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The medial frontal cortex (MFC), including anterior midcingulate cortex, has been linked to 

multiple psychological domains, including cognitive control, pain, and emotion. However, it is 

unclear whether this region encodes representations of these domains that are generalizable across 

studies and subdomains. Additionally, if there are generalizable representations, do they reflect a 

single underlying process shared across domains, or multiple domain-specific processes? We 

decomposed multivariate patterns of fMRI activity from 270 participants across 18 studies into 

study-specific, subdomain-specific, and domain-specific components, and identified latent 

multivariate representations that generalized across subdomains but were specific to each domain. 

Pain representations were localized to anterior midcingulate cortex, negative emotion 

representations to ventromedial prefrontal cortex, and cognitive control representations to portions 

of the dorsal midcingulate. These findings provide evidence for MFC representations that 

generalize across studies and subdomains, but are specific to distinct psychological domains rather 

than reducible to a single underlying process.

Introduction

A central aim of cognitive neuroscience is to identify how different mental processes are 

represented in brain activity. The medial frontal cortex (MFC), which includes multiple 

functionally distinct cortical areas in the superior frontal and cingulate gyri1, is one brain 

region which has been linked to diverse psychological domains, i.e., sets of related 

psychological states with different adaptive functions2. Clearly, different areas within MFC 

encode different functions, but there is a striking convergence of overlapping functions 

across domains in several ‘hub’ areas, particularly the anterior midcingulate cortex 

(aMCC3). Research across species has linked activity in aMCC with multiple functions, 

including cognitive control4–5, reward-based learning and decision making6–9, somatic 

pain10, 11, and processing of emotional12, 13 and social information14, 15. In fact, this area 

responds to such a variety of tasks, and so many underlying functions have been proposed to 

explain its responses, that it has been described as a “Rorschach test” and understanding it a 

“holy grail for many cognitive neuroscientists”16.

Theories of aMCC function often explain the numerous signals in this area as components of 

an underlying process that operates across domains. Candidate processes have included 

conflict monitoring4, adaptive control (i.e. control processes broadly engaged by negative 

affect and nociception17), cognitive effort18, valuation of actions19 and control20, and 

detecting threats to survival21, among others. These models have value because they offer 

integrative explanations for aMCC engagement across multiple domains. However, 

measuring brain activity across domains with fMRI glosses over a potential multiplicity of 

different local neural circuits with distinct functions22, 23. Electrophysiological and 

optogenetic studies of likely homologues of human aMCC provide evidence for distinct 

subpopulations of neurons with different functional properties6, 8, 24. Recent evidence 

suggests that multivariate patterns of fMRI activity can, in some cases, identify 

representations distributed across subpopulations of cells, including identifying functionally 

dissociable patterns within aMCC associated with different tasks25, 26.
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Thus, unified accounts of aMCC function make predictions about the similarity of 

multivariate brain representations across domains that have not been adequately tested. If a 

set of domains activate representations of a single underlying process, then engaging these 

representations by tasks from these domain sets should produce similar patterns of brain 

activity in aMCC and other MFC areas. Conversely, if different domains engage an 

underlying pattern that is specific to each domain and not shared by other domains, this 

would provide evidence against a common underlying process.

Here, we test these predictions using a construct-validation approach grounded in 

psychometric theory. We investigated three constructs that engage MFC: ‘pain’, ‘cognitive 

control’ and ‘negative emotion’ (see Methods). We sampled human fMRI data from 18 

studies (15 subjects per study, total n = 270) in a balanced, hierarchical structure, with three 

different experimental manipulations in each domain (e.g., evoked cutaneous, visceral 

nociceptive, and acute mechanical stimulation) and two independent studies for each of 

these experimental manipulations (i.e., subdomain; Fig 1a). Although it is commonplace in 

neuroimaging studies to equate a pattern of activity from a single study with a 

‘representation,’ measurement theory and first principles dictate that representations of 

latent constructs must be generalizable. For instance, a representation of ‘pain’ must 

generalize across different types of painful stimuli. Our approach allowed us to develop 

multivariate models that localize brain representations which correspond to a single domain, 

rather than being driven by the particulars of a subdomain or idiosyncrasies of an individual 

study (Fig 1b). In this way, these models assess the generalizability of brain representations 

and test the validity of the theoretical constructs of ‘pain,’ ‘cognitive control,’ and ‘negative 

emotion.’

Results

Anatomical delineation of psychological domains

Given evidence for regional specialization of cingulate function on the basis of 

cytoarchitecture27, we first applied representational similarity analysis (RSA28) within six 

anatomically defined cortical regions of interest: posterior midcingulate (pMCC), anterior 

midcingulate (aMCC), perigenual anterior cingulate (pACC), subgenual anterior cingulate 

(sgACC), ventromedial prefrontal (vmPFC), and dorsal medial frontal cortex (dMFC; Fig 2). 

By assessing how similar patterns of brain activity are across studies, subdomains, and 

domains in a single model, RSA can provide evidence for generalizable brain 

representations.

This analysis revealed generalizable representations of painful stimulation in aMCC, pMCC, 

and dMFC that were not shared by other domains. Parameter estimates for the effect of the 

pain domain—across the heat, mechanical, and visceral pain subdomains and controlling for 

study- and subdomain-level effects—were positive within aMCC (β̂ = .990 ± .266 (se), z = 

3.72, P = .0002), pMCC (β̂ = .470 ± .186 (se), z = 2.55, P = .0107), and dMFC (β̂ = .294 ± .

116 (se), z = 2.59, P = .0097). See Table S1 for more information. These results indicate that 

patterns of pain-evoked activity in these areas are qualitatively distinct from activity elicited 

during manipulations of cognitive control or negative emotion, independent of subdomain 

and study. Accordingly, in terms of aMCC activity patterns, participants in pain studies 
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across different subdomains were more similar to each other (r = .1289 ± .0039 (se)) than to 

those in studies of cognitive control (r = .0083 ± .0026 (se); 95% CI of difference = [.1089 .

1325]) and negative emotion (r = .0111 ± .0032 (se), 95% CI of difference = [.1051 .1297]; 

Fig 2). Because these correlations are computed across subdomains, they are unlikely to be 

driven by similarity in any particular subdomain or study. Qualitatively similar results held 

for patterns of activity in pMCC and dMFC, although they were smaller in magnitude 

(Tables S1 and S2). These findings are concordant with theoretical models that implicate the 

aMCC in pain29, 30 and studies identifying nociceptive circuits in dorsal anterior cingulate 

cortex31. Observations of aMCC activity during noxious stimulation have often been 

attributed to more general mechanisms, such as directing attention, response selection, or 

responding to salient events. However, we identified representations of evoked pain distinct 

from those related to cognitive and emotional domains, which are also attention-demanding, 

salient, and involve motor preparation, ruling out such general explanations as the primary 

drivers of aMCC responses during painful stimulation.

The regional analysis also revealed generalizable representations of negative emotion—

across social emotion, emotional pictures, and emotional sounds— in vmPFC (β̂ = .514 ± .

140 (se), z = 3.65, P = .0003) and dMFC (β̂ = .404 ± .133 (se), z = 3.03, P = .0024; Table 

S2). Within vmPFC, patterns of activation from different subdomains of negative emotion 

were more similar to each other (r = .0474 ± .0027 (se)) than they were to evoked pain (r = .

0117 ± .0023 (se), 95% CI of difference = [.0270 .0440]) and cognitive control (r = .0072 ± .

0020 (se), 95% CI of difference = [.0316 .0484]) studies (Table S4). These observations 

agree with those of recent neuroimaging studies identifying representations of cross-modal 

subjective value32 and perceived emotion33 in vmPFC. By revealing representations of 

negative emotion that generalize across stimulus modality and social contexts, these results 

further substantiate the notion that vmPFC integrates emotional value across diverse 

stimuli34, 35. Further, these data suggest that although painful and unpleasant emotional 

events can engage a shared negative affective component, vmPFC representations evoked by 

these two types of stimuli are qualitatively distinct. Recent meta-analytic work has suggested 

that this difference may be related to the generation of affective meaning36, where 

information about environmental cues, memories of past events, and evaluations of potential 

outcomes are combined into an integrated representation of an organism’s well-being in the 

current environment. This integrative processing would stand in contrast to affective 

representations that are not conceptually driven, such as pain. We note that these data do not 

directly assess the generalizability of vmPFC representations to positive emotion, or 

internally generated states elicited through memory retrieval, as we focused on inductions 

using negative stimuli.

No cingulate or other areas within MFC exhibited a generalizable representation specific to 

cognitive control across working memory (N-back), response selection (stop-signal), and 

response conflict (Flanker, Simon) subdomains (see Methods for citations to included 

studies). However, we did identify a generalizable representation of response selection, a 

subdomain of cognitive control particularly involved in motor inhibition, in vmPFC (Table 

S1). As we observed deactivation in this area during task performance (Fig 3; like others37), 

this representation may reflect a pattern of deactivation not shared by other domains or other 

cognitive control subdomains. Patterns of vmPFC activation from different response 
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selection studies were more similar to one another (r = .0828 ± .0033 (se)) than to those 

during manipulations of negative emotion (r = .0052 ± .0023 (se), 95% CI of difference = [.

0674 .0876]), evoked pain (r = .0286 ± .0024 (se), 95% CI of difference = [.0443 .0647]), 

working memory (r = .0514 ± .0045 (se), 95% CI of difference = [.0185 .0442]), or response 

conflict (r = .0254 ± .0043 (se), 95% CI of difference = [.447 .0701]; Table S4). Thus, 

though generalizable representations of both negative emotion and response selection were 

observed within vmPFC, these representations appear to be distinct. It is also possible that 

control-related representations are highly dependent on individual study parameters, as we 

found strong study-specific effects in multiple regions, including aMCC (Table S2).

Analysis of activation spanning the full extent of MFC (combining the six regions of 

interest) produced similar results, with effects of painful stimulation and negative emotion 

that generalize within but not across domains (Fig S1; Table S2). Confirmatory analyses that 

directly contrasted the spatial similarity of brain activity within domains against spatial 

correlations across domains further supported these results (Fig S2, Tables S3–S5). 

Additional confirmatory analyses using different model parameterizations produced 

qualitatively similar results (Fig S3).

To quantify the weight of evidence favoring generalizable representations specific to each of 

the three domains, we additionally conducted model comparisons using the Bayesian 

Information Criterion in each region of interest (see Methods for details). Results of this 

analysis corroborate inferences drawn on individual parameter estimates (Table 1). aMCC 

representations were best explained by a model including the domain of pain (in addition to 

terms for study and subdomain), but not cognitive control or negative emotion. vmPFC 

representations, on the other hand, were best explained by modeling the domain of negative 

emotion but not pain or cognitive control. The best fitting models of dMFC and full MFC 

representations included all three domains, indicative of diverse coding in these regions. 

Additional model comparisons using the Brainnetome atlas, a parcellation based on 

functional and anatomical connectivity38, provide evidence for generalizable representations 

in other brain regions outside the MFC as well (Table S6, Fig S4).

Searchlight mapping of psychological domains

As there is well-established variability in the anatomy of the cingulate sulcus39, we 

additionally conducted searchlight mapping40 to localize domain-specific representations 

without strongly relying on the boundaries between regions and lessen the impact of 

anatomical variability. In this approach, we modeled the similarity structure of spherical 

volumes (radius = 8 mm) centered at each voxel in MFC, identifying areas wherein local 

patterns of brain activity contain generalized representations of ‘pain’, ‘cognitive control’, 

and ‘negative emotion’. By examining patterns of activation in small spherical volumes, 

these searchlights provide a smooth estimate of pattern information40 that is not constrained 

by fixed boundaries that may not match the anatomy of every subject (of importance here, 

~40% of the population has a paracingulate gryus39, which extends the spatial extent of 

MCC).

The results of the searchlight analysis were largely concordant with those based on 

anatomical parcellation (Fig 4a, d). Generalizable representations of painful stimulation 
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were found in aMCC within the cingulate sulcus (zpeak = 4.88, MNIxyz = [2, 14, 24], P = 

1.06e-06, q < .05 FDR-corrected), and extending into dMFC (zpeak = 5.58, MNIxyz = [2, 8, 

46], P = 2.41e-08, q < .05 FDR-corrected). Also consistent with the regional analysis, 

representations of negative emotion were found in dMFC, above the dorsal bank of the 

cingulate sulcus in pre-SMA (zpeak = 3.00, MNIxyz = [−10, 10, 52], P = 0.0027), and vmPFC 

(zpeak = 3.78, MNIxyz = [0, 48, −10], P = 1.57e-04) albeit at lower (uncorrected) thresholds.

Unlike the regional analyses, the searchlight analysis revealed domain-specific 

representations of cognitive control along the cingulate sulcus, extending into SMA and 

motor cortex (zpeak = 2.81, MNIxyz = [−2, 2, 46], P = 0.005). This localization, which falls 

along the boundary between aMCC and dMFC, agrees with meta-analyses showing the 

epicenter of control-related activity in this area across working memory, inhibition, and 

attention shifting tasks41, and with the posterior rostral cingulate zone42, a region classically 

thought to be involved in response selection. Due to its proximity to and connectivity with 

functionally related brain regions17, this area is a prime candidate for integrating different 

types of control signals from multiple sources, such as the expected value of control20 and 

value-guided behavioral adaptations19.

Integrative views of cingulate function are in part supported by observations that overlapping 

activation is observed in aMCC and adjacent MFC during manipulations of pain, cognitive 

control, social, and evaluative processing17. To assess whether the domain-specific 

representations identified in the present study similarly overlap within the broader territory 

of the MFC, we performed a conjunction analysis of the searchlight maps (Fig 4b). Results 

revealed that these representations were predominately dissociable; the three domains did 

not commonly overlap in any voxel. Minimal overlap was found in dMFC, with small 

clusters of activity coding for both pain and cognitive control (60 voxels, 0.57%), and for 

pain and negative emotion (93 voxels, 0.88%). A small degree of overlap was also observed 

for pain and negative emotion in vmPFC (17 voxels, 0.53%). The only overlapping effects in 

cingulate cortex were for pain and cognitive control, spanning the border between pMCC (6 

voxels, 1.16%) and aMCC (2 voxels, 1.29%).

To evaluate evidence against overlap, we computed Bayes Factors using the minimum z-

score from the three-domain conjunction analysis43, 44. In this analysis, if the minimum 

statistic from all three domains is less than or near zero, then there is little support for 

overlap. Conversely, if the minimum statistic is large and positive, it is more likely that there 

is overlap across the domains. Values < 1 reflect evidence in favor of the null hypothesis of 

no representation in all three domains, and values > 1 reflect evidence in favor of overlap. A 

Bayes Factor < 0.1 is generally considered “strong evidence” against overlap, and a factor > 

10 is generally considered “strong evidence” for overlap. This analysis revealed substantial 

evidence against overlap in the MFC (Fig 4c), with a maximum Bayes Factor = 0.0898.

Discussion

Our results reveal generalizable representations of pain, cognitive control, and negative 

emotion in separable patterns of MFC activity. The limited overlap of generalizable 

representations across domains contrasts with conventional, univariate assessments of 
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cingulate function which show substantial overlap across domains17, 45, 46. Thus, the novel 

findings here highlight functional diversity within MFC, and they suggest that domain-

specific representations exist in most parts of MFC, including aMCC and adjacent regions. 

Though domain-specific representations are limited to one domain (pain, negative emotion, 

and cognitive control), our design allows us to infer that they do generalize across multiple 

subdomains (e.g., somatic thermal, somatic mechanical, and visceral pain). The 

generalizable representations we identify provide empirical constraints on what integrative 

theories of aMCC function must explain. In most of the MFC, it may not be necessary to 

explain pain- or affect-related and cognitive error-related signals with a single mechanism. 

Along these lines, it has recently been suggested that the aMCC functions to monitor for 

conflicts related to ever-present, survival-relevant goals30. Consistent with this proposal, we 

identified generalizable representations of pain in aMCC. However, these representations 

were qualitatively distinct from those evoked by negative emotional stimuli, including social 

rejection, that were not generalizable. This distinction makes it unlikely that the aMCC is 

engaged in the same way to achieve different survival-relevant goals. It is also consistent 

with other recent work identifying dissociations in MFC activity across tasks taken from 

different domains47.

On the other hand, our findings leave room for integrative theories that explain 

computational mechanisms in terms of a convergence of different neural populations that 

interact to achieve computational goals. That is, it is possible that the same computational 

function may be implemented in diverse neural circuits, depending on their inputs and 

outputs. Our data therefore do not argue against unified computational accounts of aMCC, 

but rather a unitary neural implementation of those computations.

The proximity of pain, negative emotion, and cognitive representations we identified 

provides a neural substrate for their comparison and integration17. It is possible that 

integration across domains could be identified in carefully controlled studies implementing 

within-subject designs across domains and subdomains. Further, although we included many 

studies and subdomains, our sampling was far from exhaustive, and testing specificity is an 

open-ended process. Future work combining a more diverse set of subdomains (e.g., 

incorporating studies of chronic pain, positive and negative reward prediction error, and 

behavioral withdrawal) with model-based approaches will help further test the claims of 

integrative theories of control.

In conclusion, we identified domain-specific representations for pain and negative emotion 

in the aMCC and vmPFC. These representations generalized across participants and diverse 

subdomains (three per domain). These representations could only be identified by extracting 

generalizable brain patterns across studies and subdomains. Currently, conventional research 

investigating population-level neural representation has been conducted at the level of 

individual studies. Even when very large, studies that sample limited numbers of tasks (i.e., 

a single exemplar task for a psychological domain) are not capable of identifying 

generalizable brain representations in this way. Although cross-validation procedures, 

reliability analysis, and independent replication samples are becoming increasingly common 

to ensure the generalizability of results, it is evident that findings are often idiosyncratic to a 

particular study or experimental context, rather than truly reflecting the mental operations 
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under study. Our results demonstrate how modeling the similarity structure of fMRI data 

drawn from multiple studies and subdomains can overcome this challenge and disambiguate 

latent brain representations of theoretical constructs.

Methods

Experimental Design

We adopted a construct-validation approach to examine generalizable representations of 

three constructs that engage the MFC: ‘pain’, ‘cognitive control’, and ‘negative emotion’. By 

(a) identifying latent multivariate representations that are indicative of an underlying 

psychological domain rather than idiosyncrasies of one particular study or subdomain (i.e., 

task), and (b) examining the similarity of those latent representations across multiple 

psychological domains, this framework provides a more definitive test of shared 

representation in the aMCC and areas within the MFC compared to conventional single-

study or single-method investigations.

This approach has been taken for decades in psychometric research to assess construct 

validity48. The idea is to define a latent construct— ‘intelligence’ and ‘anxiety’ are classic 

examples—and measure it with multiple distinct indicators. Using multiple indicators 

permits the extraction of common factors that underlie the construct. Inter-correlations 

among indicators of the same construct provide evidence for convergent validity, suggesting 

that the indicators measure the same construct. If different indicators uniquely load on 

different constructs, they provide evidence for discriminant validity. Together, establishing 

convergence and discrimination provides strong evidence for construct validity49.

Applied to fMRI, indicators are patterns of brain activity evoked by different tasks, and the 

constructs are the functional psychological domains (e.g., ‘pain’ or ‘working memory’) that 

the tasks putatively measure. The vast majority of studies, even large-scale studies like the 

Human Connectome Project and UK Biobank50, 51, use only one specific task variant as a 

single indicator for a domain. This poses a problem in inferring the similarity of 

psychological domains from the similarity in patterns of brain activity. For example, if a 

‘pain’ task differs from a ‘negative emotion’ task in aMCC25, 26, is it because ‘pain’ is 

represented differently from ‘negative emotion’, or because the particular variant of pain 

studied differs from the particular variant of negative emotion? A study with multiple 

varieties of pain and multiple varieties of negative emotion could address this question, if it 

showed that a brain representation common to multiple varieties of pain is distinct from a 

representation common to multiple varieties of negative emotion. This is the method we 

used in the present study, as detailed below.

Study and Contrast Selection

fMRI data were sampled from studies of acute thermal somatic stimulation52, 53, acute 

visceral stimulation54, 55, acute mechanical somatic stimulation, working memory56, 57, 

response selection58, 59, response conflict60, induction of negative emotion using images of 

visual scenes61, 62, social rejection63, the perception of others in pain25, and emotionally 

aversive vignettes from the International Affective Digital Sounds system64. Together these 
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data formed a balanced hierarchical sample, with six pain studies (two thermal, two visceral, 

and two mechanical), six cognitive control studies (two working memory, two response 

selection, and two response conflict), and six negative emotion studies (two visual, two 

social, and two auditory). Although negative emotion can be evoked through diverse 

methods, including the recollection of emotional events, the brain activity we analyze here is 

focused on exteroceptive processing – which has reliably been linked to overlapping MFC 

activity17.

Due to variability in sample size across studies (range = 15–183), data were randomly 

subsampled by selecting 15 participants from each study (total n = 270). Although no 

statistical methods were used to pre-determine this sample size, it is similar to those reported 

in previous publications7,9,11 (see also Table S7 for maximal univariate effects in the present 

sample). Because our focus was to generalize across studies, no attempts to replicate 

individual experiments were made. No participants were excluded from the analysis. A 

subset of these data was previously utilized to validate the use of automated meta-analysis to 

decode cognitive states of pain, emotion, and working memory62.

This was not a randomized study; it was a mega-analysis of multiple studies. Participants 

were recruited independently for each of the 18 studies being analyzed. Data collection was 

conducted blind to the goals of the present study. A posteriori group assignment was based 

on the goals of each study and experimental manipulation being used (e.g., studies involving 

thermal stimulation of the forearm were considered members of the ‘pain’ domain). Data 

analysis was not performed blind to the conditions of the experiments.

Informed consent was provided by all subjects in accordance with local ethics and 

institutional review boards. Participants sampled from studies 5 (n = 15, 4 female, Mage = 

26.9), 6 (n = 15, 8 female, Mage = 24.2), 17 (n = 15, 7 female, Mage = 31.1) and 18 (n = 15, 

9 female, Mage = 24.4) provided informed consent as approved by the University of 

Colorado Boulder institutional review board. Participants in study 11 (n = 21, 9 female, Mage 

= 30.5) provided informed consent in accordance with the New York University institutional 

review board. Descriptions of ethics approval, image acquisition and analysis, and 

demographics are described briefly in Table S7 and in full detail in the corresponding 

references (see also the Life Sciences Reporting Summary).

Contrasts from thermal painful stimulation were between high and low levels of pain53 or 

between high levels of painful stimulation and baseline52. Contrasts for visceral stimulation 

studies were between rectal distension trials and baseline. For mechanical stimulation 

studies, contrasts were made between pressure application to the thumb and baseline. 

Contrasts for both working memory studies were between N-back blocks and a fixation 

baseline. For response selection studies, contrasts were between trials in a go/no-go task 

engaging response selection (as defined in the Cognitive Atlas65) against baseline. Response 

conflict contrasts were made between congruent and incongruent trials in studies using the 

Eriksen Flanker and Simon paradigms. Studies of visual negative emotion compared 

negative to neutral IAPS pictures62 or negative pictures against baseline61. Social negative 

emotion studies compared viewing pictures of ex-partners versus friends63 and viewing 
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images of others in pain25 versus baseline. Auditory negative emotion studies compared 

listening to unpleasant affective sounds to baseline.

fMRI Analysis

We employed three converging methods to isolate generalizable brain representations: 1) we 

modeled how dissimilar patterns of brain activity were from another, called representational 

similarity analysis (RSA28, 66); 2) we directly compared the similarity of brain activity from 

studies coming from the same domain (but different studies and subdomains) to studies from 

different domains; and 3) we used partial-least squares regression67 to characterize the 

spatial profile of generalizable brain representations in MFC.

Feature Selection

Input data were defined a priori as voxels located within the anterior midline, defined as 

voxels within cingulate cortex and superior frontal gyrus (in the LONI Probabilistic Brain 

Atlas68) anterior to the plane y = −22 mm in MNI space. The primary analyses were 

conducted within four cingulate subregions27 as well as ventral and dorsal aspects of medial 

frontal cortex. These anatomically defined regions of interest include posterior midcingulate 

cortex (pMCC; y = −22 mm to y = 4.5 mm, z > 5 mm, 822 voxels), anterior midcingulate 

cortex (aMCC; y = 4.5 mm to y = 30 mm, z > 5 mm, 815 voxels), perigenual anterior 

cingulate cortex (pACC; y > 30 mm, z < 5 mm, 794 voxels), and subgenual anterior 

cingulate cortex (sgACC; y = 4.5 mm to y = 30 mm, z < 5 mm, 302 voxels), as well as 

within superior frontal gyrus and ventromedial prefrontal cortex (split by the plane z = 5 

mm, dMFC and vmPFC, 4311 and 10619 voxels respectively). As these divisions were 

originally defined in Talairach space, they were converted to MNI152 space using the 

Lancaster transform69. A secondary analysis was performed using searchlight mapping40, 

where multiple analyses were conducted, each using patterns of fMRI activation within 

spherical regions (radius = 8 mm) centered at every voxel in the MFC as input. An 

additional exploratory analysis using RSA-based model comparison, described in full detail 

below, was conducted using a whole-brain parcellation based on structural and functional 

connectivity38.

RSA: model specification

We estimated representational dissimilarity matrices (RDMs) by computing the correlation 

distance (1 – Pearson’s r, excluding on-diagonal elements which have a dissimilarity value 

of 0) of multi-voxel patterns of brain activity. Each pattern was acquired from one of 270 

subjects, which came from the full sample of 18 studies (n = 15 per study). Next, we 

constructed model-based RDMs to characterize different components of a psychological 

hierarchy (Fig 1). At the lowest level, the 18 studies were individually modeled to account 

for study-specific idiosyncrasies. Next, the nine subdomains (visceral stimulation, thermal 

stimulation, mechanical stimulation, response conflict, stop/go response selection, working 

memory, visual negative emotion, social negative emotion, auditory negative emotion) were 

modeled to account for response patterns that generalize across studies. Finally, the three 

psychological domains (pain, cognitive control, and negative emotion) were modeled as 

independent predictors, to account for response patterns that generalize not only across 

studies, but across subdomains as well, hence being generalizable within but not across the 
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three domains. Individual RDMs were computed from binary vectors indicating membership 

based on study (18 RDMs), subdomain (9 RDMs), or psychological domain (3 RDMs). The 

unique off-diagonal elements (inter-subject dissimilarities) of these 30 RDMs, in addition to 

a constant RDM, were vectorized to form regressors in a model. Linear regression was used 

with this model to fit the observed inter-subject brain dissimilarity matrix. On-diagonal 

elements were excluded for all similarity-based analyses, as they have perfect correlation 

and zero dissimilarity. The general linear model assumes independence while dissimilarity 

matrices exhibit complex dependence; as a result we use bootstrap inference to obtain P-

values (see inferences on model parameters section below).

RSA: model properties and diagnostics

To assess the suitability of our models, we conducted simulated experiments using resting-

state fMRI (rsfMRI) data (n = 270) from the 1,000 functional connectomes project70. This 

allowed us to test the RSA models’ false positive rates, and the bias and variance of 

parameter estimates, using data with no true effects but real fMRI noise. This is the approach 

recently taken by Eklund et al. (Ref. 71) to assess false positive rates in standard GLM 

analyses.

We used a Monte Carlo procedure to conduct 1,000 RSA-based analyses of rsfMRI data, 

each with randomly generated event-related fMRI models for the 270 participants, allowing 

us to estimate the distribution of RSA parameter estimates under the null hypothesis. To 

mirror the dependence structure (including study/site effects) in our present sample, we 

selected rsfMRI participants from 18 different sites, sampling 15 participants from each site 

(total n = 270). All data were subjected to standard preprocessing, including realignment to 

correct for motion, non-linear warping to standard MNI space, spatial smoothing (4mm 

FWHM), and high-pass filtering (128s cutoff). Then, for each Monte Carlo iteration, for 

each participant, we generated a series of 10 events with random onsets, modeled them with 

diraç delta (impulse response) functions and convolved them with SPM’s standard 

hemodynamic response function to generate a single regressor of interest for each subject (a 

constant term was also included). Then, we estimated these models, generating a series of 

270 event-related activation maps. These were subjected to RSA-based modeling, as 

described in the model specification section above. To estimate the false positive rates for 

RSA model parameter estimates in bootstrap-based inference, we conducted bootstrap 

resampling (b = 200 bootstrap samples) and obtained P-values for each RSA model 

parameter. We repeated this entire procedure 1,000 times, with randomly specified models 

on every iteration, i.e., estimating a total of 270,000 unique fMRI activation maps, and 1,000 

RSA model fits and bootstrap tests.

Under the assumption that the rsfMRI data contain no consistent relationship with the 

randomly specified models, an unbiased model should have parameter estimates centered on 

zero across the 1,000 Monte Carlo iterations, indicating no systematic bias. Thus, to estimate 

bias, we calculated the mean deviation of each parameter estimate from zero. We also 

estimated the variance of parameter estimates across the 1,000 iterations; lower variance 

indicates greater precision and power. To estimate variance, we calculated the standard 

deviation in each RSA parameter estimate across the 1,000 iterations. The proportion of 
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false-positives was assessed using a P < .05 cutoff (two-tailed). False positives were defined 

as parameter estimates below the 2.5th or above the 97.5th percentile on the bootstrap 

distribution, and the false positive rate for each RSA model parameter estimate was defined 

as the proportion of the 1,000 RSA models for which that parameter estimate was 

significant.

The results of these analyses indicated that the modeling procedure is unbiased, i.e., average 

null-hypothesis values were nearly exactly zero. Of 180 parameters evaluated (6 ROIs x 30 

parameters) the largest effect was not significantly different from zero (z = 0.904, P = 

0.366). In addition, false-positive rates for all RSA model parameters were at or below the 

nominal value of 0.05 (Fig S5).

We also repeated the entire RSA model simulation (500 iterations) using synthetic null-

hypothesis data generated from a Wishart distribution (Fig S6) and with a homogeneous set 

of task data (using 180 subjects from study 13) and found qualitatively identical results (not 

shown). This simulated a case in which there are no study-level effects. Overall, the RSA 

model procedures provide unbiased estimates under the null hypothesis, and false positive 

rates are appropriately controlled.

RSA: Model identifiability

Here we model inter-subject RDMs, so the data to be modeled comprise an n x n 
dissimilarity matrix, where n is the number of participants; this matrix has rank min(n,r) 
where r is the number of voxels used to compute the correlation. The lower triangle of the 

dissimilarity matrix is vectorized and fit with a linear model with design matrices based on 

equivalently vectorized dissimilarity (as illustrated in Fig 1). Thus, the outcome data is a 

vector of length u = n × (n−1)/2. The model dimension depends on the exact 

parameterization used, but a saturated model for the effect of study would have dimension k 
+ k × (k−1)/2, where k is the number of studies; this is k parameters for the average intra-

study relationship (for pairs of subjects) within each study, and k × (k−1)/2 parameters for 

each possible relationship between each pair of studies. In practice, we use a much simpler 

model, but confirm identifiability by checking the rank of the design matrix and variance 

inflation factors.

In our study, we included k = 18 studies with n = 270 participants divided equally among 

them (15 per study). We utilized the constant term in the model to characterize the average 

similarity of data within studies, leaving a subspace of inter-study relationships spanned by k 
+ k × (k−1)/2 – 1 = 170 dimensions. In principle, the upper bound on the number of 

regressors for inter-study differences in an identifiable model is 170. However, we were 

primarily interested in specific inter-study relationships, particularly those common to 

subdomains (9 parameters for pairs of studies with the same subdomain) and those common 

to domains (3 parameters for three sets of 9 studies that load on the same domain construct 

across 3 subtypes). Our full model thus contained 31 regressors: 18 for specific studies, 9 for 

subdomains, 3 for domains, and one intercept term. As the number of voxels per ROI was at 

least 302 > 31, there was no risk of degenerate (zero-residual) models.
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RSA: Model rank and variance inflation factors

To confirm the identifiability and efficiency of our models, we computed the rank of our 

design matrix and variance inflation factors (VIFs) for each regressor. The variance inflation 

factors (VIFs) show the degree to which variance in each parameter estimate is increased 

due to partial collinearity with linear combinations of other regressors. The rank of our 

design matrix is 31, indicating that the model is full-rank and identifiable, and not 

overparameterized. VIFs were finite for all regressors, consistent with the fact that model 

was identifiable (Figure S2). VIFs varied across regressors based on the partially shared 

variance across study, domain and subdomain, which was unavoidable because part of the 

covariance common to participants in each domain is shared with the subdomains and 

studies that fall within it. However, the VIFs were clearly in a range that indicated 

reasonable ability to make inferences on the unique variance explained by each parameter, 

given the sample size. The regressors which were of primary interest (i.e., the three domain 

level terms) had VIFs = 1.66.

Statistics: inferences on RSA model parameters

Parameter estimates (β̂) from the model provide estimates of generalizability, with the 

interpretation of a significant (non-zero) parameter estimate depending on the nature of the 

regressor. Study-specific regressors test generalizability across individual participants within 

a study, in the sense that they capture inter-subject correlations in the spatial patterns of 

activity. Positive values indicate similar patterns across participants for the study modeled. 

Subdomain-level regressors test generalizability across two studies of the same subdomain, 

controlling for other model parameters. Positive values indicate shared spatial patterns 

across studies of the modeled subdomain, and thus evidence for a coherent subdomain. 

Domain-level regressors, which were of primary interest here, test generalizability across 

three distinct subdomains (6 studies), controlling for shared patterns specific to the study and 

subdomain. Positive values indicate shared spatial patterns across subdomains, and thus 

evidence for a coherent domain-related pattern. Thus, we refer to these parameter estimates 

as generalization indices (e.g., Fig 2), as they reflect the extent to which patterns of brain 

activation generalize across subdomains, studies, or subjects. Because the regressors were 

tested jointly in multiple regression modeling, significant domain-level parameter estimates 

imply that the pattern of brain activity shared across the domain was not reducible to a 

subdomain-specific or study-specific pattern.

Inference on parameter estimates (β̂) was made using bootstrap resampling of subjects. This 

procedure involved repeatedly resampling subjects with replacement for each study over 

5,000 iterations for the regional analysis and over 1,000 iterations for the searchlight 

analysis (see below). In each resampling, a new RDM was constructed using fMRI 

activation for the resampled subjects and GLMs were estimated. Because samples from the 

same subject can be drawn multiple times in this approach, pairwise dissimilarity values 

from the same subject (with a dissimilarity value of 0) were excluded from the analysis. 

Bootstrap distributions for individual model parameters were compared against 0 using 

normal approximation for inference. These distributions were visually inspected and 

assumed to be normal, although this was not statistically tested. Unless noted otherwise, the 

main results reported in the manuscript (both regional and searchlight analyses) were 
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thresholded after correcting for multiple comparisons based on the false discovery rate (FDR 

corrected, q < .05). All tests are two-tailed unless otherwise specified.

Statistics: RSA model comparison

To formally compare the amount of evidence for domain-generalizable representations, 

model comparisons were made using the Bayesian Information Criterion (BIC). The 

reference model included terms for each study (18 parameters), each subdomain (9 

parameters), and a constant (28 parameters in total). Next, we fit three models that each 

included a single additional term for one of the psychological domains (29 parameters in 

total). Finally, a more fully specified model which contained all three psychological domains 

(31 parameters in total) was fit. These five models were fit for each region of interest and the 

full extent of MFC. BIC values were computed using the log-likelihood of fitted models and 

penalizing based on the number of free parameters72. The number of samples was set the 

number of participants included in the analyses (270) as opposed to the number of unique 

elements in the dissimilarity matrix, because of dependence between elements of the 

dissimilarity matrix. BIC values were converted to weights using the formulation in 

Wagenmakers and Farrell73. These weights characterize which model is most likely to have 

produced the observed similarity structure in each region, given the a priori set of models. 

Finally, the adjusted R2 was computed for the model favored by the BIC analysis in each 

region of interest.

This analysis was additionally conducted for regions spanning the whole brain (as delineated 

in the Brainnetome Atlas38). Because this parcellation contains regions with fewer voxels 

than participants included in the analysis, the number of samples was set to the minimum of 

270 and the number of voxels in each parcel.

Statistics: “Model-free” analysis comparing spatial correlations within and between 
domains

To provide evidence for generalizable brain representations without using an explicit model 

of expected similarity relations, we tested for non-zero correlations within domains and 

between different subdomains, within domains and between studies, and within domains 

generally. Tests of non-zero correlations were performed by constructing confidence 

intervals (α = .05) using bootstrap analyses with the bias corrected and accelerated 

percentile method. We also conducted a series of hierarchical tests comparing: 1) inter-

subject correlations from the same domain but different subdomains vs. correlations from 

different domains; 2) correlations from the same domain but different studies vs. correlations 

from the same domain but different subdomains; 3) correlations from the same domain vs. 

correlations from the same domain versus different studies. These tests are constructed to 

sequentially identify the average effect of domain, subdomain, and study for each of the 

three domains. Inferences were drawn by calculating bootstrap confidence intervals based on 

the mean difference in correlation coefficients (for a graphical depiction, see Fig S7).

Statistics: PLS estimation of latent patterns for each domain

To estimate patterns of activity associated with each domain (Fig 2), Partial Least Squares 

regressions69 were run separately in each region of interest, with contrasts from all 270 
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subjects forming the data matrix, and dummy coded variables forming the output matrix 

(270 subjects by 30 parameters: 18 studies, 9 subdomains, and 3 domains, with values of 

1/−1 based on inclusion/exclusion for each term). Parameter estimates were bootstrapped 

over 5,000 iterations, and z-scores were estimated based on the mean and standard error of 

the bootstrap distributions. We note that this approach is not designed to ensure that 

representations are uniquely specific to each domain; if some studies or subdomains have 

especially high covariance with a domain, they could have a large influence on domain-level 

patterns. For this reason, PLS-based estimation of patterns is used in conjunction with RSA 

and direct comparisons of inter-subject correlations.

Statistics: searchlight thresholds and assessment of overlap

For the conjunction analysis and visualization of searchlight maps, an uncorrected threshold 

(P < .05) was used to ensure that an overly conservative threshold did not obscure 

overlapping regions. To estimate the relative evidence for and against overlap of the 

domains, Bayes Factors were computed44 using the minimum statistic compared to the 

conjunction null74 and a uniform distribution ranging from 0 to 10 as a prior distribution 

(theoretically plausible values of parameters estimates). This test evaluates whether there is 

more evidence in favor of overlap (i.e., that the minimum statistic of the three maps is 

substantially greater than zero) or against overlap (the minimum statistic of the three maps is 

relatively close to or less than zero). Bayes Factors greater than 3 provide evidence of 

overlapping representations, whereas values less than .33 provide evidence against overlap.

Correspondence of searchlight maps with existing parcellations

River plots were created to depict the correspondence (quantified as the cosine similarity) 

between the searchlight maps and existing anatomical27 as well as functional75 parcellations.

Data Availability

The fMRI data for studies 9–12 are available from OpenfMRI, https://openfmri.org/dataset/

ds000008/, https://openfmri.org/dataset/ds000007/, https://openfmri.org/dataset/ds000101/, 

and https://openfmri.org/dataset/ds000102/. fMRI data for study 13 is available at 

NeuroVault, http://neurovault.org/collections/503. The fMRI data that support the findings of 

this study are available from https://canlabweb.colorado.edu/files/

MFC_Generalizability.tar.gz

Code Availability

MATLAB code for implementing all analyses is available at https://github.com/canlab/ and 

in the Supplementary Software.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Study selection and multivariate modeling. (a) Hierarchical structure of studies and tasks. 

Dendrograms convey theoretical groupings of fMRI activity at levels of study (level 1: 

studies S1–S18), subdomain (level 2: Thermal, Visceral, Mechanical, Working Memory 

(WM), Response Selection (RS), Response Conflict (RC), Visual, Social, and Auditory), and 

domain (level 3: Pain, Cognitive Control, and Negative Emotion). Colored regions illustrate 

model-based partitioning of neural similarity into components that generalize across subjects 

(unique to a study, top 18 squares), studies (unique to a subdomain, middle nine squares), 

and subdomains (unique to a domain, bottom three regions). (b) Decomposing multivariate 

pattern similarity into study-, subdomain-, and domain-specific components. The matrix in 

the left panel shows the dissimilarity of fMRI patterns across all subjects (n = 270) in the 

entire medial frontal cortex. Each row represents one individual participant, and each 

element the dissimilarity (1 – Pearson’s correlation coefficient) in brain activity patterns for 

two individuals. Colored bars to the left indicate corresponding levels in the functional 

hierarchy. The right panel shows how the observed neural dissimilarity across pairs of 

images from the 18 studies is modeled as a weighted summation of theoretical dissimilarity 

matrices constructed according to study (18 parameters), subdomain (9 parameters), and 

domain (3 parameters) membership, in addition to a constant term (not shown).
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Figure 2. 
Regional assessment of generalizable representations in MFC. Inset brain rendering depicts 

the anatomical parcellation of MFC using the four-region model of cingulate cortex27 

comprising anterior midcingulate cortex (aMCC), perigenual anterior cingulate cortex 

(pACC), subgenual anterior cingulate cortex (sgACC) and posterior midcingulate cortex 

(pMCC), in addition to ventromedial PFC (vmPFC) and dorsomedial frontal cortex (dMFC). 

Surrounding panels depict the average inter-subject Pearson correlations (36,315 pairwise 

correlations computed from n = 270 participants) both within domains but from different 

subdomains (n = 2,700 pairwise correlations) and between different domains (n = 8,100 

pairwise correlations, left) in addition to bootstrap distributions of the generalization index 

computed from the full sample (b = 5,000 bootstrap samples, right). Correlations with 

significantly positive values (bootstrap test, Bonferroni corrected P < .05) have solid black 

borders. The generalization index quantifies the extent to which brain activity within a 

region is similar within a domain (across different subdomains) but is different across 

domains. *FDR q < .05 corrected.
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Figure 3. 
Identifying latent brain representations that predict the occurrence of distinct functional 

domains in each region of interest. (a) Latent patterns of activity that generalize across 

studies and subdomains, but are specific for the domains of pain, cognitive control, and 

negative emotion, extracted using Partial Least Squares separately for each region and 

thresholded at P < .05 uncorrected for display (n = 270 participants). (b) Expanded view of 

latent patterns in aMCC in the left hemisphere. Images are displayed using radiological 

convention.

Kragel et al. Page 22

Nat Neurosci. Author manuscript; available in PMC 2018 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Representational mapping of pain, cognitive control, and negative emotion in MFC. (a) 

Searchlight maps display where local patterns of brain activity are consistent with domain-

specific representation of pain (red), cognitive control (green), and negative emotion (blue; n 
= 270 participants). (b) Additive conjunction of searchlight maps, with each domain mapped 

onto orthogonal dimensions in the RGB color space. Overlap between pain and cognitive 

control is depicted in yellow, whereas overlap between pain and negative emotion is colored 

in magenta. Maps are thresholded at a P < .05, two-tailed, uncorrected cutoff to highlight 

any possible overlap (n = 270 participants). (c) Brain maps of Bayes Factors indicating 

relative evidence against overlap among the three domains at each voxel. Smaller values 

indicate evidence against overlap; values less than .1 are considered strong evidence (n = 

270 participants). (d) Riverplots depict the similarity between searchlight maps and 

anatomical parcellation of MFC (left) and functional parcellation of cortical regions from 

resting-state data75 (right). The thickness of lines indicates the degree of correspondence 

between sets. Images are displayed using radiological convention.
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