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Time-Based Binding as a Solution to
and a Limitation for Flexible
Cognition
Mehdi Senoussi*†, Pieter Verbeke† and Tom Verguts

Department of Experimental Psychology, Ghent University, Ghent, Belgium

Why can’t we keep as many items as we want in working memory? It has long been
debated whether this resource limitation is a bug (a downside of our fallible biological
system) or instead a feature (an optimal response to a computational problem). We
propose that the resource limitation is a consequence of a useful feature. Specifically,
we propose that flexible cognition requires time-based binding, and time-based binding
necessarily limits the number of (bound) memoranda that can be stored simultaneously.
Time-based binding is most naturally instantiated via neural oscillations, for which there
exists ample experimental evidence. We report simulations that illustrate this theory and
that relate it to empirical data. We also compare the theory to several other (feature and
bug) resource theories.
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INTRODUCTION

The existence of resource constraints on cognition is undebated: Just consider listening to a long
list of grocery items to be fetched, and heading off to the supermarket without a piece of paper (or
smartphone) to support your memory. What is debated, however, is the nature of these resource
constraints. Of course, resource is a broad term that has been applied throughout psychology
and neuroscience (e.g., Barlow, 1961). However, we will restrict our attention to theories with
immediate implications for working memory (e.g., as in the supermarket example). With this
delineation out of the way, we note that a long research tradition has empirically investigated
the nature of resource constraints (Miller, 1956; Cowan, 2001; Bays and Husain, 2008; Oberauer
and Lin, 2017) by positing a limited quantity of some sort, and then deriving predictions (perhaps
supported by a formal model) with respect to behavioral data in the working memory domain.
This is the “bug” approach mentioned in the abstract. However, in line with David Marr and the
“feature” approach, we first consider what a computational perspective would stipulate for flexible
cognition (Holroyd and Verguts, 2021). To be clear from the start, “computational” is often used
as in “instantiated in a formal model”; this is not what we mean here. By computational, we refer
to the computations that are required in tasks relying on flexible cognition (such as getting one’s
groceries, in the upcoming example). Our detour into flexible cognition lays the groundwork for
our main thesis: The resource constraint is a consequence of the computational requirements to
implement flexible cognition. Then, we consider the implementational perspective, and present
some simulations to illustrate our theory, based on a recent oscillatory model of working memory
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(Pina et al., 2018). Finally, we relate our theory to other (similar
and different) proposals in the General Discussion section.

Role-Filler Binding
Cognition requires the flexible binding and unbinding of two
or more elements. For example, an experimenter may instruct
a subject to detect the red squares in a stream of stimuli, but
ignore the blue squares and red triangles (Treisman and Gelade,
1980). More mundanely, a mother may ask her son to go to the
store to buy a pack of gluten free pasta and 1 kg of apples. If he
comes home with 1 kg of regular pasta and a pack of gluten free
apples, he is likely to be sent back. As another example, acting
appropriately in a restaurant requires binding the waiter role to
the person running around with the drinks; this binding allows
one to know how, what, and when to order. In a sense, cognitive
life is built on binding.

A particularly important type of binding is that between
roles to be filled and fillers of those roles (role-filler binding;
Hummel, 2011). For example, suppose one wants to memorize
that the fruit aisle is on the left of the dry food department
in the supermarket. The roles are here “Left” and “Right”;
the fillers are “fruit aisle” and “dry food department”; and the
relevant role-filler bindings are (Left, fruit aisle) and (Right, dry
food department). As an aside, these roles can be implemented
via different types of representational codes, including verbal
or spatial (Gevers et al., 2010; van Dijck and Fias, 2011); we
currently remain agnostic about their nature. Consider as another
example of role-filler binding, syntactic constructions such as the
Subject—Verb—Object (SVO) type sentence. For example, in a
sentence like “Tom buys pasta,” the relevant role-filler bindings
are (Subject, Tom), (Verb, buys), and (Object, pasta). Other
syntactic constructions are possible to represent this information
[e.g., (Buyer, Tom), (Object-bought, pasta)], but the syntactic
structure doesn’t matter for our argument, and we will stick to
SVO constructions to explain our argument. We will discuss a
few constraints on role-filler bindings in cognition, and how these
constraints impose processing bounds on cognition.

Some sentences (such as “I love you”) occur sufficiently
frequently to be stored as a separate chunk in memory,
independent from other information. There is indeed evidence
that such (high-frequency) chunks are important in language
(McCauley and Christiansen, 2014), and perhaps in cognition
more generally. However, chunking is not a realistic possibility
for coding SVO sentences in general. For example, if there
are N possible fillers (Tom, buy, book, . . .) and three possible
roles (Subject, Verb, Object), a systematic chunking approach
confronts a combinatorial problem, as it would require storage
of 3N2 chunks of knowledge. More importantly, a chunking
approach does not easily lend itself to generalization (Marcus,
2001, 2018). If one learns something about books, generalization
requires that this novel information generalizes to the statement
“Tom buys a book” (Fodor and Pylyshyn, 1988). For example,
even a rudimentary knowledge about books is enough to
conclude that buying a book entails a very different process than
buying a house. But if the proposition that “Tom buys a book”
is stored as a separate chunk in memory, such generalization
between propositions is not possible.

The solution to this generalization problem involves
compositionality (Fodor and Pylyshyn, 1988): Storing all
components (or building blocks, here, roles, and fillers)
separately, in such a way that they can later enter into novel
relations with other components. Applied to roles and fillers, this
principle is also called role-filler independence (Hummel, 2011).
Indeed, if one stores “book” information separately, the concept
can later be independently enriched; and the novel information
(e.g., that a book can be bought in bookstores, without the hassle
and administration involved in buying a house) can thus be
applied to instances like “Tom buys a house.”

With role-filler independence, the memory requirements are
much lighter than in a chunking approach. Consider Figure 1:
Here, N fillers and 3 roles are represented, with a much lighter
memory requirement of just 3 + N elements. Any specific
sentence (“Tom buys a book”) involves a combination of the
corresponding roles and fillers.

If roles and fillers are stored independently, a next crucial
property for flexible cognition is dynamic role-filler binding
(Hummel, 2011). Specifically, it must be possible to rapidly bind
and unbind roles and fillers in order to understand complex
events in the real world. Consider hearing the story that Tom
buys a book, then that Mehdi buys a bottle, and finally that Tom
gives his book to Mehdi. In order to understand the three events
and their logical relations, and in order to answer questions about
the situation (Who currently owns two items?), it is important to
initially bind Tom to Subject and book to Object; and then bind
Mehdi to Subject (and unbind Tom and Subject) and bind bottle
and Object (and unbind book and Object); and so on.

Synaptic Binding
It then remains to be explained how dynamic role-filler bindings
are formed. One approach is to construct a synaptic connection
between each (role, filler) pair for each sentence that is currently
of relevance. We will call this a synaptic binding approach;
presumably, a configuration of synapses stores the relevant
information. Note that the term “synapse” can be interpreted
either literally in the biological sense, or more metaphorically;
the only functional requirement of a synapse for our purposes
is that two memory elements are connected. It is the approach
applied, for example, in neural network training algorithms (e.g.,
backpropagation; Rumelhart et al., 1986). Whereas originally
thought to contribute mainly to long-term memory, recent work
suggests that synaptic binding also supports working memory
(the synaptic model of working memory; Mongillo et al., 2008;
Stokes, 2015). However, this synaptic binding approach has
its downsides. In particular, if synapses are not immediately
removed after a sentence, interference will quickly occur.
Consider again first representing that Tom buys a book, then that
Mehdi buys a bottle, perhaps followed by some other purchases
and exchanges of goods. In this case, roles and fillers will soon be
saturated, connecting all roles with all fillers, and thus abolishing
any meaning (see Figure 1A as an example). We will call this
the unbinding problem of synaptic binding. Computationally,
the problem manifests itself in catastrophic interference between
partially overlapping tasks, which is a huge problem in neural
networks (French, 1999), with several solutions being proposed
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FIGURE 1 | Synaptic binding. (A) Synaptic role-filler binding. This approach allows to bind roles and fillers but has an important downside: After the presentation of
multiple sentences, the roles and fillers are soon saturated, connecting all roles with all fillers. If synapses are not immediately removed, this approach will lead to
interference; which we refer to as the unbinding problem. (B) Conjunctive synaptic role-filler binding. An alternative solution is to implement a set of “gates” that
would, for instance, activate specific roles and fillers. Once activated, a gate would activate the corresponding (role or filler) elements. This approach has the same
unbinding problem, and additionally presents a combinatorial problem: 3N2 gates must be created to store all possible bindings.

to overcome it (McClelland et al., 1995; Kirkpatrick et al., 2017;
Verbeke and Verguts, 2019). Also biologically, it’s not clear that
the construction and destruction of biological synapses can occur
at the time scale required for cognitive processing (Kasai et al.,
2003; Caporale and Dan, 2008).

One could argue that the problem in the previous scenario
derives from the direct synapses between roles and fillers. Thus,
an alternative synaptic binding solution could be to implement
a set of “gates” that filter out or activate specific roles and fillers.
For example, there could be one gate for Tom, one for Mehdi,
another for Subject, and so on. When the corresponding gates are
activated, they in turn activate their corresponding (role or filler)
elements. This approach would obviate the requirement of direct
bindings between roles and fillers. However, in this approach,
suppose each gate is selective for a specific role or filler; then
appropriate (role, filler) pairs cannot be kept apart. Consider for
example representing that Tom buys a book and Mehdi buys a
bottle; in such a system, the interpreter of the system has no way
to know whether the activated book belongs with Tom or with
Mehdi. To solve this problem, one could suppose, instead, that
there is a separate gate for each (role, filler) pair (Figure 1B). This
approach could solve the problem of disambiguating different
meanings. Because neurons are here dedicated to (role, filler)
conjunctions, this falls under the more general conjunctive
coding approach (Bouchacourt and Buschman, 2019). However,
here the combinatorial problem (3N2 gates must be created)
and the unbinding problems appear again; furthermore, it’s
not clear how one can generalize information about (say) a
filler to other (role, filler) pairs (Hummel, 2011). We conclude
that a pure synaptic binding approach is likely insufficient to
implement dynamic role-filler bindings at the time scale required
in systematic cognition.

Time-Based Binding
Instead of synapses, one could consider using the time dimension
to bind roles and fillers; we will call this a time-based binding
approach. In particular, suppose that at time t, the role-filler pair

(Subject, Tom) is active. However, a single time point doesn’t
leave enough time for processing; moreover, the system doesn’t
necessarily know when exactly the information will be of use in
further task processing. It is thus useful to repeat the information
for some period of time. Let’s suppose that the binding is repeated
at intervals of length d. Hence, at all times A1 = {t, t + d, t +
2d, . . .} both elements of the (role, filler) pair (Subject, Tom) are
active. Note that Subject and Tom are indeed joined by time only;
there is no synaptic connection between them.

Besides representing (Subject, Tom), we also need to represent
the pair (Verb, Buy). However, if the pair (Verb, Buy) were active
at the same time as (Subject, Tom) (say, at time t) we run the
risk of interference, as explained in the previous paragraph. We
must thus represent it at some other time, say t + e. Just like
for (Subject, Tom), we repeat the (Verb, Buy) pair at the same
distance d so the two pairs maintain their temporal separation.
Thus, we conclude that at times A2 = {t + e, t + d+ e, t + 2d
+ e,..} the pair (Verb, Buy) is active.1 With a similar logic, at
times A3 = {t + 2e, t + d+ 2e, t + 2d + 2e} the pair (Object,
Book) will be active.

Synaptic Learning on Time-Based
Bindings
It is well known that a neural network training rule (such as
backpropagation) can learn complex tasks via synaptic binding,
especially if it has available appropriate (here, compositional)
representations of the input space. We postulate that this
allows an efficient combining of the synaptic and time-based
approaches. Specifically, once a time-based binding system as
sketched above is constructed, a synaptic learning rule operating
on its representations can subsequently learn various tasks. For
example, in the book-buying context, the training rule could
learn to answer questions such as “Who bought a book?”; “Who
owns a book?”; and so on. Or in an experiment context, relevant

1Without loss of generalization, we can assume e< d.
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mappings to be learned could be “Press the f key if you see a red
square, the j key if you see a blue circle, and nothing otherwise.”

Importantly, such a representational system with independent
and dynamic role-filler pairs, allows for generalization. For
example, if novel information is learned about, say, Tom, this
novel information can be attached (by the learning rule) to the
representation of Tom, and thus be immediately generalized to
other contexts in which Tom may appear.

Moreover, during both learning and performance, it’s very easy
to delete old, no longer relevant information without leaving
any trace to be erased: No synapses were created for binding,
so none need be erased. It’s straightforward to represent the
fact that Tom buys a book, followed by the fact that Mehdi
buys a bottle. Finally, it’s relatively easy to construct new (role,
filler) pairs via synchronizing “bursts” (Verguts, 2017; and see
section “Discussion”).

In summary, we propose that synaptic and time-based binding
ideally complement each other for the purpose of flexible
cognition. Time-based binding allows quickly constructing
and destructing connections. In contrast, synaptic binding
allows application of very powerful learning rules. In this
way, advantages of both synaptic and time-based binding are
exploited, and their respective disadvantages are mitigated.

A Resource Bound to Time-Based
Binding
Despite its several advantages, there is a constraint to the
time-based approach. Specifically, this system of representing
information will only work if the elements of sets A1, A2, and
A3 [i.e., the timings of the different (role, filler) pairs] remain
sufficiently separate (where “sufficient” depends on the level of
precision required to robustly pass a message to a downstream
neural area). Hence, such a system of representations can
efficiently represent information [via dynamic (role, filler)
bindings], and forget old, no longer relevant information. But it
has an inherent constraint: It can only represent a limited number
of elements at the same time.

Can we characterize this constraint more precisely? Note
first that all distinct elements (or groups of bounded elements),
referred to as items, should be activated once before any of them
gets reactivated, otherwise, there is an ambiguity which set an
item belongs to. For instance, if three items are presented in a
specific order (item 1, item 2, item 3), and are activated at t, t +
e, and t + 2e, then item 3 must be activated before item 1 gets
reactivated. In other words, we require that t + ne < t + d, that
is, n < d / e. Storage capacity n has thus an upper bound d/e,
determined by the period (d) of each set, and the time (e) between
elements. This bound cannot be made arbitrarily high: If d is too
high,2 the time between different elements [(role, filler) bindings]
is too long, and the items cannot be simultaneously processed
by a downstream neural area that must interpret the bindings.
Imagine having to remember a grocery list with several minutes
between the different items. Similarly, if e is too small, the
separate elements cannot be disentangled from each other, either

2Note that the timescale of an upstream neural area may also impose an upper
bound on d (there is a lower limit in frequencies produced by neural ensembles).

because of noise or because of the time scale of the downstream
neural area. We propose that these factors together impose a
bound on how many novel items agents can store simultaneously.

Note that the argument is purely computational: Any agent
(biological or artificial) who is confronted with a task with the
described requirements (simultaneous but systematic storing of
possibly rapidly changing facts, using a single representational
space), should use time-based binding; and as a result, he or
she is subject to the constraints. The argument also clarifies
when the bound applies and when it does not. It is perfectly
possible to store thousands of facts via synaptic binding, as long
as they do not require on-the-fly constructions and destructions
of conjunctions of information. In other words, the resource
bound applies to (non-synaptic) working memory, not to long-
term memory.

SIMULATION

We next consider how a time-based binding system may
be neurally implemented. To construct such a system for
representing novel, on-the-fly constructions, one needs a periodic
or oscillatory function [i.e., f (X + c) = f (X) for some c and for all
X)]. The simplest choice is perhaps a sinusoidal (sine or cosine)
function, but this is not necessary.

Consistently, a long research tradition has suggested an
important role of oscillatory functions (oscillations in short) for
cognition in general, and for binding elements in memory in
particular (Gray and Singer, 1989). It is well known that coupled
excitatory and inhibitory neurons can easily be employed to
generate oscillations (Wilson and Cowan, 1972; Gielen et al.,
2010). The coupling parameters (synaptic weights) between
excitatory and inhibitory neurons determine the characteristics
of the oscillations, such as their phase, amplitude, and frequency.

To illustrate our argument, we used a recently proposed
architecture of binding through oscillations to model working
memory (Pina et al., 2018). This oscillatory neural network can
bind and maintain elementary features (each represented by
one node of the network) over time, while keeping different
bindings apart. Each node of the network is composed of
three components (a neural triplet, see Figure 2A). The
three components are fast-excitatory (u, emulating AMPA
synapses), slow-excitatory (n, emulating NMDA synapses), and
inhibitory (v, emulating GABA synapses), respectively. The fast-
excitatory—inhibitory pair constitutes a Wilson-Cowan type
system (Wilson and Cowan, 1972). This pair exhibits limit cycle
behavior (i.e., oscillations) and, as stated above, the characteristics
of these oscillations (e.g., amplitude, frequency) can be controlled
by changing the coupling weights between these components.
Additionally, the slow excitatory component provides excitatory
input to the inhibitory and fast excitatory components, thereby
allowing bistability of the neural triplet (Lisman et al., 1998):
an inactive state with low amplitude fluctuations, and an active
state with persistent high amplitude oscillations. The left part
of Figure 2A shows the connectivity between each component
of a neural triplet; see Appendix for a full description of the
differential equations defining each component’s activity, and the
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FIGURE 2 | Time-based binding network. (A) Each node of the network is a “neural triplet” composed of three components: A fast excitatory (u) neuron, an
inhibitory (v) neuron, and a slow excitatory (n) neuron. Stimulation to a node affects unit u (as represented by the “Input” arrow). This architecture allows each node to
start oscillating thanks to the excitatory-inhibitory pair of neurons (u and v, respectively), and maintain this oscillation through time (i.e., very slow decay) due to the
slow excitatory neuron (n). When interconnected through excitatory-to-excitatory, and inhibitory-to-inhibitory connections, these nodes form a network that exhibits
binding by phase and competition between active nodes or bound group of nodes. Synaptic weights are represented as lines between components or nodes: arrow
ended lines represent excitatory connections, circle-ended lines represent inhibitory connections. (B) Top: Example of node 1 being activated by an input stimulation.
The red curve represents the activity of the fast-excitatory neuron (u), the blue curve represents the activity of the inhibitory neuron (v), and the gray curve represents
the activity of the slow-excitatory neuron (n). Bottom: stimulation time course.

value of each parameter including the weights between nodes
of the network. We kept all parameter values equal to the main
simulations in Pina et al. (2018), and only varied the inhibitory
component’s time scale (τi, Equation 2 in Appendix). This
parameter defines the speed at which the inhibitory component’s
activity is updated. Varying τi allows to manipulate the oscillatory
frequency of the nodes’ active state. At the neurophysiological
level, this parameter can be considered to reflect temporal aspects
of the response function of GABA receptors. This response
function, which can be thought of as a band-pass temporal
filter on incoming inputs to the synapse (Robinson et al.,
2004), has been shown to be affected by neuromodulators (e.g.,
noradrenaline Sillar et al., 2002), which provide a mechanism
to control neural populations’ dynamics (Berger et al., 2003;
see also Shine et al., 2021 for a review on computational
models of neuromodulatory systems). Moreover, in this model,
nodes form a network (upper-right part of Figure 2A) in
which all fast-excitatory components excite each other, and all
inhibitory components inhibit each other (see bottom-right part
of Figure 2A). This connectivity allows these nodes to form a
network that exhibits binding by phase; that is, when the peak
of two nodes coincide, within a certain temporal range that we
will call a “binding window,” they attract each other and align
their peaks, forming a bound state. This network is further also
characterized by competition between active nodes (or between
groups of nodes that are bound together); i.e., when the peak
of two nodes are separated by an interval outside of the binding
window range, they will repel each other and remain active in an
out-of-phase state. Due to the intrinsic attracting and repelling
dynamics of this architecture, it can thus bind and maintain
information to form distinct memories (a single active node, or
bindings between nodes), while avoiding mixing them, through
time-based binding. Each memory consists of one or multiple
bound elementary features, each represented by a node. In line
with the theory postulated above, a memory is activated only
periodically (see Figure 2B).

The ability to concurrently store multiple items of information
in this manner, relies on two important features. First, the
elements of each item must be bound together. For instance,

nodes representing the role “Subject” and the filler “Tom”
are in synchrony. Second, to concurrently maintain multiple
memories (e.g., Subject-Tom and Verb-Buy), the two nodes
representing the Subject-Tom pair must remain out of synchrony
with those representing the Verb-Buy pair (see units 1–2 and
3–4 in Figure 3). This mechanism entails that the number of
distinct memories that can be maintained simultaneously without
interference, is limited by the frequency of the oscillation. In
doing so, this model exemplifies how capacity limits emerge as
a property of a system using oscillatory mechanisms for binding,
i.e., the time interval between two peaks of activated nodes (or
groups of nodes).

One of the parameters that determines the memory capacity,
is the oscillatory frequency of the network, which itself is
determined by the τ parameters. To illustrate the effect of
frequency, we changed the temporal scale of the inhibitory
component (τi) of all nodes. In a first simulation (using τi = 32),

FIGURE 3 | Maintenance of two pairs of items in the network. In this network,
pairs of nodes are activated simultaneously, i.e. nodes 1 and 2 at time 0 ms,
and nodes 3 and 4 at time 50 ms. Due to the inter-node coupling, each node
of a pair will oscillate in synchrony and can thus represent a bound
multi-element memory. The other pair will oscillate out-of-phase with the first
pair allowing to store each binding separately and to permit read-out of each
multi-element memory by downstream areas.
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FIGURE 4 | Effect of oscillatory frequency on maximum number of maintained items. (A) In this network each activated node will oscillate at ~6 Hz (τi = 32). This
allows to activate up to three units out-of-phase, i.e., three separately maintained memories. In this example, each node is activated sequentially and stays activated.
(B) In this network, the inhibitory time scale (τi ) has been decreased to 20 which increases the frequency of activated nodes to ˜10 Hz. This prevents three nodes to
be activated out-of-phase because of the short time interval between the activity peaks of activated nodes to “store” a third memory. In this example, node 3 is
activated after nodes 1 and 2. Node 3 then shifts its phase and aligns with node 1, thereby losing the distinct information represented by each of the three nodes.
This faster network thus has a lower memory capacity.

each node oscillates at ∼6 Hz once activated. The network
can maintain up to 3 memories out-of-phase (i.e., their activity
periodically peaks but never at the same time, allowing a
downstream area to read-out each memory independently, see
Figure 4A). In this network, the memory capacity is thus 3. In a
second simulation we decreased the temporal scale of inhibitory
components to obtain a network in which nodes oscillate at
a slower frequency (τi = 20). In this network, activated nodes
will oscillate at a faster frequency of ∼10 Hz (see Figure 4B).
When activating the first two nodes, they start oscillating out-
of-phase, thereby maintaining 2 memories in the network. But
when activating a third node, it will start competing with the
first or second active node (depending on the exact timing of
the stimulation of the third node). This competition will lead
to one of three possible states: (1) the third node may not be
able to sustain activation and this third memory will be lost;
(2) the third node inhibits one of the other two nodes and the
network will thus loose one of the previously stored memories;
or (3) the third node synchronizes (or binds) with one of the
activated nodes, thus creating a new bound memory. This last
state is illustrated in Figure 4B. Each of these options shows
that in this faster network, three distinct memories cannot be
maintained concurrently, and therefore that a faster oscillatory
frequency leads to a lower memory capacity.

GENERAL DISCUSSION

To sum up, we have argued that synaptic and time-based
binding have complementary advantages for the implementation
of flexible cognition. Time-based binding can be quick and
literally leaves no traces behind; but it leads to a natural
processing (or resource) bound. Instead, synaptic binding is

slower, prone to interference, but it does not suffer from this
processing bound. We illustrated this theory with simulations of
a recent oscillatory model. In the General Discussion, we relate
our proposal to resource (or “bug”) theories, computational (or
“feature”) theories, and to earlier oscillation theories. We end by
pointing out some empirical predictions.

Resource Theories
In the current section, we discuss three influential theories on
the nature of working memory constraints and resources, key
data that earlier literature interpreted as supporting the respective
theories, and how our own perspective accounts for those data.

A long-standing slots theory holds that working memory
consists of a fixed number of slots (with the proposed number
varying from 1 to 7) (Miller, 1956; Cowan, 2001; Zhang and
Luck, 2008); one can consider slots as a discrete resource. A key
behavioral signature interpreted as favoring slots theory, is the
observation of a fixed precision for memoranda held in working
memory beyond the slots upper bound. To be more specific,
Zhang and Luck asked their subjects to retain from 1 up to 6
colors presented on different locations on the screen in working
memory. In the test phase, they subsequently queried which
colors were accurately remembered (subjects indicated the colors
by clicking on a color wheel). Fitting a mixture model on the
behavioral data in the test phase, the authors observed that the
precision (inverse variance) of memory was statistically similar
for 3 and for 6 items. They interpreted this as meaning that
the number of available slots was equal to around 3. Instead,
the precision in working memory did increase from 1 to 3; the
authors interpreted this as meaning that more than 1 slot can be
devoted to the same object (e.g., an object represented by two slots
will be represented more precisely than one represented by just a
single slot). However, fine-grained experimental paradigms with

Frontiers in Psychology | www.frontiersin.org 6 January 2022 | Volume 12 | Article 798061

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-12-798061 January 18, 2022 Time: 15:23 # 7

Senoussi et al. Time-Based Binding Limits Cognition

continuous manipulations of the relevant features (e.g., color or
physical location), have since then demonstrated that there is no
abrupt non-linearity around 3 items (Ma et al., 2014). From the
lowest set sizes on, when more items must be held in working
memory, the representational precision of the remembered items
gradually decreases. This data pattern was interpreted in terms
of a continuous resource theory (often called resource theory in
short), which holds there is a continuous but finite resource to
be divided among the memoranda (Bays and Husain, 2008; Ma
et al., 2014).

How to account for this data in a time-based binding
perspective? We propose the following tentative theory. Suppose
each neuron has a specific receptive field across some feature
space (e.g., color space or Euclidean space). In the example, color-
and location-sensitive neurons must bind to one another in order
to represent the stimuli correctly. Suppose that there is a pool of
neurons responding to specific colors and locations, in the color
and Euclidean spaces, respectively. Suppose further that each
neuron in one pool (e.g., responding to an active color) must be
bound to at least one neuron from the other pool (responding to
an active location) in order to influence downstream processing
(i.e., be in working memory). Then, the precision will gradually
decrease as more items must be retained: Indeed, more items
retained means that less neuron pairs can be devoted to any
specific item, given a finite period length of the oscillation. At
first sight, it would seem that this theory predicts a hard bound
at the maximal number of bindings that fit in a cycle, as in
slots theory. However, given that several variables (including pool
sizes, average receptive field, item location, period length, etc.),
may vary from trial to trial, precision will also gradually decrease
when additional items are in memory.

Another important behavioral signature is the occurrence of
misbinding errors. This means that when (say) colors need to be
remembered at specific locations, colors and locations may swap
places in the participant’s memory. The existence of misbinding
errors is naturally in line with a binding account; if two features
(say, location and color) are incorrectly bound in memory, a
binding error at behavioral level automatically follows.

The existence of misbinding errors was originally interpreted
in terms of a third influential perspective on the nature of
cognitive constraints on working memory, namely interference
theory (Oberauer and Lin, 2017). Interference theory is in line
with a long tradition of computational modeling via synaptic
binding, specifically in neural networks. Interference theory holds
that the postulation of a (discrete or continuous) resource is
not required.3 Cognitive processing in a neural network already
leads to massive processing limitations due to (catastrophic)
interference, and the latter is sufficient to explain the behavioral-
level processing impairments that arise in tasks requiring the
maintenance of several items at the same time.

At the risk of being overly reconciliatory, it’s worth pointing
out that our time-based binding theory shares commonalities
with each of the classical (discrete and continuous resources,

3For completeness, it must also be mentioned that, in line with earlier work of
Oberauer (2003) and Oberauer and Lin (2017) also included a focus of attention
in their model; an extra storage component that can hold just a single item. One
could think of this storage component as a single slot (discrete resource).

interference) theories of working memory constraints. Like slots
theory, it holds that just a fixed number of elements (here,
bindings) can be maintained simultaneously. However, because
the memoranda are bindings between neurons with variable
parameters (cf. above), our perspective can predict, just like
continuous resource theory, that there is no fixed bound at
any number of items, and representational precision instead
gradually decreases with more remembered items. Finally,
binding elements together is rarely sufficient to solve actual
tasks. The bindings must be read out by downstream task-
specific processing modules. Such processing modules can most
naturally be composed of standard neural networks, which
implement synaptic binding, and are trained with gradient-based
algorithms. The latter naturally also leads to similarities with
interference theory.

Computational-Level Theories
Generally speaking, computational-level theories consider that
humans and other agents act in such a way as to achieve some
goal (Lieder and Griffiths, 2020). As applied to working memory
constraints, it holds that working memory may not be bound
by the scarcity of a discrete or continuous resource, but that
its boundedness is an optimal response to its environment.
The early selection-for-action theory, for example, held that
working memory must subserve action in the world (discussed
in Hommel et al., 2001); and because action must be integrated
(one cannot, for example, prepare a gratin dauphinois and
play a video game at the same time), some environmental
features must be selected, and others ignored. A generalization
of the selection-for-action theory is the selection-for-procedures
theory proposed by Ansorge et al. (2021). These authors argued
that the bottleneck for actions (i.e., very few and typically
just one action can be carried out at the same time), also
applies to the execution of procedures. Using their own example,
drawing the correct conclusion from the premises “All bees
are insects” and “All bumblebees are bees,” requires that the
relevant information is active at specific times, not all at the same
time; thus to avoid drawing conclusions such as that all insects
are bumblebees. The current theory is very much in line with
this generalization of selection-for-action theory, and proposes
a specific computational reason why time-sharing is beneficial
(it keeps the number of synapses low), but, because time is
one-dimensional, it introduces a processing bottleneck.

More recently, Musslick and Cohen (2021) have combined
computational-level and interference theory (see previous
paragraph) to explain why cognitive control appears to be
limited. Their starting point is the dilemma between learning
and processing efficiency in standard neural networks: Efficient
learning requires overlapping (shared) representations between
tasks, but at the same time such overlap impairs multitasking
(i.e., simultaneously performing two or more tasks). When tasks
share input or output features, multitasking is almost impossible
in such neural networks. Their simulations demonstrate that,
in standard neural networks, basically just one task can be
performed at any time. Thus, the optimal agent chooses to carry
out just one task at a time. In their perspective, the bound is
an optimal choice, given the computations one has to do and
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given the architecture that is available for doing so. In principle,
all tasks could be carried out at the same time; but because
of the massive interference this would engender, an optimal
agent chooses to limit the number of simultaneously processed
items. Alternatively, time-based bindings could allow to perform
multiple tasks at the same time by attributing processing for
different tasks at alternating oscillatory cycles. However, like
bindings for working memory, also the number of tasks that one
can alternate between is bounded by n < d/e. Moreover, such
alternating task processing might decrease robustness of task
representations when e is small or when noise enters the system.
Hence, it would introduce a trade-off between cognitive stability
(robust task processing supporting high performance) and
cognitive flexibility (rapidly switching between different tasks).

Furthermore, it has been proposed that highly specialized
separate representations might develop for high frequency tasks
or stimuli (see also Musslick et al., 2020; and our discussion
of high-frequency sentences in the Introduction). For instance,
features of familiar faces are stored independently from other
facial features (Landi et al., 2021). Hence, with more extensive
learning synaptic bindings become more separated, decreasing
the importance of time-based bindings.

Oscillation Theories
The interest in neural oscillations dates back at least to the
theoretical work of von der Malsburg (von der Malsburg and
Singer, 1988). Around the same time, Gray and Singer (1989)
detected that neural spiking in cells in the visual cortex phase-
lock to the gamma rhythm (50–90 Hz); especially for features
that are perceived as belonging to the same object. This led
to the “binding by synchrony” and later the “communication
through coherence” (CTC) theory. According to CTC, neurons
in different brain areas can be bound together by firing in
the same gamma phase (or more generally, by firing in a
consistent and appropriate gamma phase difference; Fries, 2015).
In particular, neurons in distant areas with a consistent gamma
phase difference would share information more efficiently. For
example, suppose the peak of the gamma wave is the phase
where information can be most efficiently sent to other neural
areas; if two neurons in distant areas always fire at this phase
of the wave (i.e., the peak), this coincidence can be read out by
downstream areas, and thus the two neurons are functionally
(but not physically) bound. The binding of these different-area
gamma waves could be orchestrated by a slower theta (4–7 Hz)
wave (Voloh and Womelsdorf, 2016; Verguts, 2017). Originally,
this theory was proposed for the visual cortex, but has later been
extended to cortical processing more generally. At this time, a
massive amount of electrophysiological data supports (aspects
of) the CTC theory (Womelsdorf et al., 2010), also in human
cognitive control (Cavanagh and Frank, 2014), and in particular
its relation with the slower theta wave (see also “Empirical
predictions” section below).

In a second broad oscillation theory, Lisman and Jensen
(2013) proposed that neural spikes that are locked to different
gamma waves represent different pieces of information, where
each gamma wave itself is locked to a different phase of the
slower theta waves. This theory originates from findings observed

in the hippocampus. In particular, the phenomenon of theta
phase precession (O’Keefe and Recce, 1993) entails that as an
animal proceeds in a cell’s preferred location, the cell’s spike
firing time relative to theta phase moves earlier (processes) in
time. From this observation, it was proposed that the time of
spike firing relative to theta phase is informative for downstream
areas. This is what we will call the theta-phase binding (TPB)
theory. Lisman and Jensen (2013) generalized this theta phase
precession theory by proposing that items in working memory
(and, potentially, their presentation order) are stored by locking
consecutive items in the list (each of them represented as neurons
locked to gamma waves), to consecutive phases of theta (see also
“Empirical predictions” section below). Regarding ordered sets,
during an individual theta cycle, neurons representing each item
of the sequence fire in a fixed temporal order (e.g., the order
of presentation), thereby conserving the ordinal information
of the sequence.

Clearly, CTC and TPB theories have some commonalities; and
they can be combined in the same framework, as was already
demonstrated by McLelland and VanRullen (2016). Specifically,
in a two-layer neural network model, they demonstrated that
inhibition in the higher layer only, would cause patterns similar
to what CTC would predict; whereas inhibition in both lower and
higher layers, would instead cause patterns more similar to TPB.
Also, our own time-based binding theory combines elements
of CTC and TPB. Like CTC, it proposes that binding elements
together is crucial for cross-area communication. Also, like CTC,
it proposes that such binding is efficiently implemented via time.
Like TPB, it holds that different packages of bindings can each be
locked to a phase of a slower wave.

We emphasized that role-filler independence is a crucial
property of an efficient (learning) cognitive system; role-
filler independence itself can be considered a special case of
factorization or disentanglement, a major aspect of modern
Artificial Intelligence systems (Higgins et al., 2017; Steenbrugge
et al., 2018). Role-filler independence implies that the two
constituents must be bound somehow, and we mentioned
both synaptic and time-based approaches for achieving this.
One synaptic approach to achieve role-filler independence was
described by Kriete et al. (2013). These authors propose that
the “address” of a filler would be gated into a “slot” relevant
for a specific role that is encoded in the prefrontal cortex. In
this way, roles and fillers remain separate (disentangled), but
can still be combined when a filler is queried (e.g., who owns
the book?). Finally, we note that, besides synapses and time,
other binding schemes can be devised. For example, Akam
and Kullmann (2010, 2014) proposed that also frequency could
be used to bind elements together (as is also implemented in
telecommunication systems). In general, any “labeling” of two or
more elements would in principle be usable. Time and frequency
happen to be the ones that are most naturally implemented
via oscillations.

Empirical Predictions
Our perspective also leads to several empirical directions for
future research. Ideally, empirical predictions are derived from
a computational model (e.g., Senoussi et al., 2020b). However,

Frontiers in Psychology | www.frontiersin.org 8 January 2022 | Volume 12 | Article 798061

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-12-798061 January 18, 2022 Time: 15:23 # 9

Senoussi et al. Time-Based Binding Limits Cognition

whereas the current model can be used to illustrate theoretical
concepts (as we did here), it is not ideal for deriving specific
empirical predictions, because it lacks critical components to
derive such predictions, such as a response interface. While the
full model awaits further development, we already point out more
general predictions in the remainder of this section.

One interesting direction is to look at evidence for oscillations
in behavioral measures. Recent literature has started to do just
that by using dense temporal sampling paradigms in which the
time interval between two events (e.g., a cue and a target) is varied
across trials, allowing to estimate a time course of behavioral
performance. For instance, Landau and Fries (2012) asked
their subjects to pay attention to two horizontally lateralized
gratings and notify the appearance of a brief contrast decrease.
Spectral analysis (e.g., using Fast-Fourier Transform) of time-
course of the accuracy data, obtained via a dense temporal
sampling paradigm, revealed that attention fluctuated at theta
frequency between the two gratings. Several other studies have
replicated this finding (e.g., Fiebelkorn et al., 2013; Dugué
et al., 2016; Senoussi et al., 2019; Michel et al., 2021; see
Kienitz et al., 2021 for a review), and additionally expanded
the study of oscillations in behavioral performance to the field
of working memory (Peters et al., 2020; Pomper and Ansorge,
2021). Of importance, although the findings on fluctuations
in attentional sampling might be interpreted as reflecting a
different role of oscillations than the one that is proposed in
this article, we believe that these potential roles share a core
function supported by oscillations, namely to avoid interference.
Fiebelkorn and Kastner (2019) proposed that across one cycle
of a theta oscillation, there is an alternation between sensory
information sampling (e.g., at a spatial location) and motor
processes associated with shifting the focus of attention (e.g.,
to another location or object). They argue that this temporal
isolation of distinct processes (i.e., sensory and motor) allows
to resolve potential conflicts between sampling and shifting
functions by organizing them temporally. This is in line with
the role of oscillation we consider in the current article which
is to avoid the massive interference that parallel processing in
neural networks may naturally yield. Altogether, and irrespective
of the specific role attributed to oscillations, this rapidly growing
body of literature provides converging evidence that oscillatory
processes are central to behavioral performance in a wide range
of cognitive functions, in which they provide both a mechanism
to sample or bind information, as well as a capacity limit of
these functions.

In the field of working memory, predictions from the TPB
theory have received support from several studies. According
to the TPB theory, theta oscillations originating from medial
temporal lobe and basal forebrain structures (e.g., hippocampus,
septum) are hypothesized to support the maintenance of the
ordinal information in an item sequence in working memory
(Lisman and Jensen, 2013): the phase of theta oscillations
structures the activation of distinct neural populations oscillating
at gamma frequency, each representing an item of the maintained
sequence. This theory thus predicts that a lower frequency of
theta oscillations, leading to longer periods in which items could
be nested, would lead to higher working memory capacity.

Some studies have confirmed this prediction empirically by
showing that higher working memory loads led to a reduction
of theta frequency (Axmacher et al., 2010; Kosciessa et al., 2020).
Moreover, a recent study causally tested this prediction using
transcranial alternating current stimulation (tACS; Wolinski
et al., 2018) and showed that stimulating a fronto-parietal
network at a slow theta frequency (i.e., 4 Hz) led to higher
working memory capacity than stimulating at a faster theta
frequency (i.e., 7 Hz). These studies confirm some predictions
from the TPB theory as applied to working memory; and thus,
they strengthen the view proposed in this article that oscillatory
frequency modulates capacity limits in working memory, thereby
constituting a factor limiting cognitive resources. Finally, we
note that TPB naturally accounts for contiguity effects (i.e., if
item n from a sequence in a free recall paradigm is recalled,
then contiguous items at locations n - 1 and n + 1 are likely
to be recalled next; Healey et al., 2019); and particularly the
asymmetric nature of contiguity effects (the item at location
n + 1 is more likely to be recalled than the item at location
n - 1). Indeed, in TPB, items are preferentially “replayed” in
the order in which they appeared, and this has been observed
empirically (Reddy et al., 2015, 2021; Kok et al., 2017; Blom
et al., 2020; Senoussi et al., 2020a). However, a long list of
benchmark phenomena relating to the contiguity effect have
been reported (e.g., 34 phenomena by Healey et al., 2019), and
we do not claim that we can explain them all based on time-
based binding; nor, indeed, that time-based binding is responsible
for all of them. In fact, the reader will recall that we propose
that time-based and synaptic processes necessarily co-exist for
the construction of (episodic) memories. It will remain a future
challenge to disentangle which of the two processes accounts for
which phenomenon.

A related body of work has investigated the role of theta
oscillations generated by the anterior cingulate cortex (ACC)
in cognitive control processes (Cavanagh and Frank, 2014).
Several studies have shown that these frontal theta oscillations
are elicited when control is needed, i.e., during conflict or in
preparation of a difficult task (Cavanagh and Frank, 2014), and
allow to coordinate distant neural populations to create task-
relevant functional networks through synchronization (Bressler
et al., 1993; Varela et al., 2001; Palva et al., 2005; Canolty
et al., 2006; Voloh and Womelsdorf, 2016). This theta-rhythmic
process has been shown to support successful task performance
(Voloh et al., 2015) and to support the instantiation of task
rules (Womelsdorf et al., 2010). Critically, the frequency of
these oscillations has recently been proposed to shift in response
to task demands. Indeed, a recent study proposed that theta
frequency balances reliable instantiation of task rules and
the rapid gating of sensory and motor information relevant
for the task at hand (Senoussi et al., 2020b). They showed
that this shift is observable both in oscillation of behavioral
performance (using a dense behavioral sampling paradigm) and
electrophysiological data, and that the magnitude of this shift
correlates with inter-individual differences in task performance
(Senoussi et al., 2020b). Other studies have also reported the
involvement of different low-frequency bands during top-down
control processes, especially in hierarchical task implementation
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(Cooper et al., 2019; de Vries et al., 2020; Riddle et al., 2020;
Formica et al., 2021). Together, these results open interesting
avenue for future research on the conventional frequency limits
of oscillations supporting cognitive control (usually attributed
to the theta band) and more generally on the nature of
the constraints controlling and limiting frequency shifts in
neural oscillations. Future studies investigating the causes and
consequences of frequency shifts in neural oscillations supporting
cognitive control, for instance through neuromodulatory systems
(Sara, 2015; Silvetti et al., 2018), will undoubtedly provide
valuable insights on the neural bases of cognitive resources and
their limitations.

CONCLUSION

We proposed that neural oscillations are both a solution to
and a problem for flexible cognition. They are a solution
because they allow items to be bound “on the spot,” leaving no
synaptic traces that need to be erased afterward, thus causing
minimal interference (a notorious problem in standard artificial
intelligence). They are also a problem because of the natural
bound this system imposes; in this sense (only), the theory could
be considered a resource theory.
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APPENDIX

The activity of each neuron of a neural triplet (u, v, and n) are defined by this system of differential equations:

u
′

j= −uj+f (aee ·̃uj−aei ·̃vj+aen ·̃nj−θe+sj (t) ) (1)

τi·v
′

j= −vj+f (aie·uj−aii·vj+ain·nj−θi) (2)

τn·n
′

j= −nj+an·u
p
j (1−nj) (3)

Where uj, vj, and nj are the activity of the fast-excitatory, inhibitory and slow-excitatory components of node j, respectively. sj (t) is the
input signal (i.e., stimulation). Intratriplet coupling strengths are denoted by a parameters. Temporal constants are denoted by τ, note
that there is no temporal constant the fast-excitatory component (i.e., τe = 1). The parameters’ index e refers to the fast excitatory
component, the index i to the inhibitory component, and the index n to the slow-excitatory component. The parameters’ values are
given in the table below:

Temporal constants Intratriplet coupling strengths Thresholds NMDA gain

τi = 32 or 24 τn = 144 aee = 14 aei = 10 aie = 20 aen = 4 aii = 8 ain = 0.1 an = 2 θe = 6 θi = 5 p = 2

The function f(x) represents the firing rate (approximating a noisy-integrate-and-fire spiking neuron): f (x) =√
x

1−exp(−β· x)where β = 1.

The interaction between nodes (i.e., neural triplets) is defined by this equation:

α̃j= (αj+cz
∑
k 6=j

αk)(1+cz(N−1))−1 (4)

Where αj, denotes one of the three components of a triplet (i.e., uj, vj, or nj). Intertriplet coupling strengths are denoted by c
parameters. The parameters’ values are given in the table below:

Intertriplet coupling strengths Number of nodes

ce = 0.001 cei = 0.03 N = 5
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