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Background. Prostate cancer (PCa) ranks as the most common malignancy and the second leading cause of cancer-related death
among males worldwide. The essential role of autophagy in the progression of PCa and treatment resistance has been preliminarily
revealed. However, comprehensive molecular elucidations of the correlation between PCa and autophagy are rare. Method. We
obtained transcription information and corresponding clinicopathological profiles of PCa patients from TCGA, MSKCC, and GEO
datasets. LAASO analysis was employed to select gene signatures and estimate the autophagy score for each patient. Correlations
between the signature and prognosis of PCa were investigated by K-M and multivariate Cox regression analyses. A nomogram was
established on the basis of the above results. Further validations relied on ROC, calibration analysis, decision curve analysis, and
external cohorts. Variable activated signaling pathways were revealed using GSVA algorithms, and the genetic alteration landscape
was elucidated via the oncodrive module from the “maftools” R package. In addition, we also examined the therapeutic role of the
signature based on phenotype data from GDSC 2016. Result. Six autophagy-related genes were eventually selected to establish the
signature, including ULKI, CAPN10, FKBP5, UBE2T, NLRC4, and BNIP3L. We used these genes and corresponding coefficients to
calculate an autophagy score (AutS) for each patient in this study. A high AutS group and a low AutS group were divided on the
mean AutS of the patients. Longer overall survival, higher Gleason score and PSA, and better response to ADT were observed in
patients with high AutS. Meanwhile, we found that high AutS PCa was related to more proliferation-associated signaling activation
and higher genetic mutation frequencies, manifesting a poor prognosis. A nomogram was constructed based on GS, T stage, PSA,
and AutS as covariates. Its discriminative efficacy and clinical value were validated using robust statistical methods. Finally, we
tested its prognostic value through two external cohorts and six published signatures. Conclusion. The autophagy-related gene
signature is a highly discriminative model for risk stratification and drug therapy in PCa, and a nomogram incorporating AutS
might be a promising tool for precision medicine.

1. Introduction leading cause of cancer-related death in men [1]. Benefiting

from the widespread use of PSA screening, most PCa cases
Although prostate cancer (PCa) is generally considered a  can be diagnosed earlier and treated effectively with radical
type of indolent cancer, more than 366,000 estimated deaths ~ resection or radiation. However, 17-31% of these males
are reported annually, and the number ranks as the second  might still suffer from a high-risk localized or advanced
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locally advanced disease and would succumb to the disease
even after receiving curative treatment [2]. Unfortunately,
there are no effective treatments available to solve this pre-
dicament to date. Researches on the molecular mechanisms
of PCa may provide a promising choice for urologists to
screen PCa and risk stratification, optimize personalized
treatment and provide novel therapeutic targets.

Autophagy is a highly conserved biological process in all
eukaryotes. Currently, three primary distinct types of autoph-
agy have been proposed, including microautophagy, macroau-
tophagy, and chaperone-mediated autophagy (CMA). It
mediates cellular degradation and recycling process through
delivering cargo to lysosome. Rare studies were conducted
for microautophagy for availably limited tools, and limited
molecular mechanisms of CMA have been elucidated. There-
fore, autophagy often represented macroautophagy solely. In
normal mammalian cells, it constitutively occurs at a low level,
but once stress happens, it could be further induced to
enhance the degradation process and provide more materials
and energy for keeping the cells alive [3—-6]. However, dysfunc-
tion of autophagy would lead to numerous diseases, such as
neurodegeneration, myopathies, diabetes, amyotrophic lateral
sclerosis, Alzheimer disease, inflammatory bowel disease, and
what is more, malignant diseases [7].

Increasing evidence has proven that autophagy plays a
complicated role and depends on the context of the tumor
[8, 9]. It can suppress tumor progression at the initial stage
by protecting the integrity of normal cells and genomic
information while promoting tumor progression at a more
advanced stage by helping malignant cells escape pro-
grammed cell death in hypoxia or nutrient-deficient envi-
ronments and promoting drug resistance [10-12].
Numerous studies have pointed out the pivotal role of
autophagy in PCa. For instance, Chenchu Lin et al. validated
autophagy as a promoter in PCa using cell lines, xenografts,
and genetic mouse models [9]. Ahamed Saleem et al. found
elevated levels of autophagy markers in patients with GS 9
compared with patients with GS 7 and validated the clinical
benefit of one type of autophagy inhibitors termed hydroxy-
chloroquine in PCa [13]. Atg7 is an autophagy-related gene.
In an Atg7 deficiency mouse model, endoplasmic reticulum
stress was upregulated, and PCa progression was delayed
[14]. These findings encouraged further study on the essen-
tial value of autophagy in PCa, from risk stratification to
clinical decision-making guidance.

Here, we comprehensively analyzed autophagy-related
genes in PCa based on transcription data and clinicopatho-
logical profiles from three publicly available databases. With
the robust statistical methods, we validated six prognosis-
related autophagy genes. Referring to published relevant
studies, we built an autophagy-related gene signature and
calculated autophagy score (AutS) for each patient based
on the expression of six genes and corresponding coefhicients
[15, 16]. Subsequently, we analyzed the value of AutS in pre-
dicting prognosis, risk stratification, and drug susceptibility
prediction. Meanwhile, we elucidated the signaling pathways
and mutated genes which are responsible for the poor out-
come. To facilitate quantitative risk stratification, we also
established a nomogram incorporating AutS, Gleason score
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(GS), PSA, and T stage. Eventually, two external validation
cohorts and six published signatures were enrolled to further
test the high discriminative ability of AutS.

2. Methods

2.1. Summary of Enrolled Patients. We collected TCGA-
PRAD, MSKCC, GSE70768, and GSE46602 cohorts for the
current study. All patients were followed for longer than
one month, and they had recorded the features of age, GS,
PSA, and pathology T stage and were reserved for the subse-
quent study. Finally, 431 PCa patients from the TCGA-
PRAD cohort, 136 patients from the MSKCC cohort, 108
patients from the GSE70768 cohort, and 27 patients from
the GSE46602 cohort were collected. The TCGA-PRAD
cohort was used as the training cohort, while the GEO-
combined cohort was used as the testing cohort. The
GSE54460 and GSE94767 cohorts were also collected as
the external validation cohorts. The details of the clinical
pathological features are displayed in Table 1.

2.2. Preprocessing of the Gene Expression Profiles. The tran-
scriptional profiles corresponding to the abovementioned
PCa patient cohorts were downloaded from the Genomic
Data Commons (GDC) platform (https://portal.gdc.cancer
.gov/) and Gene Expression Omnibus (GEO, https://www
.ncbi.nlm.nih.gov/geo/).For the TCGA-PRAD cohort, the
number of fragments per kilobase million (FPKM) was com-
puted and converted into transcripts per kilobase million
(TPM) and was further log 2 transformed, which showed
more similarity to the numbers obtained from microarray
analysis. For GEO cohorts, the gene symbol for each cohort
was transferred from the probe ID according to the corre-
sponding annotation file from each platform. We also
removed the potential cross-dataset batch effect between
the three GEO cohorts via the “sva” package along with
the empirical Bayes framework [17] and summarized the
GEO-combined cohort (Figure S1).

2.3. Construction of the Autophagy-Related Gene Signature.
We reviewed the literature published in the past five years
and collected autophagy-related genes whose function was
validated based on experiments. The autophagy genes listed
in the Human Autophagy Database (HADbD, http://
autophagy.lu/), KEGG_REGULATION_OF_AUTOPHAGY,
and WP_AUTOPHAGY gene sets were also collected.
Autophagy genes associated with PCA recurrence-free sur-
vival (RFs) were identified by univariate Cox regression anal-
ysis of the combined TCGA-PRAD and GEO cohorts. Least
absolute shrinkage and selection operator (LASSO) Cox
regression, which reveals the linear relationship between the
features and targets, was conducted to select stable prognostic
autophagy genes and support the construction of the prognos-
tic signature with the corresponding index.

Autophagy score = Z[coef (selected gene) * Expression(selected gene)].
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TasLE 1: Clinicopathological features among the four cohorts.
TCGA_TCGA GSE46602 GSE70768 MSKCC Total
(n=431) (n=27) (n=108) (n=136) (n=1702)
Age (years)
Mean (SD) 60.9 (6.7) 62.5 (6.1) 60.4 (6.6) 58 (6.7) 60.4 (6.8)
Median (min, max) 61 (41, 78) 63 (46, 71) 62 (41, 73) 57.8 (37.3, 72.8) 61 (37.3, 78)
PSA (ng/ml)
Mean (SD) 1 (4) 19.8 (10) 8.6 (3.7) 12.2 (44.3) 5.1 (20.6)
Stage
Stage 1T 164 (38.1%) 13 (48.1%) 33 (30.6%) 85 (62.5%) 295 (42.0%)
Stage III 259 (60.1%) 14 (51.9%) 75 (69.4%) 44 (32.4%) 392 (55.8%)
Stage IV 8 (1.9%) 7 (5.1%) 15 (2.1%)
Gleason
6 40 (9.3%) 9 (33.3%) 16 (14.8%) 40 (29.4%) 105 (15.0%)
7 213 (49.4%) 15 (55.6%) 84 (77.8%) 76 (55.9%) 388 (55.3%)
8 55 (12.8%) 2 (7.4%) 8 (7.4%) 10 (7.4%) 75 (10.7%)
9 120 (27.8%) 1 (3.7%) 0 (0.0%) 10 (7.4%) 131 (18.7%)
10 3 (0.7%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 3 (0.4%)

Index of selected genes was generated through the TCGA-
PRAD cohort which is used as a training cohort. The autoph-
agy score (AutS) of patients in the GEO-combined cohort was
calculated according to the above formula, as well as the exter-
nal validation GSE54460 and GSE94767 cohorts.

2.4. Construction and Validation of the Nomogram. The
prognostic nomogram was built by independent prognostic
factors identified by multivariate Cox regression analysis. It
can predict the recurrence probability individualized, and
this quantitative tool provided for urologists was established
by the R package “regplot.” The model goodness of fit was
estimated by calibration curves. Decision curve analysis
and clinical impact curves quantified the net benefits at dif-
ferent threshold probabilities to determine the clinical use-
fulness of the nomogram by using the R packages “rms”
and “rmda.” The receiver operating characteristic (ROC)
curve and the area under the curve (AUC) were used to
assess the predictive function of the nomogram [18].

2.5. Evaluation of Molecular Function. The variations in the
pathway activities among high-AutS and low-AutS groups
were assessed by gene set variation analysis (GSVA) with
the “GSVA” R package. The 50 hallmark gene sets were
obtained from MSigDB [19, 20]. The genetic mutations of
PCa patients were also enrolled from the GDC by the
“TCGADbiolinks” package and further visualized via the
“maftools” R package [21]. The drive gene of PCa was also
evaluated by the oncodrive module from the “maftools” R
package.

2.6. Evaluation of Response to Chemotherapy and Androgen
Deprivation Therapy (ADT). For chemotherapy and ADT,
the data of drug sensitivity and phenotype were used to pre-
dict the therapeutic response via the R package “MOVICS”
from GDSC 2016 (https://www.cancerrxgene.org/) [22].

The estimated inhibitory concentration (IC50) was com-
pared among the patients with high-AutS and low-AutS.
We also downloaded the RNA sequence data from
GSE150475, GSE69249, and GSE88210, which contain the
samples that received DMSO or androgen receptor inhibitors,
to confirm the predictive value of autophagy for therapy sen-
sitivity. Moreover, we also searched for potential therapeutic
new drugs through the Gene Set Cancer Analysis (GSCA)
online website (http://bioinfo.life.hust.edu.cn/GSCA).

2.7. Collection of Proposed PCa Prognosis Signatures. We
compared the AUC values depending on the autophagy sig-
nature and several proposed signatures to determine the
prognostic ability of the autophagy-related gene signature.
Zhang et al. [16] reported a PCSS signature based on 13
genes linked with tumor stem-like features. Liu et al. [23]
also constructed a stem cell-associated gene set signature to
predict the RFS of PCa, which contains 13 genes as well
but is totally different from Zhang’s. The CCP score was cal-
culated as the ratio of the mean expression value of 31 cell
cycle proliferation genes to the mean expression value of
15 housekeeping genes [24]. Yang et al. [25] identified a
28-gene hypoxia-related prognostic signature. Cheville
et al. [26] only used TOP2A and CDHI0 to predict the
RFS of the prognostic signature. Glinsky et al. [27] identified
a signature with 11-gene in transgenic mouse models of PCa
and cancer patients; this signature always showed a stem-
cell-like expression profile. Based on our preprocessed gene
expression profile, the risk score for each registration signa-
ture was calculated according to the index mentioned in the
corresponding article.

2.8. Statistics. We use R (Version: 4.0.2) to execute all statis-
tical analyses. K-M curves were generated by the log rank
test to analyze survival rates for patients with different detec-
tion methods. ROC analyses performed by the R package
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“pROC” were wielded to examine the prediction efficiency of
the autophagy-related gene signature. The time-dependent
prognostic value of the autophagy signature and proposed
signatures was illustrated and compared by the “timeROC”
R package. A two-tailed P value <0.05 was recognized as sta-
tistically significant. Hazard ratios (HRs) and 95% confi-
dence intervals (95% CIs) for RFS were estimated via Cox
proportional hazards regression. A forest plot was exhibited
to assess the prognostic value of the autophagy-related gene
signature and other features by the function “ggforest” in the
R package “surviminer.”

3. Result

3.1. Construction of an Autophagy-Related Gene Signature
and Prognostic Analysis. We obtained 410 autophagy-
related genes, 124 from prior literature, 222 from the HADb
database, 34 from KEGG_REGULATION_OF_AUTOPH-
AGY, and 30 from the WP_AUTOPHAGY gene sets. After
merging duplicated genes, 352 genes were enrolled
(Figure 1(a)). To make the results comparable, we inter-
sected 352 genes with GEO-combined and TCGA-PRAD
cohorts to obtain genes shared by them (n=300,
Figure 1(d)). We investigated the correlations between 300
genes and the prognosis of PCa in GEO-combined and
TCGA-PRAD cohorts. Risky genes and protective genes
were flagged and showed in volcano maps (Figures 1(b)
and 1(c)). 19 risky genes and 8 protective genes shared by
both two cohorts showed in a Venn diagram (Figure 1(e)).
Then, in order to screen out the most suitably prognostic
genes, LASSO regression analysis was performed based on
the 27 genes, and six autophagy-related genes were eventu-
ally selected to establish an autophagy-related gene signa-
ture, including ULKI, CAPNI10, FKBP5, UBE2T, NLRC4,
and BNIP3L (Figures 1(f) and 1(g)). BNIP3L and FKBP5
represented protective factors, yet ULK1, CAPN10, UBE2T,
and NLRC4 represent risk factors in PCa (Figure 2(a)). With
the corresponding coefficients of the six genes, AutS was cal-
culated the following formula: AutS = ULKI expression
0.901 + UBE2T expression * 0.751 + CAPN10 expression *

0.184 + NLRC4 expression * 0.322 + FKBP5 expression * (—
0.214) + BNIP3L expression # (—0.407). A negative correla-
tion between the AutS and OS of PCa patients was observed
(R=-0.12, P=0.012, Figure S2A). Subsequently, we divided
all patients in TCGA-PRAD cohort into high-AutS (n = 216)
and low-AutS (n=215) subgroups with the mean value of
AutS. Different distributions of clinicopathologic features
were found in the two newly defined subgroups, including
survival status (P <0.001), T stage (P<0.001), GS
(P<0.001), PSA (P=0.019), and age (P=0.033)
(Figure S2B). K-M curve revealed that the OS of patients
with high AutS was significantly longer than those with
low AutS, with a P value less than 0.001 (95% CI: 2.215-
5.925) and an HR of 3.62 (Figure 2(b)). To verify the
discriminative ability of AutS, ROC was performed. The
AUC values were 0.762, 0.763, and 0.687, respectively, at 1,
3, and 5 years, implying good discriminative efficiency of the
AutS (Figure 2(c)). As shown in Figure S3, we divided the
whole samples in TCGA-PRAD cohort into eight clusters
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with distinct clinicopathological features and conducted a
survival analysis in each cluster. It was found that AutS also
showed satisfactory prognostic prediction potential in
age<65 (P<0.001), age>65 (P=0.036), T3+4 stage
(P<0.001), Gleason 6+7 (P=0.014), and PSA<10
(P<0.001) clusters. Unfortunately, no statistical significance
was found in T2 stage (P=1.03), Gleason 8+9+10
(P=0.056), and PSA>10 (P =0.999) clusters, which might
be explained by the small sample size in these clusters.

3.2. Construction of a Nomogram Risk Model Incorporating
the Autophagy Score. Multivariate Cox regression analysis
indicated that PSA (P =0.04, HR =2.565, 95% CI: 1.013-
6.50), GS (P<0.001, HR =2.529, 95% CI: 1.486-4.3), T3
stage (P=0.0148, HR=2.183, 95% CI: 1.165-8.35), and
AutS (P=0.007, HR = 2.086, 95% CI: 1.223-3.56) were inde-
pendently prognostic risk factors for PCa (Figure 3(a)).
Based on the results, we established a nomogram risk model
combining GS, T stage, PSA, and AutS for the quantitative
prediction of 3-year and 5-year recurrence rates
(Figure 3(b)). ROC analysis demonstrated that AUC values
of nomogram, AutS, GS, T stage, PSA, and age were 0.777
(95% CI: 70.9-84.5), 0.751 (95% CI: 67.6-82.7), 0.704 (95%
CL 63.4-77.4), 0.602 (95% CI: 54.0-66.5), 0.725 (95% CI:
64.7-80.4), and 0.585 (95% CI: 50.8-6.2) (Figure 3(c)). These
results implied that the nomogram had the highest predic-
tive efficiency among them. DCA of the nomogram was
employed to evaluate the clinical benefit of it. At a threshold
probability from 0 to 0.5, this nomogram presented a higher
clinical net benefit than other policies, such as GS, T stage,
and PSA (Figure 3(d)). The P value in the calibration analy-
sis was 0.426, indicating the goodness of fit between predic-
tion and observation values (Figure 3(e)). Taken together,
results mentioned above suggested that the nomogram was
almost equal to an ideal risk model.

3.3. Validation in the GEO-Combined Cohort. In the GEO-
combined cohort, the prognostic value of ULKI, CAPNIO0,
FKBP5, UBE2T, NLRC4, and BNIP3L was also validated sep-
arately (Figure S4). The same formula was employed to
calculate the AutS for each patient in the GEO-combined
cohort. It was negatively correlated between the AutS and
OS of PCa (R=-0.22, P =0.00035, Figure 4(a)). According
to the average AutS of patients in the GEO-combined
cohort, we divided them into high-AutS (n =135) and low-
AutS subgroups (n=136). Significantly higher mortality
rates (P=P<0.001) and GS (P =0.00031) were observed
in the high-AutS subgroup than in the low-AutS subgroup,
but the difference in T stage (P=0.13), PSA (P=0.17), or
age (P=0.3) was not significant (Figure 4(b)). Survival
analysis confirmed that high-AutS patients had shorter OS
than low-AutS patients (P=0.001, HR=2.82, 95% CL
1.702-4.686), which was also examined at 1 year, 3 years,
and 5 years via further ROC analysis with AUC values of
0.783, 0.712, and 0.729, respectively (Figures 4(c) and
4(d)). Multivariate Cox regression analysis conducted in
the GEO-combined cohort confirmed that GS (P <0.001,
HR =4.11, 95% CI: 2.368-7.14), T3 stage (P =0.002, HR =
2.43, 95% CI: 1.384-4.28), and AutS (P =0.005, HR =2.13,
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FIGURE 3: Multivariate Cox regression analysis and nomogram risk model establishment. (a) Independent prognosis analysis via
multivariate Cox regression. If the whole segment is located on the right, the corresponding predictor is deemed as a risky factor for PCa
or a protective factor which is independence. (b) Establishment of a novel nomogram risk model based on GS, T stage, PSA, and AutS.
For a given patient with a GS>7, T3 or T4 stage, PSA>10, and AutS=3.5, we obtained points for each predictor on the points line,
calculated the sum of overall points, and found its location on the total points line at the bottom, which was 268. Then, a straight line
was delineated from the total point to the 3-year and 5-year lines, and the corresponding points of intersection represented 3-year and
5-year recurrence rates, which were 0.74 and 0.899, respectively. (c) Comparison of discriminative performance between the nomogram
and AutS, GS, PSA, T stage, and age in TCGA-PRAD cohort. (d) Clinical value assessment for nomogram via DCA. (e) Calibration
analysis for nomogram. Dashed line represented observed value and solid line represented predictive value, and a P> 0.05 implied a

good agreement between observation and prediction values.

95% CI: 1.257-3.61) were independent risk factors for PCa,
but no PSA (P=0.0983, HR =1.50, 95% CI: 0.927-2.44),
which was slightly different from the results in the TCGA-
PRAD cohort. The predictive performance of our
nomogram was further estimated by ROC analysis, and the
AUC values of AutS, GS, T stage, PSA, and age were 0.836

(95% CI: 77.0-90.2), 0.709 (95% CI: 63.3-78.5), 0.708 (95%
CL: 64.0-77.7), 0.717 (95% CI: 64.8-78.6), 0.647 (95% CI:
55.8-73.7), and 0.598 (95% CI: 50.9-68.7), respectively
(Figure 4(f)). Obviously, the combination of AutS, GS, T
stage, and PSA resulted in a significantly increased AUC as
compared to them alone. Similarly, we assessed the
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FIGURE 4: Validation in GEO-combined cohort. (a) Negative association between AutS and OS of PCa in GEO-combined cohort. (b)
Clinicopathological distribution among high-AutS and low-AutS groups. (c) K-M analysis for autophagy-related gene signature. (d) ROC
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predictive accuracy of AutS in patients with the same
clinicopathological features. It also performed well in most

context which included age<65 (P=0.006), age>65
(P=0.005), T3+4 stage (P<0.001), Gleason 6+7
(P=0.018), Gleason 8+9+10 (P=0.029), PSA<10

(P=0.001), and PSA>10 (P=0.018) clusters, but except
T2 stage cluster (P =0.629) (Figure S5).

3.4. High-AutS PCa Had Numerous Activated Proliferation
Pathway and Higher Sensitivity to Drug Therapy. GSVA
was performed to investigate patterns of signaling pathway
activation among AutS subgroups. As shown in
Figure 5(a), a series of proliferation-associated pathways
are activated in the high-AutS group. The G2 M checkpoint,
E2F targets, mitotic spindle, and MYC targets V1 and V2
pathways are involved in the cell cycle and have been
marked as proliferation-associated pathways in the MSigDB
[28]. In addition, mTORCI1 signaling was proven to promote
tumor progression by regulating metabolic reprogramming,
such as aerobic glycolysis, lipogenesis, and purine and pyri-
dine synthesis [29]. The peroxisome was proven to promote
tumor progression by regulating fatty acid oxidation, and the
oxidative phosphorylation pathway generated ATP to pro-
vide energy for tumor cells [30, 31]. These findings suggested
that activation of the G2 M checkpoint, E2F targets, mitotic
spindle, MYC targets V1 and V2 pathways, mTORCI, per-
oxisome, and oxidative phosphorylation pathways might be
responsible for the poor clinical outcome of PCa, and these
pathways may serve as novel therapeutic targets.

Based on the data from GEO and GDSC 2016 databases,
we assessed the predictive power of AutS for response to
chemotherapy and ADT. High-AutS group presented a
lower IC50 in both docetaxel (P =0.00046) and bicaluta-
mide class (P <0.001), but not cisplatin (P =0.33), which
suggested a high sensitivity to docetaxel and bicalutamide
(Figure 5(b)). On the other hand, a decreased AutS was
observed in PCa patients treated with bicalutamide
(P =0.032) or enzalutamide (P = 0.0019) compared to those
received DMSO (Figure 5(c)). It reconfirmed that high-AutS
PCa was more sensitive to chemotherapy and ADT. There-
fore, the autophagy-related gene signature might be a poten-
tial biomarker for chemotherapy and ADT. We also
searched the new drugs from the GSCA dataset, a total of
29 components were identified that functioned in the clinical
treatment of patients with high AutS (Table 2).

3.5. Investigation of Molecular Mechanisms. We investigated
the molecular alteration landscape among the AutS groups.
The most frequent variant type in PCa was missense muta-
tion. At the group level, the most frequent variant type was
single-nucleotide polymorphisms (SNPs) (Figure 6(a)). The
top ten mutated genes are listed in Figure 6(b), including
TP53 (12%), TTN (11%), SPOP (11%), FOXAI (6%),
MUCI6 (5%), KMT2D (5%), SYNEI (5%), SPTAI (5%),
KMT2C (4%), and LRPIB (4%). Compared with low-AutS
group, there were more frequent genetic alterations in the
high-AutS group. For instance, TP53 was the most frequent
genetic mutation in the high-AutS group, accounting for
18%, while it was only 6% in the low-AutS group; TTN

Disease Markers

was the most frequent genetic mutation in the low-AutS
group, accounting for 9%, while it was 13% in the high-
AutS group (Figure 6(c)). As identified by the “maftools” R
package, SPOP was considered as the cancer driver gene
(Figure 6(d)). Further study manifested that SPOP mutation
would inhibit itself expression (P =0.016, Figure 6(e)), and
low expression of SPOP would result in a shorter OS
(Figure 6(f)), which was consistent with prior results that
high-AutS was tightly related to a higher SPOP mutation fre-
quency and poorer prognosis. Taken together, evidences
above manifested SPOP mutation events contributed to a
poor clinical outcome of PCa.

3.6. Verification in an External Cohort and Performance
Comparison with Proposed Signatures. To further verify the
predictive efficiency of the autophagy-related gene signature,
we reproduced the classification process in GSE54460
(Figure 7(a)) and (Figure 7(c)) GSE94767 cohorts. As the
results showed, AutS also performed well in distinguishing
good and bad clinical outcomes in both the GSE54460
(P=0.001, HR =2.49, 95% CI: 1.424-4.35) and GSE94767
(P=0.047, HR=1.78, 95% CI: 1.007-3.136) cohorts. In
addition, there are large amounts of prognostic signatures
of PCa have been proposed, but their discriminative abilities
are different. To further evaluate our model, we employed
time-dependent ROC analysis to compare the discriminative
ability of AutS with six published signatures. It was con-
firmed that AutS had stronger predictive ability than the
six published prognostic signatures mentioned above, espe-
cially in predicting the recurrence rate within 5 years
(Figures 7(b) and 7(d)).

4. Discussion

PCa originated from multifocal tumor foci and is famous for
high heterogeneity of clinical, molecular, and prognostic
characteristics. The diversity of unique molecular alterations
between different patients poses challenges for PCa diagno-
sis and managements. Risk stratification and prognostic pre-
diction schemes based on GS, PSA, and T stage cannot meet
all the needs in clinical [32]. Herein, recent researches
shifted towards molecular subtyping for PCa for a better
understanding of such malignancy. Comprehensive molecu-
lar profiling has elucidated a mass of core molecular alter-
ations in PCa and their unique impact on prognosis,
especially autophagy-related genes [33].

A total of 352 autophagy-related genes from publicly
available datasets and published literature were appraised
in this study. After row data processing and LASSO Cox
regression analysis, we filtered out six autophagy-related
genes and established a prognostic model. We divided whole
patients in the enrolled cohort into high-AutS group and
low-AutS groups based on the AutS of each patient. K-M
analysis revealed that high-AutS patients had a shorter OS,
and this result was validated in both ROC analysis and exter-
nal cohorts, indicating that this prognostic model is robust.
Moreover, we found that the AutS served as an independent
risk factor in PCa, which was also validated in the GEO-
combined cohort. We also investigated the association
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FIGURE 5: Metabolic pathway enrichment analysis and prediction of response to chemotherapy. (a) Different activated pathways between
high-AutS and low-AutS groups. (b) Comparison of susceptibility to cisplatin, docetaxel and bicalutamide among two groups. IC50 was
set as the efficacy evaluation indicator. High IC50 represented a bad efficacy. (c) Decreased AutS in LNCaP cells after treatment with
bicalutamide and decreased AutS in PCa cells after treatment with enzalutamide. Gene expression data of bicalutamide-treated LNCaP
cells was from GSE150475. Gene expression data of enzalutamide-treated PCa cells was from GSE69249 datasets. The label “DMSO” on
the X axis represented the control groups, and the labels “Bicalutamide” and “enzalutamide” represented the treatment groups.

between AutS and clinicopathological features, and the
results presented the high-AutS group had obviously higher
GS, T stage, and PSA levels than the low-AutS group, sug-
gesting that AutS is able to distinguish “high-risk” and
“low-risk” PCa traditionally defined derived from GS, T
stage, and PSA. As a result, mortality was higher in the
high-AutS group than in the low-AutS group. On the other
hand, elevated autophagy markers were observed in GS 9
PCa compared with GS 7 PCa [13]. Therefore, there is no
doubt that a high AutS represents a poor clinical outcome.
Androgen receptor (AR) is always considered a driver
leading to the oncogenesis, growth, and metastasis of PCa
[34]. They drive the development of PCa throughout the
whole natural disease history, even at the relapsed stage,
which is termed metastatic castration-resistant PCa
(mCPRC). Currently, ADT is the standard first-line therapy
for metastatic PCa. It can effectively slow the development of
PCa initially but often fails within 2-3 years, and conse-
quently, PCa progresses to mCPRC [9]. Understanding
how AR drives PCa progression will help us to find break-
throughs to overcome the inevitable resistance to ADT.
Regrettably, the molecular mechanism underlying this resis-
tance remains elusive. Recent studies confirmed AR-
mediated autophagy as a potential way to promote PCa cell
growth. Alicia M. Blessing et al. detected that androgen
upregulated the expression of four essential autophagy
genes, including ATG4B, ATG4D, ULKI, and ULK2. They
validated the necessary role of ATG4B, ATG4D, ULKI,
and ULK2 for the proliferation and metastasis of PCa [35].
CAMKK?2 is a downstream target gene of AR in PCa. AMPK
and ULKI are regulators of autophagy, and Chenchu Lin
et al. reported that CAMKK2 promotes PCa progression
and mCRPC growth via AMPK-ULK1 signaling [9]. These
findings indicated that autophagy markers might be poten-
tial predictors for ADT. In our study, we observed that

high-AutS PCa was more sensitive to bicalutamide. On the
other side of the spectrum, AutS decreased after treatment
with bicalutamide or enzalutamide. These results support
that the AutS is a reliable tool to distinguish patients with
different susceptibilities to ADT. Although many immuno-
histochemical markers have been proposed for autophagy,
the disadvantage they shared is instability and may be easily
disturbed, which makes them unsuitable for clinical use [36].
AutS was generated based on six autophagy-related genes
and revealed the intrinsic effects of different responses to
ADT in PCa at the molecular level, indicating high stability
and specificity. As far as we are concerned, AutS would be
a promising method for selecting PCa patients sensitive to
ADT, providing an essential tool for precise treatment and
avoiding premature resistance to ADT.

We validated that PSA, GS, T stage, and AutS could be
independent prognostic risk factors in PCa but excluded
age. PSA, GS, T stage, and AutS were used as covariates,
and the recurrence rate was used as a dependent variable.
We designed a high-discrimination nomogram for the PCa
recurrence probability prediction. Traditionally, PSA, GS,
and T stage are fundamental for defining “high-risk” and
“low-risk” PCa in different classification systems. In the
National Comprehensive Cancer Network (NCCN), “high-
risk” was defined as T3a, Gleason >8, or PSA >20 [37]; in
the Radiation Therapy Oncology Group (RTOG), “high-
risk” was defined as (1) Gleason >8 or (2) Gleason =7 plus
either > ¢T3 or node-positive [38]. Significant heterogeneity
in outcomes predicted by different risk stratification schemes
and 5-year relapse-free survival probabilities ranging from
49-80% were reported using different classifications for the
same patient [39]. According to Chang et al., one of the rea-
sons for this heterogeneity is that some groups used PSA and
GS as continuous rather than dichotomous variables, result-
ing in a significantly different constitution of “high-risk”
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TaBLE 2: Chemo drugs for selected autophagy genes.
Drug Symbol Cor Fdr Drug Symbol Cor Fdr
CAPNI10 -0.179 <0.001 CAPNI10 -0.083 0.048
AR-42 NLRC4 -0.174 <0.001 MP470 NLRC4 -0.09 0.03
UBE2T -0.119 0.001 UBE2T -0.115 0.006
CAPNI10 -0.163 <0.001 CAPNI10 -0.232 <0.001
Belinostat NLRC4 -0.149 <0.001 Navitoclax NLRC4 -0.18 <0.001
UBE2T -0.092 0.012 UBE2T -0.21 <0.001
CAPN10 -0.14 <0.001 CAPN10 -0.213 <0.001
BMS345541 NLRC4 -0.152 <0.001 NPK76-1I-72-1 NLRC4 -0.159 <0.001
UBE2T -0.091 0.011 UBE2T -0.168 <0.001
CAPN10 -0.163 <0.001 CAPNI10 -0.162 <0.001
BX-912 NLRC4 -0.205 <0.001 PHA-793887 NLRC4 -0.215 <0.001
UBE2T -0.092 0.01 UBE2T -0.082 0.02
CAPN10 -0.177 <0.001 CAPN10 -0.135 <0.001
CAY10603 NLRC4 -0.182 <0.001 PI-103 NLRC4 -0.198 <0.001
UBE2T -0.096 0.007 UBE2T -0.089 0.014
CAPNI10 -0.151 <0.001 CAPNI10 -0.165 <0.001
CP466722 NLRC4 -0.144 <0.001 PIK-93 NLRC4 -0.197 <0.001
UBE2T -0.08 0.026 UBE2T -0.075 0.037
CAPN10 -0.147 <0.001 CAPN10 -0.134 <0.001
CUDC-101 NLRC4 -0.17 <0.001 QL-X-138 NLRC4 -0.168 <0.001
UBE2T -0.097 0.008 UBE2T -0.089 0.014
CAPN10 -0.187 <0.001 CAPNI10 -0.098 0.006
CX-5461 NLRC4 -0.104 0.004 QL-XI-92 NLRC4 -0.205 <0.001
UBE2T -0.106 0.003 UBE2T -0.075 0.04
CAPNI10 -0.194 <0.001 CAPNI10 -0.179 <0.001
FK866 NLRC4 -0.185 <0.001 THZ-2-102-1 NLRC4 -0.174 <0.001
UBE2T -0.162 <0.001 UBE2T -0.099 0.006
CAPNI10 -0.13 <0.001 CAPNI10 -0.111 0.002
Genentech Cpd 10 NLRC4 -0.109 0.002 TL-2-105 NLRC4 -0.142 <0.001
UBE2T -0.1 0.006 UBE2T -0.083 0.025
CAPN10 -0.172 <0.001 CAPN10 -0.173 <0.001
GSK1070916 NLRC4 -0.154 <0.001 TPCA-1 NLRC4 -0.167 <0.001
UBE2T -0.152 <0.001 UBE2T -0.074 0.038
CAPNI10 -0.091 0.012 CAPNI10 -0.204 <0.001
GSK690693 NLRC4 -0.103 0.004 Vorinostat NLRC4 -0.207 <0.001
UBE2T -0.1 0.006 UBE2T -0.173 <0.001
CAPN10 -0.211 <0.001 CAPN10 -0.177 <0.001
I-BET-762 NLRC4 -0.235 <0.001 WZ3105 NLRC4 -0.186 <0.001
UBE2T -0.087 0.014 UBE2T -0.11 0.002
CAPNI10 -0.137 <0.001 CAPNI10 -0.15 <0.001
KIN001-102 NLRC4 -0.15 <0.001 YM201636 NLRC4 -0.118 0.001
UBE2T -0.101 0.004 UBE2T -0.078 0.033
CAPN10 -0.213 <0.001
Methotrexate NLRC4 -0.21 <0.001
UBE2T -0.078 0.036
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FIGURE 6: Genetic alteration landscape between high-AutS and low-AutS groups. (a) The types of gene mutation and the abundance of
different base pairs in PCa. (b) The top ten mutated genes in PCa. (c) Comparison of the genetic alteration landscape between high-AutS
and low-AutS groups. (d) Analysis of the driver gene in PCaE. Comparison of expression level of SPOP between WT SPOP type and

mutated SPOP type. (f) K-M curves for SPOP.

[40]. In our nomogram risk model, we considered PSA, GS,
and T stage as dichotomous variables and gave them differ-
ent weights based on their impacts on the prognosis of PCa.
In addition, the dichotomous T stage can reduce the inher-
ent inaccuracy for a 23% overstaging rate [41]. ROC analysis
is a common method to assess the predictive accuracy of a
risk model. However, it cannot reveal which models are
more worthy of clinical use. For instance, a model with high
specificity but low sensitivity would have a high AUC,
whereas the false-negative rate is high at the same time,

which would lead to a poorer outcome than those with a
high false-positive rate [18]. Therefore, we tested the clinical
value with extra DCA. Compared to PSA, GS, and T stage
alone, the nomogram showed the highest discriminative
accuracy and clinical net benefit. We believe it will be a
promising tool for urologists to quantify the 3-year and 5-
year recurrence rates and optimize treatment schemes.

To further investigate the underlying molecular mecha-
nisms contributing to heterogeneity among the high-AutS
and low-AutS groups, GSVA was conducted. We found
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FIGURE 7: External cohort validation and comparison of discriminative efficiency between autophagy-related gene signature and six
published signatures. (a) K-M curves for autophagy-related gene signature in GSE54460 cohort. (b) Comparison of discriminative
efficiency between autophagy-related gene signature and six proposed signatures via time-dependent ROC analysis in TCGA-PRAD
cohort. (c) K-M curves for autophagy-related gene signature in GSE94767 cohort. (d) Comparison of discriminative efficiency between
autophagy-related gene signature and proposed signatures via time-dependent ROC analysis in GEO-combined cohort.

different pathway activation between the two groups. In the
high-AutS group, more proliferation-related pathways were
enriched, including the G2 M checkpoint, E2F targets,
mitotic spindle, MYC targets V1 and V2 pathways,
mTORCI, and peroxisome and oxidative phosphorylation
pathways. These signaling pathways have been proposed to
promote cancer progression in diverse ways, involving regu-
lation of the cell cycle, glucose metabolism, mitochondrial
metabolism, protein synthesis, nucleotide synthesis, and

lipid metabolism. In addition, we also examined the impact
of the genetic alteration landscape on the prognosis of
PCa. TP53 is among the most frequent genomic alterations
in late-stage PCa compared with early-stage PCa [42]. It
was reported that 44% of patients with inherited TP53 vari-
ants were diagnosed with high-PSA (1.1-171ng/dl) and
high-grade disease (Gleason >8) [43]. FOXA1 functions as
a cofactor for AR and can promote tumor growth indepen-
dently even in some AR deletion cases. FOXAI mutation is
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correlated with a more than 2-3-fold increase in growth,
higher GS, and shorter relapse-free survival compared to
the vector control [44]. KMT2D is an epigenetic modifier
that enhances the expression of Kruppel-like factor-4
(KLF4) and leukemia inhibitory factor receptor (LIFR),
which are involved in the activation of the PI3K/Akt and
EMT pathways and promote the outgrowth and metastasis
of PCa. Deletion of KMT2D results in DNA damage and cell
apoptosis and senescence via the ROS pathway, thereby
delaying the development of PCa [45, 46]. Obviously, high
mutation frequencies of these genes in the high-AutS group
explain the poor prognosis of high-AutS patients in our
study.

Notably, SPOP mutation was confirmed as the driver
event in PCa. SPOP mutation is reported in 5-15% of
tumors, accounting for the most frequent point mutation
in PCa [47]. However, opinions vary regarding its impact
on the progression of PCa. Blattner M et al. considered no
correlations between clinical outcome and SPOP mutation
[48]. Others reported that SPOP mutation or decreased
expression contributed to shorter OS and prevented the deg-
radation of ERG and AR [49, 50]. In this study, we validated
that SPOP mutation would downregulate its expression and
lead to a shorter OS. Interestingly, SPOP is consistent with
the level of AR activity, suggesting a good response to
ADT, which was also observed in the high-AutS group.

Nevertheless, some shortcomings still exist in this study.
We obtained autophagy genes from only three sources, and
some appropriate genes may be missed. Our work was per-
formed based on publicly available datasets, and more pro-
spective cohorts from the real world were needed to test
the model. We preliminarily revealed the different molecular
mechanisms limited in transcriptomics, and further mecha-
nistic studies may help better understand the different prog-
noses between the two groups.

5. Conclusion

Taken together, we constructed a prognostic autophagy-
related gene signature for PCa. Its discriminative efficacy
and clinical and therapeutic value were validated. The results
of the mechanism analysis were consistent with the correla-
tion study, proving the model reliability. In addition, a high-
accuracy nomogram was also validated to quantitatively
prognosticate the 3-year and 5-year recurrence rates of
PCa. We believe it might be a promising risk stratification
scheme for precisely personalized treatment for PCa
patients.
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