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ABSTRACT

Motivation: More and more genomes are being sequenced, and to
keep up with the pace of sequencing projects, automated annotation
techniques are required. One of the most challenging problems
in genome annotation is the identification of the core promoter.
Because the identification of the transcription initiation region is such
a challenging problem, it is not yet a common practice to integrate
transcription start site prediction in genome annotation projects.
Nevertheless, better core promoter prediction can improve genome
annotation and can be used to guide experimental work.
Results: Comparing the average structural profile based on base
stacking energy of transcribed, promoter and intergenic sequences
demonstrates that the core promoter has unique features that
cannot be found in other sequences. We show that unsupervised
clustering by using self-organizing maps can clearly distinguish
between the structural profiles of promoter sequences and other
genomic sequences. An implementation of this promoter prediction
program, called ProSOM, is available and has been compared
with the state-of-the-art. We propose an objective, accurate and
biologically sound validation scheme for core promoter predictors.
ProSOM performs at least as well as the software currently available,
but our technique is more balanced in terms of the number of
predicted sites and the number of false predictions, resulting in
a better all-round performance. Additional tests on the ENCODE
regions of the human genome show that 98% of all predictions made
by ProSOM can be associated with transcriptionally active regions,
which demonstrates the high precision.
Availability: Predictions for the human genome, the validation
datasets and the program (ProSOM) are available upon request.
Contact: yves.vandepeer@psb.ugent.be

1 INTRODUCTION
Currently, the genomic sequence of over 50 eukaryotic organisms is
available. Many more sequencing projects are to be finished in the
next few years (Liolios et al., 2006), and so it becomes increasingly
important to automate the identification of functional elements, such
as genes and regulatory sequences. For protein coding sequences,
there are many complementary approaches that can accurately
identify the coding part of the gene (Brent, 2008; Guigó et al., 2006).
For regulatory sequences, such as transcription factor binding sites,
many methods have been developed with increasing success relying
on motif searches and/or comparative techniques (Elnitski et al.,
2006). However, the identification of the core promoter region and
the localization of the transcription start site (TSS) remains a difficult
problem (Bajic et al., 2006; Sonnenburg et al., 2006; Wang et al.,
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2007a; Xie et al., 2006). In light of the many genomes that become
available, it is important to accurately identify these regions, as better
core promoter predictions will improve the genome annotation and
allow a better understanding of the transcription-initiation process.

The core promoter is the region immediately upstream of the TSS,
where the transcription-initiation complex assembles (Pedersen
et al., 1999; Smale and Kadonaga, 2003). It is located upstream
of the coding part of the gene, sometimes up to several thousand
base pairs, and is responsible for basal transcription as well as
transcriptional regulation of the gene it is linked with (Choi et al.,
2004). Genes encoding structural or regulatory RNAs instead of
proteins also contain a core promoter, but have no coding part. This
is often problematic for the current promoter prediction programs
(PPPs) that are often trained to recognize the 5′ end of protein coding
genes (Bajic et al., 2004).

Recently, it has been shown that genes usually do not have a single
TSS. This finding is well documented in humans as an outcome
of genome-wide investigations on gene expression (Carninci et al.,
2006; The ENCODE Project Consortium, 2007). Most human genes
have multiple promoters and each promoter has multiple TSSs (Frith
et al., 2008; Sandelin et al., 2007). For most genes, transcription
starts in a cluster of positions, with some positions favored over
others. The choice of which alternative promoter to use depends on
the conditions in the cell. The use of alternative promoters results
in the complexity and diversity of the human transcriptome (Kawaji
et al., 2006). All these studies imply that core promoter prediction
techniques should not try to predict a single TSS but rather a cluster
of TSSs. In addition, the use of alternative promoters depends on
the promoter type: conserved tissue-specific promoters have a better
defined TSS and are TATA-enriched, while more loosely defined
CpG-rich promoters have a broader promoter region, often with
multiple alternative promoters and many TSSs (Carninci et al.,
2006).

Core promoters have distinct features that can be used to
distinguish them from other sequences. On a nucleotide level,
several motifs have been linked to the core promoter in eukaryotes.
The best-known motif, the TATA box, is mainly present in tissue-
specific genes. Estimations of the number of TATA-containing
promoters in the human genome range from 5–30% (Deng and
Roberts, 2005; Florquin et al., 2005; Smale and Kadonaga, 2003).
Other motifs that are related to the core promoter are, among others,
the initiator element and the TFIIB recognition element (Deng and
Roberts, 2005). These motifs have specific consensus sequences that
can be used to identify the motif. When scanning all promoters,
only a limited number of promoters contain the motif as defined by
the consensus sequences. Furthermore, when screening the whole
genome for these sequences, many occurences of the consensus
do not correspond to a functional site. Besides motifs, also more
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general sequence-dependent properties are promoter specific. One
of the most prominent features is the distinct G+C content in the
area around the TSS (Aerts et al., 2004).

Another way to represent the DNA sequence is by using physical
properties of DNA. One such property, called base-stacking energy
(Ornstein et al., 1978), models the local base-stacking energy.
High values denote regions that destack or melt easily. This
representation has been used before to characterize the promoter
(Abeel et al., 2008; Baldi et al., 1998; Florquin et al., 2005;
Kanhere and Bansal, 2005). When using this representation, the
promoter has an interesting property: two regions that seem to
melt easily are located around −30 from the TSS and on the
TSS, and are embedded in a large-scale region that is significantly
more stable (Abeel et al., 2008; Goni et al., 2007). The two high-
value regions are the location where RNA polymerase II binds,
and where transcription starts. The large-scale region is especially
interesting because it points to the global variation of G+C around
the TSS. We used this large-scale feature in earlier work to predict
promoter regions in a wide range of species (Abeel et al., 2008).
One may argue that the nucleotide information and the sequence-
dependent physical properties are two sides of the same coin, but
several studies have shown that there are indeed differences and
that some properties are better suited for promoter prediction than
others (Abeel et al., 2008; Baldi et al., 1998; Florquin et al., 2005;
Liao et al., 2000). Future research may focus on aggregating the
results of the different properties or on constructing a classifier
that takes into account all the properties and selects the relevant
ones (Saeys et al., 2007). However, this is not a trivial task
and it is not further explored here. Techniques from the field
of ensemble learning may prove useful in this context (Polikar,
2006).

In previous research, we have used a single average structural
value over a window of 400 bp to predict core promoter regions
(Abeel et al., 2008). This single property was based on a large-scale
feature of the core promoter that is present in several eukaryotes
(Abeel et al., 2008). Here, we use the small-scale properties of
the core promoter that have been described, but then not used
for promoter prediction. We will revisit these small-scale features
below.

We present a novel promoter prediction technique, called
ProSOM, that uses an unsupervised self-organizing map (SOM)
to distinguish core promoter regions from the rest of the genome.
Compared to other PPPs, ProSOM results in significantly fewer false
predictions, a problem that has been inherent to promoter prediction
since the very beginning (Fickett and Hatzigeorgiou, 1997).
Furthermore, we propose a new validation strategy for promoter
prediction, taking into account comparisons with experimentally
verified TSS data. This novel validation strategy results in a
more realistic evaluation of promoter predictors, and has the
potential to become a new evaluation standard for future promoter
predictors.

2 MATERIAL AND METHODS

2.1 Data
The sequences for the human genome assembly (hg17, May 2004) were
retrieved from the UCSC Genome Bioinformatics Site (http://genome.
ucsc.edu/) (Karolchik et al., 2008).

The cap analysis gene expression (CAGE) datasets have been compiled
by Carninci et al. (2006) and retrieved from the Fantom3 project
(http://fantom.gsc.riken.go.jp/). The dataset was compiled with the CAGE
technique (Shiraki et al., 2003) and covers the entire human genome. This
technique is based on the preparation and sequencing of concatamers of
DNA tags derived from the initial 20 nucleotides of 5′ end mRNAs. It allows
high-throughput analysis of gene expression and the identification of TSSs.
The CAGE technique maps the TSS more accurately than other techniques.
However, to remove any false hits from the CAGE technique we only retained
tag clusters with at least two mapped tags, resulting in 123 400 unique TSSs
for humans.

The Ensembl gene annotation was retrieved using the BioMart tool for
Ensembl release 37 (Flicek et al., 2008).

The ENCODE regions and annotation were retrieved from the ENCODE
home page (http://genome.ucsc.edu/ENCODE/) (The ENCODE Project
Consortium, 2007).

For the training of the SOM we retrieved promoters, and transcribed and
intergenic sequences. The sequences for promoters were extracted from the
DBTSS database (Wakaguri et al., 2008). From the 1250 bp long sequences
provided in this database, we extracted the region [−200, 50] around the TSS.
Sequences containing ambiguous symbols were discarded. This resulted in
30 964 sequences. The transcribed and intergenic sequences were extracted
from the genome assembly. We used the gene coordinates retrieved from
Ensembl using the BioMart tool. From the edges of these sequences we
stripped 5000 bp to remove border signals. Finally we selected 30 000
sequences of 250 bp on random locations from the set of transcribed and
intergenic sequences. The large number of sequences lowers the influence
that the few TSSs that may still be present in this set have on the outcome.

In total, we have three datasets, one with promoter sequences, one with
intergenic sequences and one with transcribed sequences. Each of these sets
contains 30 000 sequences, or slightly more in the case of the promoter set.

2.2 ProSOM implementation
ProSOM was implemented using the Java language version 1.5. The
SOM implementation was taken from the Java Machine Learning Library
(http://java-ml.sf.net/) and modified to suit our needs. This library is also
required to run ProSOM. The program has no size constraints on the number
of sequences that can be processed and is designed to run on multiple
machines in parallel to process different sequences.

2.3 Structural profiles
The structural profile of a set of DNA sequences is calculated in two steps.
First, the nucleotide sequence is converted into a sequence of numbers (i.e.
a numerical profile) by replacing each dinucleotide with its energy value,
which is obtained from experimentally validated conversion tables. We have
used the conversion tables for base-stacking energy from Florquin et al.
(2005). Thereafter, for each position, we take the average over all sequences
for that position. The resulting numeric vector is called a structural profile.

While we take an average of several thousand sequences to calculate the
profiles in the SOM, this is not possible for the sequences we extracted from
the genome. The sequences for which we want to make predictions, are
smoothed using a 3 bp sliding window. This was done to remove some of
the noise in the profile of a single sequence.

2.4 Clustering and promoter prediction
The clustering technique we used is the SOM (Kohonen, 2001), a special
type of artificial neural network that can be used both for clustering and
class prediction. An SOM consists of a rectangular grid of clusters, each
of which has a weighted connection to every input node (Fig. 1). In our
case, the input nodes represent the different values of a structural profile
associated with a potential promoter region. The SOM provides a mapping
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Fig. 1. An SOM for clustering structural profiles. Every position in the
structural profile is associated to an input node of the SOM. The output
represents the different clusters organized into a grid structure.

from a higher-dimensional feature space (the structural profile) to a lower
dimensional cluster space.

During the learning phase, weights are updated by iteratively presenting
samples to the network. Using the principle of competitive learning, the
Euclidean distance to all weight vectors is calculated for each sample, and
the cluster with the most similar weight vector is called the best matching
unit (BMU). Subsequently, the weight vector of the BMU and its neighboring
clusters in the grid are moved slightly towards this sample. The magnitude
of the change decreases with distance of the weight vector from the BMU,
resulting in a topological mapping of the input data. In a topological mapping,
neighboring clusters represent more similar objects than distant clusters.
After many cycles, the network ends up associating clusters with groups in
the input data set.

Once the cluster structure is learned, the SOM can be used to map new
vectors to their corresponding clusters by determining the cluster whose
weight vector is nearest to the new vector. To convert this procedure into a
PPP, we determined which clusters are clearly associated with promoters (see
Fig. 4 and further in the text) and predicted each sequence that is mapped to
one of those clusters as a putative promoter.

2.5 Validation
Our technique was validated on two sequence sets; first on the entire human
genome assembly (hg17, May 2004) and secondly on the ENCODE regions.
For both sets we retrieved a set of experimentally characterized TSSs and
a gene annotation. While the training set and validation set overlap to
a certain extent, this has little influence on our validation. The training
was unsupervised, so the SOM clustering did not use the sequence type
information that was provided with the training data. This means that the
clustering was not trained to specifically recognize the sequences in the
training set, but it clustered all sequences, and clusters with high promoter
content emerged. Because the clustering separates promoters from other
sequences in an unsupervised way, it can be used for promoter prediction.

An aggregate measure for the performance of a classifier that is often
used in the machine learning field is the F-measure (Van Rijsbergen, 1979).
This is the harmonic mean of the recall (sensitivity) and the precision
(specificity). The higher this value, the better the classifier is able to separate
promoter sequences from other sequences. The recall rate is the number
of correctly predicted promoters divided by the total number of promoters.
The precision rate is the number of correct predictions divided by the total

number of predictions. To assess the number of correctly predicted promoters
(true positives, TPs), false predictions (false positives, FPs) and unpredicted
promoters (false negatives, FNs), we define the maximum distance that a
prediction is allowed to be from the true site. Previous work typically set
this number to rather high values of 1000 bp or even 2000 bp. Recently, a
more stringent distance of 500 bp was used, and we will also use this more
stringent validation for reference to earlier work (Abeel et al., 2008; Goni
et al., 2007). For true core promoter prediction validation, predictions should
not be further than 50 bp from the actual TSS. Here, we use a validation with
a maximum distance of 50 bp to rank the PPPs.

There are two ways to evaluate a PPP. In the classic way to evaluate a
PPP (Bajic et al., 2004), one starts from gene annotations, e.g. Ensembl or
GENCODE annotation. A TP is then defined as the 5′ end of a gene that
has a prediction within 500 bp. A FP is a prediction that lies inside the gene
but not within the first 500 bp of the gene. A FN is a 5′ end of a gene that
has no associated prediction within 500 bp. All predictions that fall within
an intergenic region and are >500 bp from the 5′ end of a gene, are ignored.
Unfortunately, this technique has some drawbacks and a new scheme has
been proposed to evaluate PPPs (Abeel et al., 2008). A first major drawback
of the classic scheme is that all intergenic predictions are ignored, while
they may well be false predictions. The view of a single TSS at the 5′ end
of a gene, on which this technique is based, is no longer viable in light of
many recent studies (Carninci et al., 2006; Frith et al., 2008; Kawaji et al.,
2006). We included the validation with the classic technique for reference
purposes.

We have proposed a more objective way to assess the performance of
a PPP based on the genomewide screening for TSSs (Abeel et al., 2008).
This technique is based on the CAGE datasets that have been described
above. The dataset contains locations where transcription starts. A TP is
a known site that has a prediction within 500 bp of a true TSS, a FN is a
TSS without a prediction and a FP is a prediction that has no associated TSS
in the reference set within 500 bp. However, for core promoter prediction
the 500 bp distance is still too wide. The core promoter is only a very small
region, and therefore a much smaller distance should be used when validating
predictions. Predictions should be within 50 bp of known sites to be counted
as TP. Distances larger than 50 bp have little biological significance when
talking about core promoters. For this stronger validation we can only use
the CAGE dataset because it is the only one containing experimentally
characterized TSSs.

Figure 2 shows the two techniques to validate a PPP. The top panel shows
the classic technique where the region around a known gene is depicted. The
left side of the gene (suppose to be a forward strand gene) is the 5′ end.
Genes with a prediction in the region [−500, +500] around the 5′ end are
considered to be TPs, the predictions that fall in the white area [+500, 3′ end]
are considered to be FPs. Predictions that fall in the gray area are all ignored
in this technique. This will bias the evaluation towards protein-coding gene-
oriented software that makes many intergenic predictions, because there is
no penalty for false predictions in intergenic regions. The bottom panel of
Figure 2 shows the new technique that uses CAGE tags as a reference. Two
tags are depicted black. Predictions in the region [−500, +500] around each
tag (black) are considered to be correct (TP). All other predictions are FPs. In
both cases, genes or tags that have no associated prediction are FNs. For the
validation to identify true core promoter predictions, all intervals are reduced
to [−50, +50].

3 RESULTS

3.1 Sequence profiles
Figure 3 shows the average structural profile of base-stacking energy
of the three datasets used for training the SOM. The promoter
sequences show a very striking profile with overall lower values
than the other two graphs. It has two clear peaks at position
−30 (TATA-binding protein location) and position 0 (TSS). The
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Fig. 2. Validation techniques for PPPs. The top figure shows the classic
technique, the bottom figure the new one. Genes or tags that have a prediction
inside the black area are considered TPs. Predictions in the white area are
FPs. All predictions inside the gray area are ignored. Notice that only the
classic technique has ignored regions. For the strict validation the distance
is 50 bp.
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Fig. 3. Structural profile of promoter (a), transcribed (b) and intergenic
(c) human sequences. The profiles are the averages over all sequences in
the respective training sets. We used the base-stacking energy as physical
property. (a) Region [−200, 50] around the TSS, while for (b) and (c) there
is no reference point and the location are numbered from 0 to 250.

profile of the transcribed sequences is slightly higher than that
of intergenic sequences, which may indicate that, on average,
transcribed sequences require slightly less energy to melt than
intergenic sequences. However, the difference is small, and no
further investigation was done to prove this hypothesis. Our focus
is on promoters and their remarkably low profile, which indicates a
stable region.

The low values in the profile of the core promoter indicate that the
region requires a lot of additional energy to melt. This stable region
around the TSS is typical for the core promoter (Abeel et al., 2008).
However, two regions are less stable. The first region, where the TBP
is known to bind, is located ∼30 bp upstream of the TSS. This region
is crucial for the assembly of the transcription machinery. The second
region is located around the TSS itself, and needs to denature to
allow transcription to start. One possible explanation for this stable
region can be that it provides a contrasting background for the highly
unstable peaks, which are essential for transcription initiation. The
overall rigid structure combined with the two peaks can be viewed

as a guiding mechanism for the transcription apparatus to select the
appropriate site to initiate transcription.

3.2 Unsupervised clustering identifies promoters
We clustered 30 964 promoters from the DBTSS database (Wakaguri
et al., 2008), 30 000 intergenic and 30 000 transcript sequences
retrieved from Ensembl (Flicek et al., 2008) using the SOM.
Several other clustering techniques, such as k-means, ACO, AQBC,
Cobweb, DB-scan, EM-clustering, farthest first, OPTICS and
x-means, have been tested, but did not result in a proper separation
of the different sequence types (results not shown). These techniques
are thus not suitable for our promoter prediction task and have not
been validated as promoter predictor.

Figure 4 shows the result of the SOM clustering of the 90 964
sequences. Each graph in the figure represents a cluster. On these
graphs the X-axis gives the relative position from the TSS for the
promoter set, or the position in the sequence for the other sets. On
the Y -axis, we see the normalized base-stacking energy. The legend
of each graph shows the total number of sequences, the number of
promoters (+) and the number of other sequences (−). In the top row,
the two left-most graphs contain significantly more promoter than
non-promoter sequences. Also the left-most graph on the second row
clearly contains more promoter sequences than other ones. Each of
these three graphs shows the known core promoter profile with two
peaks, one at position −30 associated with the TBP and one on the
TSS. Other graphs contain profiles that do not correspond to known
core promoter features, as expected, because these clusters contain
few promoter sequences.

3.3 Parameter tuning
As stated above, two main parameters require tuning: first, the grid
size used to do the clustering, and second, the prediction threshold.
We have optimized both by applying the approach to the whole
genome for each parameter combination. For the grid size we tested
4 × 4, 5 × 5, 6 × 6 and 7 × 7. Higher and lower values were
not tested as the performance follows a normal distribution with a
peak at 6 × 6. Each cluster has a different promoter probability.
The promoter probability of a cluster is defined as the number of
promoter sequences divided by the total number of sequences, e.g.
for the top-left cluster in Figure 4 the probability is 0.93 (3663
divided by 3936). Each cluster has a different promoter probability
and we tested each of these probabilities as threshold for promoter
classification. All sequences that are mapped to a cluster with
a promoter probability higher or equal to the threshold will be
predicted to be a putative promoter. So when using the promoter
probability from the cluster with the highest promoters rate, only
sequences that map to that specific cluster will be predicted to be
promoters. When using a lower threshold, all sequences that map to
that cluster or to a cluster with a higher promoter probability will be
predicted as putative promoters.

Table 1 shows the results for the different grid sizes and the
different thresholds. The rows contain the different numbers of
clusters to determine the threshold, and the columns the different
grid sizes. Even though SOMs are not restricted to square grids,
we have opted to check only those to limit the search space for the
parameters. Further tuning may improve the promoter prediction
slightly. From Table 1 it is clear that a 6 × 6 grid combined with the
top three clusters performs best.
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Fig. 4. Result of SOM clustering on a 6 × 6 grid. The profile in each graph is the average of all sequences that map to that cluster. The sequences are converted
using the base-stacking energy. The X-axis shows the position relative to the putative TSS. The two left-most clusters in the top row and the left-most cluster
in the second row are promoter-rich and show the typical core promoter profile. The promoter-rich clusters are displayed with a white background, the others
with a gray one. The legend shows the total number, the number of promoter (+) and the number of other (−) sequences.

Table 1. Evaluation of the different parameter combinations for ProSOM

4 × 4 5 × 5 6 × 6 7 × 7

1 0.44 0.40 0.36 0.32
2 0.46 0.47 0.45 0.41
3 0.37 0.46 0.48 0.45
4 0.10 0.36 0.44 0.47
5 0.09 0.29 0.39 0.46

The columns denote the different grid sizes, the rows contain the different thresholds.
The first line contains the results when using the threshold of the cluster with the
highest promoter probability. The second line contains results when using the promoter
probability of the cluster with second highest promoter probability as threshold, and
so on. The values in the table are the F-measure calculated from the entire human
genome when validating against the CAGE dataset. The maximum allowed distance is
500 bp. Bold value indicates highest value.

3.4 ProSOM validation
We used the trained SOM to predict promoter regions. To each
cluster we attached a probability that a given sequence assigned to
that cluster is a promoter. If the structural profile of a sequence maps
to a cluster that has a probability equal to or above the threshold,
we predict it as a promoter region.

When designing classification algorithms, researchers often use
cross-validation to validate their technique. Cross-validation is
usually employed when only a limited amount of data is available.
In our case, we have plenty of real-world data that can be used for
validation. Once we have trained our approach on the limited set
of training samples that is available from DBTSS and Ensembl,
we can apply the approach to the entire human genome and
compare with experimental screening for TSSs. Since real-world
validation is superior to cross-validation, no cross-validation was
performed.

To compare programs that result in different recall and precision
values different techniques can be utilized. We use the F-measure
(harmonic mean of precision and recall) to calculate a final
score for a program for several reasons. (i) The F-measure is a
single measure that can compare different programs with different
precision and recall scores. (ii) In the case of the validation in a
genomewide context it is very hard to estimate the number of TNs
correctly because most prediction programs do not classify each
site (nucleotide) in the genome as being a promoter or not, but only
make predictions of core promoter regions. Recall, precision and
F-measure do not require knowledge about the number of TNs and
are thus suitable to use in this context. (iii) Other comprehensive
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Table 2. Evaluation of PPPs using the CAGE and Ensembl datasets with a maximum allowed distance of 500 bp and for the CAGE dataset with a maximum
distance of 50 bp

CAGE (500 bp) Ensembl (500 bp) CAGE (50 bp)

Program Reference Recall Precision F Recall Precision F Recall Precision F No. of predictions

ProSOM 0.38 0.66 0.48 0.48 0.43 0.45 0.17 0.30 0.22 62 804
Eponine Down and Hubbard, 2002 0.28 0.75 0.41 0.36 0.51 0.42 0.14 0.35 0.20 60 247
EP3 Abeel et al., 2008 0.34 0.66 0.45 0.42 0.46 0.44 0.11 0.27 0.16 45 765
ARTS Sonnenburg et al., 2006 0.38 0.74 0.50 0.53 0.59 0.56 0.11 0.27 0.15 47 144
FirstEF Davuluri et al., 2001 0.41 0.42 0.42 0.58 0.34 0.43 0.13 0.15 0.14 101 985
DragonGSF Bajic and Brusic, 2003 0.31 0.75 0.44 0.45 0.63 0.53 0.09 0.28 0.13 35 410
PromoterInspector Scherf et al., 2000 0.29 0.81 0.43 0.38 0.70 0.49 0.07 0.39 0.13 21 576
DragonPF Bajic et al., 2002 0.51 0.11 0.18 0.65 0.11 0.19 0.32 0.07 0.11 603 389
N-Scan Gross and Brent, 2006 0.33 0.45 0.38 0.55 0.51 0.53 0.07 0.13 0.09 67 748
CpGProD Ponger and Mouchiroud, 2002 0.34 0.41 0.37 0.50 0.36 0.42 0.08 0.12 0.09 76 793
PromoterExplorer Xie et al., 2006 0.39 0.30 0.34 0.55 0.24 0.33 0.09 0.08 0.09 132 794
McPromoter Ohler et al., 2000 0.17 0.68 0.28 0.24 0.61 0.34 0.05 0.29 0.09 20 862
PromFD Chen et al., 1997 0.44 0.16 0.23 0.55 0.14 0.22 0.12 0.04 0.06 329 999
PromoterScan Prestridge, 1995 0.16 0.09 0.12 0.19 0.08 0.11 0.03 0.02 0.02 197 852
Promoter2.0 Knudsen, 1999 0.63 0.04 0.08 0.68 0.03 0.06 0.11 0.01 0.01 191 9363
NNPP 2.2 Reese, 2001 0.03 0.03 0.03 0.03 0.02 0.02 0.01 0.01 0.01 104 746

Bold values indicate ranks for the different programs.

measures such as Receiver Operating Characteristic, Area Under
the Curve and precision-recall curve have a major drawback: they
require that the program is able to explore the whole range of
precision and recall values. While this is possible for ProSOM,
many of the other programs we tested do not support this, or take
prohibitively long time to do this (several weeks on an 80 CPU
cluster for one parameter setting).

To validate our predictions we use the dataset of CAGE tags
from Carninci et al. (2006) and a set of genes from Ensembl. To
compare with the state-of-the-art, we used a maximum allowed
distance from the TSS of 50 bp. This value is more stringent, but
larger values would mean that more distant predictions are also
correct, which is not desirable. Previously, we used 500 bp (Abeel
et al., 2008), which is still too loose to call it TSS prediction or
core promoter prediction. To really validate whether a program
can truly detect core promoters, the distance between a known
TSS and the prediction should be no more than 50 bp. Table 2
shows the performance of ProSOM versus a number of other PPPs.
The values for all programs (including ProSOM) are based on
the predictions made by the program with default settings. We
assume that authors provide the optimal set of defaults for their
own program. In case no defaults were supplied, we optimized the
parameters of the program on the CAGE dataset with a maximum
allowed distance of 500 bp as was done for ProSOM. It should be
noted that the results in the table only represent a single point on the
precision–recall curve and may thus be an underrepresentation of
the actual potential of a program. We compared all programs on the
reference distance of 500 bp combined with Ensembl and CAGE
data and on the strong validation of 50 bp with the CAGE data.
Some of the more recent approaches are not considered, as neither
the program nor the predictions for the entire human genome are
available for academic use. Programs that are currently unavailable
for this type of study include FProm (Solovyev et al., 2006), ProStar,
AMOSA-based promoter prediction, EnsemPro, PSPA (Wang and

Hannenhalli, 2006) and MetaProm. While the 500 bp columns in
Table 2 are useful for reference with earlier work, the real strength
of a PPP is best assessed on the 50 bp columns. The last column of
Table 2 contains the number of predictions made by a program.

The first three columns from Table 2 contain the results for the
CAGE validation set with a maximum distance of 500 bp, the middle
three columns the results for the Ensembl set with a maximum
distance of 500 bp and the last three columns those for the CAGE
set with a maximum distance of 50 bp. The first column for each
set presents the recall rate, which is the percentage of reference
sites that has been predicted; the second column for each set the
precision, which is the percentage of correct predictions; finally, the
third column the F-measure (Van Rijsbergen, 1979), which is the
harmonic mean of the precision and recall. This measure provides a
single number to quantify the quality of the predictions. The higher
this value, the better. The rows in Table 2 are ranked according
to the F-measure on the CAGE dataset with maximum distance of
50 bp. On the reference validation with maximum distance of 500 bp,
ProSOM works slightly worse than the best program (ARTS). On
the strong validation with only 50 bp allowed distance between the
true TSS and the prediction, ProSOM performs slightly better than
Eponine. Again, the performance of our approach is better balanced
in terms of recall and precision.

Overall, the choice of the PPP depends on the task at hand. When
predictions within 500 bp are good enough, ARTS or ProSOM are
the way to go. They both provide a good F-measure. If the exact
localization of the prediction is more important, ProSOM or Eponine
are the best options, with Eponine having higher precision and
ProSOM being more balanced. Thus, ProSOM has the best all-round
performance independent of the task type.

While our new approach, ProSOM, performs well on the real TSS
data, it has some problems with the Ensembl dataset. The reason is
that exonic sequences often end up in the clusters that contain the
promoters. The counting method used for the Ensembl dataset counts
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all predictions inside exons as false predictions, which explains the
lower than expected precision for the Ensembl dataset. As we have
previously shown, the technique to validate a promoter prediction
technique with gene annotation is flawed (Abeel et al., 2008),
especially since it only takes into account the 5′ TSS and will label
any other recognized TSS as a false prediction.

We also analyzed the ENCODE regions of the human genome
in more detail. The ENCODE project tries to annotate 1% of the
human genome in great detail (The ENCODE Project Consortium,
2007). The regions are partly chosen for their importance and partly
random. In total, they cover ∼30 Mbp. For these regions, again are
data available for real TSSs, compiled by the Riken Institute using
the CAGE technique. There is also a high-quality gene annotation
available from the E-GASP/GENCODE project (Guigó et al., 2006).
Furthermore, there is a lot of experimental data available that
may support TSS predictions. When we apply ProSOM to these
regions and compare with the CAGE and GENCODE data and a
maximum distance of 500 bp, we get an F-measure of 0.73 and
0.57, respectively. These values are nearly the same as for the EP3
program (0.72 and 0.56). For the maximum distance of 50 bp and
the CAGE dataset we get an F-measure of 0.28. These values are
higher than those for the validation on the whole genome, which
indicates that indeed a lot of the so-called false predictions are,
in fact, correct predictions that are missing in the validation set.
To test this hypothesis, we used the Evidence For Transcriptional
Activity dataset (Abeel et al., 2008). This dataset is a compendium
of experimental indicators for transcription activity. Within this set
98% of our predictions has a hit with a maximum distance of 500 bp
and 85% within 50 bp, again indicating that our approach is highly
precise.

4 RELATED WORK
Currently, several core PPPs are available that are aimed at
predicting TSSs on the whole human genome. Early programs
were limited in the amount of data they could process and in
their predictive power (Fickett and Hatzigeorgiou, 1997). Only
in 2004, promoter prediction tools have been validated on the
whole human genome (Bajic et al., 2004). Later, the same authors
also reviewed some PPPs on the ENCODE regions of the human
genome (Bajic et al., 2006). Gene annotation was used to validate
the different PPPs, but in light of new insights gained from the
ENCODE project, this is too conservative and even often wrong.
The ENCODE project shows that transcription can also start at
the 3′ end of a gene or inside exons. Nowadays, it makes more
sense to compare real unbiased experimentally characterized TSSs
for validation. Recently, we have reviewed several PPPs on a dataset
of TSSs that have been determined using the CAGE technique
over the whole human genome (Abeel et al., 2008). Wang and
co-workers (2007a) focus on alternative promoters and present a
novel PPP, MetaProm, based on artificial neural networks. Other
recent PPPs include ProStar (Goni et al., 2007), AMOSA-based
promoter prediction (Wang et al., 2007b) and EnsemPro (Won et al.,
2008). Two of the recent PPPs (MetaProm and EnsemPro) are in
fact no real promoter predictors but meta-predictors that aggregate
the results of several other programs. These programs probably
address the problem of merging the results of several PPPs to some
extent, a definitely interesting way to advance the performance

of PPPs. Unfortunately, none of these new programs were available
for genomewide screening at the time this article was submitted.

5 DISCUSSION AND CONCLUSION
Self-organizing maps provide an intuitive way to cluster DNA
sequences. They are unique among unsupervised clustering
techniques in their ability to distinguish core promoters from other
sequences. When applied to a set of promoter, transcribed and
intergenic sequences, they create promoter-rich and promoter-poor
clusters. The promoter-rich clusters show the same structural profile
that has been observed for core promoter sequences (Abeel et al.,
2008). Because the clustering technique is unsupervised we can
conclude that the profile that emerges from this clustering technique
is indeed one of the hallmarks of the core promoter. Furthermore,
the physical description of the core promoter is more general than
that based on core promoter motifs. The physical structure of this
region is important for transcription initiation as it remains the same,
regardless of the presence of motifs.

We packaged this technique as a full-fledged promoter prediction
tool, called ProSOM. This technique is made available to academic
researchers for free. We used the program to predict core promoters
in the human genome and it performs as well as the best existing
software packages. Furthermore, it is more balanced regarding the
number of retrieved sites and false predictions. The technique is also
very precise as 98% of all predictions in the ENCODE region have
evidence of transcriptional activity within 500 bp.
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