (Emech), which involved addition of the Ekin
and the Epot. They also calculated the corresponding dissipated
energy (Edissip) as the change in mechanical energy per change
of vertical distance (Supej et al., 2005). To allow comparison
with these studies, Figures 5A,B show the Emech and the Edissip
respectively, calculated using the CoM and the morphological
points of the present study.

The curves obtained for the CoM are very similar to those
obtained by Supej (2008) in GS and Reid et al. (2009) in slalom.
The minimum energy dissipation occurred at the turn transition
and the maximum during the first steering phase, between 20 and
40% of the turn cycle.

Turn Radius
The Trad described by the Feet trajectory began earlier and ended
after the Trad of the CoM. The Head also finished the turn earlier
than the CoM. Therefore, the Head had the longer time interval
between two turns where its trajectory was almost straight, and
the Feet had the shortest time interval with a straight trajectory.
It was interesting to note that around the gate crossing, inter-
athlete variability increased, suggesting that the gates induced
perturbation. If the radius decreased during the transition phase
to reach its minimum, it increased gradually during the steering
phases. Supej (2008) obtained a curve of a similar shape when
calculating the CoM’s turn radius of four athletes performing GS.
For slalom turns, Reid et al. (2009) obtained a different curve in

Frontiers in Physiology | www.frontiersin.org 7 November 2018 | Volume 9 | Article 1541

https://www.frontiersin.org/journals/Physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/Physiology#articles


fphys-09-01541 November 9, 2018 Time: 16:30 # 8

Meyer and Borrani Center of Mass Estimation in Alpine Skiing

slalom, where the radius decreased slowly during the first part
of the turn and increased rapidly at the end of the turn. This
indicates a different choice of trajectory in giant compared to
slalom.

The Feet trajectory radii showed a small reduction between the
second steering phase and the transition phase, when the skier
decided to engender the new turn. It was at this same moment
that the skier made a longitudinal extension, when the Epot_diff
between the CoM and the Head increased, at approximately 80%
of the turn cycle (Figure 3A).

Once again, the Pelvis gave the best approximation of the CoM
concerning turn radius, followed by the Head. The Feet, with a
time lag in the turn radius did not offer a good approximation
of the CoM’s Trad, but it could be interesting to further explore
the radius reduction around 85% of the turn. Indeed, it may be
possible that this radius reduction coincides with an increase
in the force and an extension of the skier to trigger the next
turn.

CONCLUSION

It is the first time that different morphological points of the
body are used to estimate energetic parameters of alpine skiers.
The results obtained with the Pelvis offered very accurate
approximations of the CoM, with an equivalent accuracy than
the pendulum method used by Gilgien et al. (2013). The Head
also offered a good approximation for overall energy analysis
and is a very accessible point for 3D video tracking or GNSS
antenna placement, but side leaning profiles induced inaccurate
estimations in the middle part of the turn. Finally, the Feet did not
allow for a good estimation of the CoM as most of the parameters
did not even have curves that look like those described by the
CoM.
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