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Of the 20 ribosomally coded amino acid residues, lysine
(K) can be frequently and uniquely modified by many types
of posttranslational acylation, including acetylation, suc-
cinylation, crotonylation, propionylation, butyrylation, glu-
tarylation, malonylation, β-hydroxybutyrylation, and
2-hydroxyisobutyrylation in histones and other proteins (Li
et al., 2018a; Xu et al., 2021). Among these acylations,
succinylation is a commonly occurred modification, and
histone H3K79 succinylation is identified in the transcription
start sites of more than 7,000 genes, implying its critical role
in the expression regulation of a large number of genes
(Wang et al., 2017). Protein succinylation requires the high-
energy metabolite, succinyl-coenzyme A (CoA), which is
produced by several metabolic reactions mediated by dif-
ferent metabolic enzymes: (i) α-ketoglutarate (α-KG) dehy-
drogenase (α-KGDH) complex, which is composed of
2-oxoglutarate dehydrogenase, mitochondrial (OGDH),
dihydrolipoamide succinyltransferase component of 2-oxog-
lutarate dehydrogenase complex (DLST) and dihy-
drolipoamide dehydrogenase (DLD) and catalyses the
conversion of α-KG into succinyl-CoA; (ii) the succinyl-CoA
synthetase (also known as succinyl-CoA ligase [SUCL]),
which is a heterodimeric enzyme composed of an invariant α
subunit encoded by SUCLG1 and a substrate-specific β
subunit encoded by either SUCLA2 for ATP or SUCLG2 for
GTP production. SUCL catalyzes the reversible conversion
of succinyl-CoA and ADP (or GDP) to CoA, succinate, and
ATP (or GTP); (iii) 3-oxoacid CoA-transferase 1 (OXCT1,
also known as succinyl-CoA-3-oxaloacid CoA transferase
[SCOT]), catalyzing the reversible transfer of CoA from

succinyl-CoA to acetoacetate, the first, rate-limiting step in
ketolysis; (iv) mitochondrial enzymes through the catabolism
of valine, isoleucine, methionine, thymine, and odd-number
chain fatty acids or peroxisomal enzymes through the cata-
bolism of long and very long fatty acids, 3-oxoadipate, or
adipic acid via multiple routes (Chinopoulos, 2021).

Lysine acetyltransferase 2A (KAT2A, also known as
GCN5), which is a histone acetyltransferase, was the first-
identified protein succinyltransferase (Wang et al., 2017). In
that report, we showed that KAT2A forms a complex with
nucleus-translocated α-KGDH and utilizes α-KGDH-pro-
duced succinyl-CoA to succinylate histone H3 on K79
around the transcription start sites of genes (Wang et al.,
2017). The co-crystal structures of the catalytic domain of
KAT2A with succinyl-CoA reveal an octahedral complex
composed of 24 KAT2A molecules, in which tyrosine 645 in
the catalytic domain has an important role in the selective
binding of succinyl-CoA over acetyl-CoA (Wang et al., 2017,
2018a). The supramolecular assemblies of KAT2A, high
local concentration of succinyl-CoA generated by the
KAT2A-associated α-KGDH complex, and high catalytic
activity of KAT2A toward succinyl-CoA compensate for the
relatively low nuclear concentration of succinyl-CoA to pro-
mote KAT2A-mediated histone succinylation (Wang et al.,
2018a). In an in vitro setting, succinylation of histone H4 at
K77 impacts nucleosome dynamics and promotes DNA
unwrapping from the histone surface, thereby proteins such
as transcription factors can rapidly access buried regions of
the nucleosomal DNA (Jing et al., 2020). In human pancre-
atic ductal adenocarcinoma (PDAC) cells, highly expressed
KAT2A regulates H3K79 succinylation in the promoter region
of YWHAZ (encoding for 14-3-3ζ) to promote 14-3-3ζ
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subsequently increasing the expression of cyclin D1, c-Myc,
GLUT1, and lactate dehydrogenase A (LDHA) to promotes
glycolysis, cell proliferation, and migration and invasion of
PDAC cells (Tong et al., 2020). These findings unveiled the
instrumental mechanisms by which α-KGDH couples with
succinyltransferase KAT2A to succinylate histone thereby
regulating gene expression and promoting tumor develop-
ment. However, as a critical oscillation process of the protein
post-translational modification, whether protein desucciny-
lation is regulated in a local succinyl-CoA-dependent manner
is largely unknown.

We recently reported that the kidney-type glutaminase
(GLS) is succinylated in mitochondria. Importantly, the suc-
cinylation and desuccinylation of GLS is coupled-regulated
by the association of GLS with SUCLA2, which is dynami-
cally regulated in PDAC cells to promote

glutaminolysis for counteracting oxidative stress (Tong
et al., 2021). Glutaminolysis is highly active in PDAC cells for
anabolic processes (Son et al., 2013); stable isotope-as-
sisted metabolomic analysis using [U-13C5] glutamine as the
tracer showed that higher mass isotopologue distributions of
glutamate and tricarboxylic acid (TCA) cycle metabolites
were detected in PDAC cells than those in normal human
pancreatic duct epithelial (HPDE) cells. Consistently,
immunohistochemical (IHC) analyses of human PDAC
specimens showed that GLS was overexpressed in PDAC
compared to the normal adjacent counterpart tissues, and
depletion or inhibition of GLS inhibited PDAC cell prolifera-
tion to a greater degree than inhibiting the proliferation of
HPDE cells (Tong et al., 2021). These finding indicated that
GLS promotes glutaminolysis in PDAC cells and tumor cell
proliferation.

Notably, mass spectrometry analyses detected a previ-
ously unknow modification of GLS in PDAC cells, succiny-
lation at K311, which occurred in a succinyl-CoA
concentration-dependent manner. In addition, GLS K311
succinylation promoted GLS dimer and tetramer assembly
by forming an interaction between succinylated K311 and
H475 of an adjacent monomer in the interface, leading to
enhanced activity of GLS. Reconstituted expression of GLS
K311R in endogenous GLS-depleted PDAC cells decreased
intracellular glutamate level, demonstrating an instrumental
role of GLS K311 succinylation in glutamate production in
PDAC cells (Tong et al., 2021).

Importantly, SUCLA2 was identified as a GLS-associated
protein by mass spectrometry analyses, and this association
was disrupted by oxidative stress, which enhanced GLS
K311 succinylation. Treatment of PDAC cells with H2O2

resulted in the binding of p38 MAP kinase to SUCLA2. In
vitro and in vivo experiments demonstrated that p38 directly
binds to and phosphorylates SUCLA2 at serine (S)79.
Mutation of S79 into alanine or treatment of the PDAC cells
with a p38 inhibitor blocked oxidative stress-induced disas-
sociation between SUCLA2 and GLS and diminished H2O2-
induced GLS K311 succinylation. These findings suggested
that alteration of the association between GLS and SUCLA2

modulates the available and local amount of SUCL-cat-
alyzed succinyl-CoA thereby regulating GLS succinylation.
Indeed, an in vitro experiment showed that purified SUCLA2
and SUCLG1 reduced succinyl-CoA-dependent GLS suc-
cinylation with correspondingly increased production of
succinate, further supporting that SUCLA2-mediated con-
version of succinyl-CoA to succinate reduces the available
amount of succinyl-CoA for GLS succinylation.

As expected, expression of SUCLA2 S79A or GLS K311R
reduced the fraction contribution of glutamine into TCA cycle
in PDAC cells and decreased the cell proliferation rates. In
addition, expression of these mutants reduced the ratios of
glutathione (GSH)/oxidized glutathione (GSSG) and ele-
vated the ratios of NADP+/NADPH and reactive oxygen
species (ROS) levels and apoptosis rates of the PDAC cells
in the presence and absence of H2O2 treatment. These
results indicated that SUCLA2 S79 phosphorylation-pro-
moted GLS K311 succinylation promotes glutaminolysis for
cell proliferation and production of NADPH and GSH to
maintain redox homeostasis thereby protecting PDAC cells
from oxidative stress-induced apoptosis. Consistently,
mouse studies showed that expression of SUCLA2 S79A or
GLS K311R significant inhibited tumor growth and reduced
the levels of GSH/GSSG ratios in tumor tissues (Fig. 1).
Notably, the clinical relevance of GLS K311 succinylation
was revealed by the IHC analyses of primary PDAC tissues
showing that the mutually correlated levels of SUCLA2 pS79
and GLS K311 succinylation were substantially higher in the
PDAC samples than those in the adjacent normal tissue
samples and correlated with the advanced stages of PDAC
and poor survival of the patients (Tong et al., 2021).

In addition to regulation of gene transcription by histone
modification and mitochondrial functions, protein succinyla-
tion is also involved in modulation of other cellular activities.
Mass spectrometric analysis identified tumor suppressor p53
succinylation at K120, which can be desuccinylatied by
SIRT5. SIRT5 deficiency promotes p53 activity, target gene
expression, and apoptosis in response to DNA damage (Liu
et al., 2021). In addition, SIRT5 catalyzed K7 desuccinylation
of mitochondrial antiviral signaling (MAVS) protein, resulting
in reduction of aggregation and activity of MAVS after viral
infection, the impairment of type I interferon production, and
antiviral gene expression (Liu et al., 2020). These findings
further underscore the multifaceted role of protein succiny-
lation in critical cellular activities.

Metabolic enzymes can possess the moonlighting func-
tions, which are distinct from their canonical functions and
can directly participate in the posttranslational modifications
of proteins, such as phosphorylation, acylation, methylation,
hydroxylation, and O-GlcNAcylation (Lu, 2012; Li et al.,
2016a, b, 2017, 2018a, b; Lu and Hunter, 2018; Wang et al.,
2018b; Jiang et al., 2020, 2021; Xu et al., 2021). Nucleus-
translocated α-KGDH couples with KAT2A acts as a writer
for histone lysine succinylation whereas mitochondrial
SUCLA2 decreases GLS succinylation by forming a complex
with GLS and reducing available amount of succinyl-CoA for
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GLS succinylation. Importantly, succinylation of tumor-highly
expressed GLS and glutaminolysis in PDAC are governed
by dynamical association of GLS with SUCLA2, which con-
fers tumor cells greater capacity to counteract oxidative
stress and support tumor growth. Given the critical role of
glutaminolysis in many types of cancer progression, the
discovery of SUCLA2-coupled regulation of GLS succinyla-
tion in precise regulation of glutaminolysis provides GLS
succinylation as a novel and promising diagnostic and
therapeutic target for cancer care.
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