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Abstract

Many fundamental problems in data mining can be reduced to one or more NP-hard combi-

natorial optimization problems. Recent advances in novel technologies such as quantum

and quantum-inspired hardware promise a substantial speedup for solving these problems

compared to when using general purpose computers but often require the problem to be

modeled in a special form, such as an Ising or quadratic unconstrained binary optimization

(QUBO) model, in order to take advantage of these devices. In this work, we focus on the

important binary matrix factorization (BMF) problem which has many applications in data

mining. We propose two QUBO formulations for BMF. We show how clustering constraints

can easily be incorporated into these formulations. The special purpose hardware we con-

sider is limited in the number of variables it can handle which presents a challenge when fac-

torizing large matrices. We propose a sampling based approach to overcome this

challenge, allowing us to factorize large rectangular matrices. In addition to these methods,

we also propose a simple baseline algorithm which outperforms our more sophisticated

methods in a few situations. We run experiments on the Fujitsu Digital Annealer, a quantum-

inspired complementary metal-oxide-semiconductor (CMOS) annealer, on both synthetic

and real data, including gene expression data. These experiments show that our approach

is able to produce more accurate BMFs than competing methods.

Introduction

Many fundamental problems in data mining consist of discrete decision making and are com-

binatorial in nature. Examples include feature selection, data categorization, class assignment,

identification of outlier instances, k-means clustering, combinatorial extensions of support

vector machines, and consistent biclustering, to mention a few [1]. In many cases, these under-

lying problems are NP-hard, and approaches to solving them therefore dependent on heuris-

tics. Recently, researchers have been exploring different computing paradigms to tackle these

NP-hard problems, including quantum computing and the development of dedicated special

purpose hardware. The Ising and quadratic unconstrained binary optimization (QUBO)
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models are now becoming unifying frameworks for the development of these novel types of

hardware for combinatorial optimization problems.

Binary matrix factorization is an NP-hard combinatorial problem that many computational

tasks originating from a wide range of applications can be reformulated into. These applica-

tions include areas such as data clustering [2–6], pattern discovery [7, 8], dictionary learning

[9], collaborative filtering [10], association rule mining [11], dimensionality reduction [12],

and image rendering [13]. As such, any advances in solving the binary matrix factorization

problem, can potentially lead to breakthroughs in various application domains.

In this paper we show how the aforementioned hardware technologies, via the QUBO

framework, can be used for binary matrix factorization. As Moore’s law comes to an end [14],

investigating how such post-Moore’s law technologies can be used is an important task. This is

especially true for primitives like binary matrix factorization which are used in data mining

tasks that continue to grow ever larger and more complex. We make the following contribu-

tions in this paper:

• Provide two QUBO formulations for one variant of the binary matrix factorization problem.

To the best of our knowledge, these are the first methods specifically designed for solving

binary matrix factorization on quantum and quantum-inspired hardware to appear in the

literature. We additionally propose a simple baseline method which outperforms our more

sophisticated methods in a few situations.

• Show how constraints that are useful in clustering tasks can easily be incorporated into the

QUBO formulations.

• Present a sampling heuristic for factorizing large rectangular matrices.

• Conduct experiments on both synthetic and real data on the Fujitsu Digital Annealer. These

experiments suggest that our method is able to achieve higher accuracy than competing

methods in the kind of binary matrix factorization we consider.

Binary matrix factorization

Let A 2 {0, 1}m×n be a matrix with binary entries. For a positive integer r�min(m, n), the

rank-r binary matrix factorization (BMF) problem is

min
U;V
kA � UV>k2

F s:t: U 2 f0; 1gm�r; V 2 f0; 1gn�r: ð1Þ

We discuss other definitions of BMF that appear in the literature in the section Related work.

Example 1 (Exact BMF). Define matrices

A ¼def

1 1 0

1 1 1

0 0 1

2

6
6
6
4

3

7
7
7
5
; U ¼def

0 1

1 1

1 0

2

6
6
6
4

3

7
7
7
5
; V ¼def

0 1

0 1

1 0

2

6
6
6
4

3

7
7
7
5
:

Then A = UV> is an exact BMF of A.

The QUBO framework

Let Q 2 Rn�n
be a matrix. A QUBO problem takes the form

min
x

x>Qx s:t: x 2 f0; 1gn: ð2Þ
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The tutorial by Glover et al. [15] is a good introduction to this problem which also discusses

some of its many applications.

The Digital Annealer

The Fujitsu Digital Annealer (DA) is a hardware accelerator for solving fully connected

QUBO problems. Internally the hardware runs a modified version of the Metropolis–

Hastings algorithm [16, 17] for simulated annealing. The hardware utilizes massive paralleliza-

tion and a novel sampling technique. The novel sampling technique speeds up the traditional

Markov Chain Monte Carlo (MCMC) method by almost always moving to a new state instead

of being stuck in a local minimum. As explained in [18], in the DA, each Monte Carlo step

takes the same amount of time, regardless of accepting a flip or not. In addition, when

accepting the flip, the computational complexity of updating the effective fields is constant

regardless of the connectivity of the graph. The DA also supports Parallel Tempering (replica

exchange MCMC sampling) [19] which improves dynamic properties of the Monte Carlo

method. In our experiments, we use the DA coupled with software techniques as our main

QUBO solver.

Notation

Bold upper case letters (e.g. A) denote matrices, bold lower case letters (e.g. x) denote vectors,

and lower case regular and Greek letters (e.g. x, λ) denote scalars. Subscripts are used to indi-

cate entries in matrices and vectors. For example, aij is the entry on position (i, j) in A. A � in a

subscript is used to denote all entries along a dimension. For example, ai� and a�j are the ith
row and jth column of A, respectively. We use 1, 0 and I to denote a matrix of ones, a matrix of

zeros, and the identity matrix, respectively. Subscripts are also used to indicate the size of these

matrices. For example, 1m×n is an m × n matrix of all ones, 1n ¼
def 1n�n is an n × n matrix of all

ones, and In is the n × n identity matrix. These subscripts are omitted when the size is obvious.

Superscripts in parentheses will be used to number matrices and vector (e.g. A(1), A(2)). The

matrix Kronecker product is denoted by�. The function vec(�) takes a matrix and turns it into

a vector by stacking all its columns into one long column vector. The function diag(�) takes a

vector input and returns a diagonal matrix with that vector along the diagonal. Semicolon is

used as in Matlab to denote vertical concatenation of vectors. For example, if u 2 Rm
and v 2

Rn
are column vectors, then [u; v] is a column vector of length m + n. The Frobenius norm of

a matrix A is defined as

kAkF ¼
def

ffiffiffiffiffiffiffiffiffiffiffiffiX

ij

a2

ij

s

:

For positive integers n, we use the notation ½n� ¼def f1; 2; . . . ; ng.

Related work

The most popular methods for BMF are the two by Zhang et al. [2, 3]. Their first approach

alternates between updating U and V until some convergence criteria is met. It incorporates a

penalty which encourages the entries of U and V to be near 0 or 1. At the end of the algorithm,

the entries of U and V are rounded to ensure they are exactly 0 or 1. Their second approach

initializes U and V using nonnegative matrix factorization. For each factor matrix, a threshold

is then identified, and values in the matrix below and above the threshold are rounded to 0

and 1, respectively.
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Koyutürk and Grama [11] develop a framework called PROXIMUS, which decomposes

binary matrices by recursively using rank-1 approximations, which results in a hierarchical

representation. Shen et al. [7] provide a linear program formulation for the rank-1 BMF prob-

lem and provide approximation guarantees. Ramı́rez [9] presents methods for BMF applied to

binary dictionary learning. Kumar et al. [13] provide faster approximation algorithms for

BMF as well as a variant of BMF for which inner products are computed over the finite field of

two elements (GF(2)). Diop et al. [20] propose a variant of BMF for binary matrices which

takes the form A� F(UV>), where U and V are binary, and F is a nonlinear sigmoid function.

They use a variant of the penalty approach by [2, 3] to compute the decomposition.

Boolean matrix decomposition, which is also referred to as binary matrix decomposition by

some authors, is similar to the BMF in (1), but an element (UV>)ij is computed via

ðUV>Þij ¼
_r

k¼1

uikvjk

instead of the standard inner product, where
W

denotes disjuction. Some works that consider

Boolean matrix decomposition include [4–6, 8, 10, 12, 21, 22]. For a theoretical comparison

between BMF, Boolean matrix factorization and a variant of BMF computed over GF(2), we

refer the reader to the recent paper by DeSantis et al. [23].

There are previous works that use special purpose hardware to solve linear algebra prob-

lems. O’Malley and Vesselinov [24] discuss how linear least squares can be solved via QUBO

formulations on D-Wave quantum annealing machines. They consider both the case when the

solution vector is restricted to being binary and when it is real valued. The real valued case is

handled by representing entries in the solution vector using a fixed number of bits. O’Malley

et al. [25] consider a nonnegative/binary factorization of a real valued matrix of the form A�
WH, where W has nonnegative entries and H is binary. To compute this factorization, they

use an alternating least squares approach by iteratively alternating between solving for W and

H. When solving for H, they use the QUBO formulation from [24] for the corresponding

binary least squares problem and do the computation on a D-Wave quantum annealer. Draw-

ing inspiration from [24], Ottaviani and Amendola [26] propose a QUBO formulation for

low-rank nonnegative matrix factorization and also implement it on a D-Wave machine. They

too use an alternating least squares approach combined with real number representations sim-

ilar to those in [24]. Borle et al. [27] show how the Quantum Approximate Optimization Algo-

rithm (QAOA) framework can be used for solving binary linear least squares. Their paper

includes experiments run on an IBM Q machine. Unlike our paper, none of the works [24–27]

consider binary matrix factorization. Additionally, an important difference between our work

and the decomposition techniques developed in [25, 26] is that those papers update the factor

matrices in an alternating fashion. Our two QUBO formulations, by contrast, solve for both
factor matrices at the same time, which may help avoid the issue of getting stuck in local min-

ima that alternating algorithms are susceptible to. However, we do incorporate alternating

optimization as a post-processing step in our experiments since this can sometimes further

improve the quality of the solutions that come from solving the QUBO formulations. See the

sections Handling large rectangular matrices and Experiments for details.

There has also been a large body of research on utilizing special purpose hardware for data

clustering problems, for example [28–32] to name a few. A recent paper by Şeker et al. [33]

performs a comprehensive computational study comparing the DA to multiple state-of-the-art

solvers on multiple different combinatorial optimization problems. They find that the DA per-

forms favorably compared to the other solvers, particularly on large problem instances.
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QUBO formulations for BMF

Writing out the objective in (1), we get

kA � UV>k2

F ¼ kAk
2

F � 2
X

ijk

aijuikvjk þ
X

ijkk0
uikuik0vjkvjk0 ; ð3Þ

where the summations are over i 2 [m], j 2 [n], and k, k0 2 [r]. Our goal is to reformulate this

into the QUBO form in (2). The fourth order term in (3) stops us from directly writing (3) on

the quadratic form in (2). We can get around this by introducing appropriate auxiliary vari-

ables and penalties.

Formulation 1

For our first formulation, we introduce auxiliary variables

wðkÞij ¼
def uikvjk for i 2 ½m�; j 2 ½n�; k 2 ½r�: ð4Þ

We arrange these variables into m × n matrices WðkÞ ¼ ðwðkÞij Þ. An equivalent formulation to

(1) is then

min
U;V;fWðkÞg

kAk2

F � 2
X

ijk

aijw
ðkÞ
ij þ

X

ijkk0
wðkÞij w

ðk0Þ
ij

s:t: U 2 f0; 1gm�r; V 2 f0; 1gn�r; ð4Þ satisfied:

ð5Þ

To incorporate the constraints (4) in the QUBO model, we express them as a penalty instead.

A standard technique for this [15] is to use a penalty function f : f0; 1g
3
! R defined via

f ða; b; cÞ ¼def bc � 2ba � 2caþ 3a: ð6Þ

Notice that f(a, b, c) = 0 if a = bc and f(a, b, c)� 1 otherwise. Letting λ be a positive constant, a

penalty variant of (5) is

min
U;V;fWðkÞg

kAk2

F � 2
X

ijk

aijw
ðkÞ
ij þ

X

ijkk0
wðkÞij w

ðk0Þ
ij þ l

X

ijk

f ðwðkÞij ; uik; vjkÞ

s:t: U 2 f0; 1gm�r; V 2 f0; 1gn�r; WðkÞ 2 f0; 1g
m�n for all k 2 ½r�:

ð7Þ

Proposition 2. Suppose l > 2rkAk2

F. A point (U, V, {W(k)}) minimizes (5) if and only if it
minimizes (7).

Proof. For brevity, we denote the objectives in (5) and (7) by OBJ1 and OBJ2, respectively.

Setting all entries in the matrices U, V, W(1), . . ., W(r) to zero would yield an objective value of

OBJ2ðU;V; fW
ðkÞgÞ ¼ kAk2

F. Moreover,

� 2
X

ijk

aijw
ðkÞ
ij þ

X

ijkk0
wðkÞij w

ðk0Þ
ij � � 2rkAk2

F;

so any point (U, V, {W(k)}) that violates (4) would satisfy OBJ2ðU;V; fW
ðkÞgÞ > kAk2

F and

therefore could not be a minimizer of (7). Any minimizer of (7) must therefore satisfy (4).

Suppose p� ¼def ðU�;V�; fWðkÞ�gÞminimizes (5). Since p� satisfies (4), all penalty terms in (7)

are zero for this point, and therefore OBJ1(p�) = OBJ2(p�). p� is also a minimizer of (7). If it was

not, there would be a minimizer p† of (7) for which OBJ2(p†)< OBJ2(p�) and which would
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satisfy (4). p† would therefore be a feasible solution for (5) and it would satisfy OBJ1(p†) =

OBJ2(p†)<OBJ1(p�), which contradicts the optimality of p�.

Suppose py ¼def ðUy;Vy; fWðkÞygÞminimizes (7). Then p† satisfies (4) and is therefore a feasi-

ble solution to (5) satisfying OBJ1(p†) = OBJ2(p†). p† is also a minimizer of (5). If it was not,

there would be a minimizer p� of (5) which would satisfy OBJ2(p�) = OBJ1(p�)< OBJ1(p†) =

OBJ2(p†), contradicting the optimality of p†.

Since (1) and (5) are equivalent, Proposition 2 implies that the matrices U and V we get

from minimizing (7) are minimizers of (1) when λ is sufficiently large.

We now state the QUBO formulation of (7). Define u ¼def vecðUÞ, v ¼def vecðVÞ, and

wðkÞ ¼def vecðWðkÞÞ for each k 2 [r], and let

x ¼def u ; v ; wð1Þ ; wð2Þ ; � � � ; wðrÞ
� �

; ð8Þ

where x is a column vector of length (m + n + mn)r. Furthermore, define the QUBO matrix as

Q ¼def
Qð1Þ Qð2Þ

0 Qð3Þ

2

4

3

5 2 RðmþnþmnÞr�ðmþnþmnÞr; ð9Þ

where

Qð1Þ ¼def
l

2

0mr Ir � 1m�n

Ir � 1n�m 0nr

2

4

3

5;

Qð2Þ ¼def � 2l

Ir � 11�n � Im

Inr � 11�m

2

4

3

5;

Qð3Þ ¼def 1r � Imn � 2 diag ðð1r�1 � ImnÞ vecðAÞÞ þ 3lImnr:

Proposition 3. With x and Q defined as in (8) and (9), respectively, the problem (7) can be
written as

min
x
kAk2

F þ x>Qx s:t: x 2 f0; 1gðmþnþmnÞr
: ð10Þ

The proof is a straightforward but somewhat tedious calculation and is omitted. Although

removing the constant kAk2

F does not affect the minimizer(s) of (10), it can serve as a useful

target: If x>Qx ¼ � kAk2

F, then we know that we have found a global minimum, provided that

the condition on λ in Proposition 2 is satisfied. Such a target value can be supplied to QUBO

solvers like D-Wave’s QBSolv to allow for early termination when the target is reached.

Formulation 2

For our second formulation, we again consider (3) and introduce auxiliary variables

~uiðkk0Þ ¼
def uikuik0 for i 2 ½m�; k; k0 2 ½r�;

~vjðkk0Þ ¼
def vjkvjk0 for j 2 ½n�; k; k0 2 ½r�:

ð11Þ

We treat ~U ¼ ð~uiðkk0ÞÞ and ~V ¼ ð~vjðkk0ÞÞ as matrices of size m × r2 and n × r2, respectively,

with ~u�ðkk0Þ being the (k + k0r)th column of ~U , with similar column ordering for ~V . An
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equivalent formulation to (1) is then

min
U;V; ~U ; ~V

kAk2

F � 2
X

ijk

aijuikvjk þ
X

ijkk0
~uiðkk0Þ~vjðkk0Þ

s:t: U 2 f0; 1gm�r; V 2 f0; 1gn�r; ð11Þ satisfied:

ð12Þ

We use the function f defined in (6) to incorporate the constraints (11) in the objective. A pen-

alty variant of (12) is

min
U;V; ~U ; ~V

kAk2

F � 2
X

ijk

aijuikvjk þ
X

ijkk0
~uiðkk0Þ~vjðkk0Þ

þ l
X

ikk0
f ð~uiðkk0Þ; uik; uik0 Þ þ l

X

jkk0
f ð~vjðkk0Þ; vjk; vjk0 Þ

s:t: U 2 f0; 1gm�r; V 2 f0; 1gn�r; ~U 2 f0; 1gm�r
2

; ~V 2 f0; 1gn�r
2

:

ð13Þ

Proposition 4. Suppose l > 2rkAk2

F. A point ðU;V; ~U ; ~V Þminimizes (12) if and only if it
minimizes (13).

The proof is similar to that for Proposition 2 and is omitted. Since (1) and (12) are equiva-

lent, Proposition 4 implies that the matrices U and V we get from minimizing (13) are mini-

mizers of (1) when λ is sufficiently large.

We now state the QUBO formulation of (13). Define u and v as before. Furthermore, define

~u ¼def vecð ~U Þ, ~v ¼def vecð~V Þ and

y ¼def u ; v ; ~u ; ~v½ �; ð14Þ

where y is a column vector of length (m + n)(r + r2). Furthermore, define the QUBO matrix as

P ¼def
Pð1Þ Pð2Þ

0 Pð3Þ

2

4

3

5 2 RðmþnÞðrþr2Þ�ðmþnÞðrþr2Þ; ð15Þ

where

Pð1Þ ¼def
l1r � Im � 2Ir � A

0nr�mr l1r � In

2

4

3

5;

Pð2Þ ¼def � 2l

11�r � Imr 0mr�nr2

0nr�mr2 11�r � Inr

2

4

3

5 � 2l

Ir � 11�r � Im 0mr�nr2

0nr�mr2 Ir � 11�r � In

2

4

3

5;

Pð3Þ ¼def
3lImr2 Ir2 � 1m�n

0nr2�mr2 3lInr2

2

4

3

5:

Proposition 5. With y and P defined as in (14) and (15), respectively, the problem (13) can
be written as

min
y
kAk2

F þ y>Py s:t: y 2 f0; 1gðmþnÞðrþr
2Þ
: ð16Þ

The proof is a straightforward and is omitted.
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Useful constraints for data analysis

In this section we show how certain constraints that are helpful for data mining tasks easily

can be incorporated into the QUBO formulations. One approach to clustering of the rows

and/or columns of a binary matrix A is to compute a BMF A� UV> and then use the informa-

tion in U and V to build the clusters. This idea is used e.g. by [2, 3] for gene expression sample

clustering and document clustering. For gene expression data, the rows of A represent genes

and the columns represent samples, e.g. from different people. An unsupervised data mining

task on such a dataset could be to identify and cluster people based on if they have cancer or

not. One way to do this is to compute a rank-2 BMF of A and assign sample j to cluster k 2 {1,

2} if vjk = 1. In many cases, it is reasonable to require that each column belongs to precisely

one cluster. For example, when clustering people based on if they have cancer or not, we want

to assign every person to precisely one of two clusters. Such a requirement can be incorporated

by enforcing that
X

k

vjk ¼ 1 for all j: ð17Þ

A penalty variant of this constraint is

l
X

j

ð1 �
X

k

vjk þ 2
X

k<k0
vjkvjk0 Þ; ð18Þ

where λ> 0. Since V is binary, the penalty is zero when (17) is satisfied, and at least λ other-

wise. This penalty can simply be added to the objectives in (7) and (13). As before, we can

ensure that the penalized and constrained formulations have the same minimizers by choosing

l > 2rkAk2

F.

The penalty (18) is straightforward to incorporate into either QUBO formulation. Define

an (m + n)r × (m + n)r matrix

C ¼def
0 0

0 lð1r � In � 2InrÞ

" #

:

The QUBO formulations in (10) and (16) are easily modified to incorporate (18) by defining

modified QUBO matrices

Q0 ¼def
Qð1Þ þ C Qð2Þ

0 Qð3Þ

2

4

3

5;

P0 ¼def
Pð1Þ þ C Pð2Þ

0 Pð3Þ

2

4

3

5;

where the submatrices Q(i) and P(i) are defined as before.

Handling large rectangular matrices

In this section, we present a strategy for handling large rectangular matrices. We consider the

case when A is m × n with m� n and n is of moderate size. These ideas also apply when n�
m and m is of moderate size. Random sampling of rows and columns is a popular technique in

numerical linear algebra for compressing large matrices. These compressed matrices are then
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used instead of the full matrices in computations. For an introduction to this topic we recom-

mend the survey by Mahoney [34].

A popular sampling approach is to sample according to the leverage scores of the matrix.

Suppose A 2 Rm�n
is a nonzero matrix, and let B 2 Rm�rankðAÞ

be an orthonormal matrix whose

columns form a basis for range(A). The leverage scores of A are defined as ‘iðAÞ ¼
def
kBi�k

2

2
for i

2 [m]. B can be computed via, e.g., the singular value decomposition (SVD). The cost O(mn2)

of computing the SVD of A is small compared to the cost of solving the BMF. If this cost

proves to be too expensive, then there are techniques for estimating the leverage scores that

only cost O(mn log m) [35]. When sampling rows of A according to the leverage scores, we

sample the ith row of A with probability pi ¼
def
‘iðAÞ=rankðAÞ for i 2 [m]. This definition guar-

antees that ∑i pi = 1. We use leverage score sampling as a heuristic for compressing A by sam-

pling s�m of the rows of A with replacement according to the distribution (pi) and putting

these in a new matrix AðsÞ 2 Rs�n. We then compute a rank-r BMF A(s)� U(s)V>. To get a

BMF for the original matrix A, we then solve the binary least squares (BLS) problem

U ¼def arg min
U 02f0;1gm�r

kA � U 0V>k2

F; ð19Þ

where V comes from the factorization of A(s). By expanding the objective, the problem in (19)

can be written as m independent BLS problems involving r binary variables. These BLS prob-

lems can be solved via a QUBO formulation. As discussed in [24, 25], such a formulation is

easy to derive by noting that the BLS objective can be written as

kMx � yk2

2
¼ x>ðM>M � 2 diagðy>MÞÞxþ kyk2

2
:

Setting Q ¼def ðM>M � 2 diagðy>MÞÞ gives us a QUBO objective as in (2). Alternatively, when r
is small, the optimal solution to each BLS problem can be found by simply testing all 2r possi-

ble solutions. As an optional step after computing U, a few additional alternating BLS steps can

be added. This is done by minimizing the objective in (19) in an alternating fashion, first solv-

ing for V and treating U as fixed, and then solving for U and treating V as fixed.

Experiments

We found that Formulation 1 yields a lower decomposition error for a given number of itera-

tions than Formulation 2 on the Fujitsu DA. We therefore use the former in our experiments

and refer to it as “DA BMF” or just “DA” in the tables. Additionally, we try adding a few extra

alternating BLS steps (as discussed in the section Handling large rectangular matrices) to the

solutions we get from the DA. We do at most 20 alternating BLS solves, and whenever no

improvement occurs after two consecutive BLS solves, we terminate. Since r� 5 in our experi-

ments, we solve the BLS problems exactly by checking all possible solutions. We refer to this

method as “DA+ALS BMF” or just “DA+ALS” in the tables. For some of the real datasets, we

incorporate the constraint in the section Useful constraints for data analysis. For cases when A
is large and rectangular, we use the sampling technique in the section Handling large rectangu-

lar matrices. We will point out when the sampling and/or additional constraints are used.

We run our proposed method on the Fujitsu DA for a fixed number of 1e+9 iterations.

Here, an iteration refers to one iteration of the for loop on line 5 in Algorithm 2 of [18]. We do

not try to find an optimal number of iterations. We take this approach to avoid cherry picking

a number of iterations that works great for each individual problem. By choosing a relative

large number of iterations, we are also hoping to push the hardware to see how good solutions

it can find.
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As discussed by Glover et al. [15], although the penalty λ needs to be sufficiently large to

ensure that the constrained and penalized versions of our optimization problems have the

same minimizers, setting λ to a smaller value may improve the solution produced by a QUBO

solver in practice. An intuitive explanation for this phenomenon is that a large λ value gives a

steeper optimization landscape which can make it difficult for a solver to escape local minima.

We find this to be true when running our methods on the Fujitsu DA as well. We use λ = 1 in

all our experiments since we found this to improve the solution quality, while at the same time

avoiding constraint violations.

As mentioned in the section Related work, the two methods by Zhang et al. [2, 3] are the

most popular for the variant of BMF we consider. We therefore use these methods for compar-

ison in our experiments. We refer to them as “Penalized” and “Thresholded,” respectively. For

the penalized version, we use the Bmf method in the Nimfa Python library [36] available at

http://nimfa.biolab.si. We leave all parameters to their default values, except the maximum

number of iterations (max_iter) and the frequency of the convergence test (test_conv)

which we both set to 1000 since we find that this improves performance substantially over the

defaults in our experiments. We wrote our own implementation of the thresholded method

since we could not find an existing implementation; see the section Implementation of thresh-

olding method for BMF in S1 Text for details.

We also include a simple baseline method. The idea behind it is simple: If we seek a rank-r
BMF of A, we can find one by simply choosing the densest r rows/columns in A. Alternatively,

when A has high density, we can approximate it by a rank-1 BMF with all entries equal to 1.

This is clearly a very crude method, but it serves as a useful baseline and sanity check for the

more sophisticated methods. See the section Details on baseline method in S1 Text for further

details.

All experiment results are evaluated in terms of the following relative error measure:

kA � UV>k2

F=kAk
2

F. The norm is squared since this is more natural for binary data: When U
and V are binary, kA � UV>k2

F is the number of entries that are incorrect in the decomposi-

tion and kAk2

F is the number of nonzero entries in A.

Synthetic data

For the first set of synthetic experiments, A is generated in such a way that it has an exact rank-

r decomposition, for r 2 [5]. Our algorithm for generating these matrices is described in the

section Algorithm for generating binary matrices in S1 Text. We use the true rank as the target

rank for the decompositions. Ideally, the different methods should therefore be able to find an

exact decomposition. We generate A to have n = 30 columns and m 2 {30, 2000, 50000} rows.

When m� 2000, we use the sampling technique described in the section Handling large rect-

angular matrices for all our methods. We use a sample size of 30, so that A(s) 2 {0, 1}30×30. All

experiments are repeated 10 times. Table 1 reports the mean relative error for these

experiments.

For the second set of synthetic experiments, we draw each entry aij independently from a

Bernoulli distribution with probability of success p 2 {0.2, 0.5, 0.8}. We generate A with n = 30

columns and m 2 {30, 2000, 50000} rows, and use target ranks r 2 [5]. When m� 2000, we use

the sampling technique described in the section Handling large rectangular matrices for our

methods with a sample size of s = 30. All experiments are repeated 10 times. Tables 2–4 report

mean relative errors for each of the three different values of p.

In all synthetic experiments, the QUBO problem has (30 + 30 + 302)r = 960r binary vari-

ables. This is also true for the large rectangular matrices due to the choice of sample size s = 30.
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Table 1. Mean relative error for synthetic A with an exact decomposition. The � symbol indicates methods we propose. Best results are underlined.

Method Target ranks r (m = 30)

1 2 3 4 5

�DA 0 0 0 0 0

�DA+ALS 0 0 0 0 0

Penalized 0 0 0 0.0170 0.0148

Thresholded 0 0 0 0.0052 0.0273

�Baseline 0.8265 0.8706 0.8157 0.7434 0.6977

Method Target ranks r (m = 2000)

1 2 3 4 5

�DA 0 0 0 0 0

�DA+ALS 0 0 0 0 0

Penalized 0 0 0 0 0.0361

Thresholded 0 0 0 0.0330 0.0594

�Baseline 0.9181 0.9075 0.8730 0.8101 0.7585

Method Target ranks r (m = 50000)

1 2 3 4 5

�DA 0 0 0 0 0

�DA+ALS 0 0 0 0 0

Penalized 0 0 0 0 0.0159

Thresholded 0 0 0.0240 0.0317 0.0632

�Baseline 0.8831 0.9088 0.8634 0.8127 0.7520

https://doi.org/10.1371/journal.pone.0261250.t001

Table 2. Mean relative error for synthetic A for which aij* Bernoulli(0.2). The � symbol indicates methods we propose. Best results are underlined.

Method Target ranks r (m = 30)

1 2 3 4 5

�DA 0.9209 0.8565 0.8018 0.7643 0.7161

DA-ALS 0.9209 0.8565 0.8018 0.7637 0.7161

Penalized 0.9989 0.9230 0.8559 0.7875 0.7397

Thresholded 0.9555 0.8904 0.8409 0.7954 0.7609

�Baseline 0.9365 0.8787 0.8238 0.7734 0.7253

Method Target ranks r (m = 2000)

1 2 3 4 5

�DA 0.9902 0.9743 0.9659 0.9452 0.9484

�DA+ALS 0.9895 0.9727 0.9624 0.9403 0.9436

Penalized 1.0000 1.0000 0.9998 0.9918 0.9751

Thresholded 0.9990 0.9932 0.9777 0.9601 0.9368

�Baseline 0.9639 0.9281 0.8928 0.8577 0.8228

Method Target ranks r (m = 50000)

1 2 3 4 5

�DA 0.9914 0.9785 0.9624 0.9491 0.9421

�DA+ALS 0.9914 0.9785 0.9623 0.9489 0.9413

Penalized 1 1 1 0.9986 0.9839

Thresholded 0.9998 0.9951 0.9833 0.9661 0.9443

�Baseline 0.9660 0.9323 0.8985 0.8649 0.8313

https://doi.org/10.1371/journal.pone.0261250.t002
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Table 3. Mean relative error for synthetic A for which aij* Bernoulli(0.5). The � symbol indicates methods we propose. Best results are underlined.

Method Target ranks r (m = 30)

1 2 3 4 5

�DA 0.7844 0.6773 0.6056 0.5536 0.5165

�DA+ALS 0.7844 0.6773 0.6054 0.5534 0.5146

Penalized 0.8606 0.7306 0.6611 0.6147 0.5749

Thresholded 0.7983 0.7170 0.6775 0.6875 0.6680

�Baseline 0.9519 0.9103 0.8679 0.8265 0.7870

Method Target ranks r (m = 2000)

1 2 3 4 5

�DA 0.8809 0.8234 0.7948 0.7540 0.7347

�DA+ALS 0.8628 0.8100 0.7888 0.7507 0.7301

Penalized 0.9802 0.9635 0.9371 0.8862 0.8478

Thresholded 0.8568 0.8346 0.8299 0.8311 0.8038

�Baseline 0.9651 0.9307 0.8964 0.8622 0.8282

Method Target ranks r (m = 50000)

1 2 3 4 5

�DA 0.8820 0.8214 0.7846 0.7550 0.7325

�DA+ALS 0.8634 0.8099 0.7807 0.7521 0.7324

Penalized 0.9912 0.9819 0.9565 0.9033 0.8770

Thresholded 0.8555 0.8358 0.8324 0.8418 0.8323

�Baseline 0.9664 0.9328 0.8992 0.8657 0.8322

https://doi.org/10.1371/journal.pone.0261250.t003

Table 4. Mean relative error for synthetic A for which aij* Bernoulli(0.8). The � symbol indicates methods we propose. Best results are underlined.

Method Target ranks r (m = 30)

1 2 3 4 5

�DA 0.2446 0.2288 0.2192 0.2097 0.2050

�DA+ALS 0.2446 0.2257 0.2129 0.2012 0.1916

Penalized 0.2446 0.2441 0.2539 0.2843 0.3346

Thresholded 0.2446 0.2904 0.4390 0.5078 0.5332

�Baseline 0.2446 0.2446 0.2446 0.2446 0.2446

Method Target ranks r (m = 2000)

1 2 3 4 5

�DA 0.2503 0.2550 0.2539 0.2590 0.2480

�DA+ALS 0.2503 0.2473 0.2459 0.2402 0.2384

Penalized 0.2503 0.2500 0.3202 0.4757 0.5743

Thresholded 0.2503 0.2625 0.6319 0.7702 0.7581

�Baseline 0.2503 0.2503 0.2503 0.2503 0.2503

Method Target ranks r (m = 50000)

1 2 3 4 5

�DA 0.2502 0.2546 0.2542 0.2632 0.2438

�DA+ALS 0.2502 0.2471 0.2447 0.2428 0.2363

Penalized 0.2502 0.2574 0.3220 0.4996 0.6021

Thresholded 0.2502 0.2527 0.6923 0.8000 0.8118

�Baseline 0.2502 0.2502 0.2502 0.2502 0.2502

https://doi.org/10.1371/journal.pone.0261250.t004
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Real data

In the first experiment on real data we consider the MNIST handwritten digits dataset [37]

(available at http://yann.lecun.com/exdb/mnist/). We consider ten instances of each digit 0–9.

The digits are 28 × 28 grayscale images with pixel values in the range [0, 255], where 0 repre-

sents white and 255 represents black. We make these binary by setting values less than 50 to 0,

and values greater than or equal to 50 to 1. We apply BMF to the digits with target ranks r 2
[5]. The QUBO problem in DA BMF and DA+ALS BMF has (28 + 28 + 282)r = 840r binary

variables. Table 5 presents the mean relative error for each method across all instances of all

digits. Fig 1 shows an example of the binary digit 3 and the low-rank approximations given by

our DA+ALS BMF method.

In the second experiment on real data, we consider two gene expression datasets for two

types of cancer: leukemia and malignant melanoma. The first dataset (available at https://

www.pnas.org/content/101/12/4164) contains 38 gene samples for two kinds of leukemia, one

of which can be further split into two subtypes [38]. The second dataset (available at https://

schlieplab.org/Static/Supplements/CompCancer/CDNA/bittner-2000/) contains 38 gene sam-

ples, 31 of which are melanomas and 7 of which are controls [39]. We make these datasets

binary by using the same thresholding approach as [3] which we describe here briefly. Let 0�

c1 < c2 be two real numbers. For a matrix A 2 Rm�n
with nonnegative entries, let

Fig 1. Binary low rank approximation to MNIST digit using DA+ALS BMF.

https://doi.org/10.1371/journal.pone.0261250.g001

Table 5. Mean relative error for MNIST experiments. The � symbol indicates methods we propose. Best results are underlined.

Method Target ranks r
1 2 3 4 5

�DA 0.5796 0.3832 0.2673 0.1983 0.1522

�DA+ALS 0.5796 0.3832 0.2672 0.1982 0.1522

Penalized 0.6070 0.4072 0.2951 0.2238 0.1836

Thresholded 0.5872 0.4141 0.3171 0.2797 0.2738

�Baseline 0.8684 0.7484 0.6400 0.5476 0.4655

https://doi.org/10.1371/journal.pone.0261250.t005
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k ¼
def
X

ij
aij=ðmnÞ. ~A, a discretized version of A, is computed by setting its entries

~aij ¼

(
1 if aij � kc1 or aij � kc2;

0 otherwise:

Optionally, the columns of A can be normalized so that they have unit Euclidean norm prior

to discretization. As an additional step, we remove any rows from ~A that contain only zeros.

Following [2, 3], we use c1 = 1/7 and c2 = 5 without column normalization on the leukemia

dataset. The melanoma dataset contains negative entries. We therefore first add a constant

−minij aij to all entries in A. Then, we normalize the columns of the resulting matrix and dis-

cretize using c1 = 0.96 and c2 = 1.04. Fig 2 shows what the thresholded leukemia data looks

like.

After thresholding and removing any rows that are all zero, the two datasets are matrices of

size 4806 × 38 and 2201 × 38, respectively. We use the sampling technique in the section Han-

dling large rectangular matrices for both datasets with a sample size of s = 30. Furthermore, we

include the constraints on the V matrix in the QUBO formulations as discussed in the section

Useful constraints for data analysis. Although we expect that this will increase the decomposi-

tion error somewhat, including such constraints can be helpful e.g. when clustering the sam-

ples. The QUBO problem in our methods has (30 + 38 + 30 � 38)r = 1208r binary variables.

Table 6 reports the mean relative error across 10 trials for each dataset.

Fig 2. The thresholded leukemia data. Black entries are 1 and white entries are 0.

https://doi.org/10.1371/journal.pone.0261250.g002
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Discussion

The accuracy improvement of DA+ALS BMF over DA BMF is typically very small, but more

substantial in a few cases. Our DA+ALS BMF has the same or better accuracy as either of the

methods by [2, 3] in 72 of the 75 experiments reported in Tables 1–6 in this paper, and a

strictly better accuracy in 57 of the experiments.

For a fixed rank, the number of binary variables for the QUBO problem in DA BMF is simi-

lar across all experiments. The anneal time, which is the time spent by the DA looking for a

solution, is about 40 seconds for the largest problems. The additional ALS steps used for DA

+ALS take on average much less than a second when m = 30, and less than about 3 seconds

when m = 2000. For m = 50000, the additional time for ALS can be more substantial, adding

on average as much as 66 seconds for rank 5 experiments.

Two advantages of the methods by [2, 3] are that they typically are quite fast and that they

can run on a standard computer. For all experiments except the synthetic ones with

m = 50000, their penalized and thresholded algorithms run in less than 2 and 20 seconds on

average, respectively. The very large experiments with m = 50000 can take longer, up to 39 and

289 seconds on average for the penalized and thresholded algorithms, respectively, when r = 5.

Based on these observations, DA+ALS BMF seems like the superior method when accuracy

is crucial. The methods by [2, 3] may be more suitable when speed and accessibility are more

important. With that said, we believe that the DA could be run with many fewer iterations

with little or no degradation in performance in most of our experiments. The trade-off

between accuracy and speed for the DA, and how to choose the number of iterations to strike

a good balance, are interesting directions for future research.

Certain matrices, like those of size 2000 × 30 and expected density 0.2 considered in

Table 2, seem inherently difficult to handle for any of the sophisticated methods. Indeed, it is

surprising that the simple baseline method substantially outperforms all other methods.

Conclusion

BMF has many applications in data mining. We have presented two ways to formulate BMF as

QUBO problems. These formulations can be used to do BMF on special purpose hardware,

such as the D-Wave quantum annealer and the Fujitsu DA. We also discussed how clustering

constraints can easily be incorporated into our QUBO formulations. Moreover, we showed

Table 6. Mean relative error for gene expression data. The � symbol indicates methods we propose. Best results are underlined.

Method Target ranks r (leukemia dataset [38])

1 2 3 4 5

�DA 0.4292 0.4069 0.3853 0.4257 0.4025

�DA+ALS 0.3939 0.3806 0.3716 0.3683 0.3600

Penalized 0.3977 0.3952 0.4767 0.5399 0.5810

Thresholded 0.3939 0.4219 0.6195 0.6625 0.6894

�Baseline 0.9698 0.9408 0.9123 0.8842 0.8563

Method Target ranks r (melanoma dataset [39])

1 2 3 4 5

�DA 0.8898 0.8392 0.7869 0.7850 0.7722

�DA+ALS 0.8572 0.7757 0.7416 0.7252 0.7113

Penalized 0.8662 0.8405 0.8110 0.7903 0.7633

Thresholded 0.8662 0.8338 0.8226 0.8120 0.8116

�Baseline 0.9504 0.9027 0.8569 0.8132 0.7695

https://doi.org/10.1371/journal.pone.0261250.t006
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how sampling and alternating binary least squares can be used to handle large rectangular

matrices. Our experiments, which we run on the Fujitsu DA, are encouraging and show that

our proposed methods typically give more accurate solutions than competing methods.

The special purpose hardware technologies discussed in this paper are still in an early phase

of development. As these technologies mature, we believe that they will emerge as powerful

tools for solving problems in data mining and other areas.

Supporting information

S1 Text. Supplementary material. Contains supporting text to the main manuscript.
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