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In the Mediterranean, long-term impact of typical land uses on soil fertility have not been
quantified yet on replicated mixed crop-livestock farms and considering the variability
of soil texture. Here, we report the effects, after 15 years of practice, of two legume-
winter cereal rotations, olive orchards and vineyards on microbiological and chemical
indicators of soil fertility and the communities of arbuscular mycorrhizal fungi (AMF).
We compare the changes among these four agricultural land-use types to woodland
reference sites. Root colonization by AMF of English ryegrass (Lolium perenne L.),
a grass that occurred under all land use types, was only half as heavy in biannual
berseem clover (Trifolium alexandrinum L.)-winter cereal rotations than in 4-year alfalfa
(Medicago sativa L.)-winter cereal rotations. In olive (Olea europaea L.) orchards and
vineyards (Vitis vinifera L.), where weeds are controlled by frequent surface tillage, the
AMF root colonization of ryegrass was again much lower than in the legume-cereal
rotations and at the woodland reference sites. All the microbial parameters and soil
organic carbon correlated most strongly with differences in occurrence and relative
abundance (β-diversity) of AMF genera in soil. The soil pH and mineral nutrients in soil
strongly correlated with differences in AMF root colonization and AMF genus richness
(α-diversity) in soil. Diversity of AMF was much less affected by soil texture than land use,
while the opposite was true for microbial and chemical soil fertility indicators. Land uses
that guaranteed a continuous ground cover of herbaceous plants and that involved only
infrequent tillage, such as multiyear alfalfa-winter cereal rotation, allowed members of the
AMF genus Scutellospora to persist and remain abundant. On the contrary, under land
uses accompanied by frequent tillage and hence discontinuous presence of herbaceous
plants, such as tilled olive orchard and vineyard, members of the genus Funneliformis
dominated. These results suggest that multiyear alfalfa-winter cereal rotation with active
plant growth throughout the year is the least detrimental agricultural land use in soil
carbon and AMF abundance and diversity, relative to the woodland reference.

Keywords: arbuscular mycorrhizal fungi (AMF), community analysis, legume forage, land use, olive orchard, soil
carbon, soil fertility, vineyard
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INTRODUCTION

Soil quality has been defined as “the capacity of a soil to function
within ecosystem boundaries to sustain biological productivity,
maintain environmental quality and promote plant and animal
health” (Doran and Parkin, 1994). This definition captures the
multi-functionality of agro-ecosystems, which provide biomass,
food and fiber, store and filter water, and maintain biodiversity
and biogeochemical cycles. In agroecosystems, where the main,
though not exclusive, service of soils is the maintenance of
crop yield, soil quality is best characterized by a combination
of chemical and microbiological indicators of soil fertility
(Bünemann et al., 2018; Schloter et al., 2018). This is because a
fertile and thus productive soil has to supply plants with essential
nutrients and water, be free of toxic substances, and support
a diverse and active community of biota, which contribute to
element cycling, nutrient retention, and soil structure (Power
and Prasad, 1997; Mäder et al., 2002; Bedini et al., 2009).
Therefore, it is key to adopt land use types and agricultural
practices that maintain soil organic carbon (SOC) and microbial
biomass, activity and diversity to guarantee a stable mineral
nutrient supply to crops over the long-term (Jeffries et al., 2003;
Oldfield et al., 2019).

Agricultural practices, such as use of cover crops, tillage,
and application of organic and mineral fertilizers, modulate
the amount of SOC and microbial abundance and activity,
and increase the availability of nitrogen (N), potassium (K),
phosphorus (P) and sulphur (S) in soil (Lu et al., 2011; Ercoli
et al., 2012; Aguilera et al., 2013; Hallama et al., 2019). Intensive
production usually reduces SOC due to reduced organic matter
returns to soil, lower crop cover and frequent tillage. Therefore,
most agricultural soils show considerably lower SOC contents
than soils with a natural and continuous vegetation cover
(Sanderman et al., 2017).

Mediterranean soils are known to be particularly sensitive to
SOC degradation (Hernández et al., 2016) and to have a slower
biogeochemical nutrient cycling and lower water retention than
soils from more humid and cold regions (Guo and Gifford, 2002;
Kassam et al., 2012; Aguilera et al., 2013). High temperatures
throughout the year and frequent soil tillage enhance microbial
decomposition of SOC, and summer droughts reduce plant
growth and thus litter inputs to soil. Given the utmost importance
of SOC for soil fertility and carbon (C) sequestration (Lal and
Stewart, 2010; Oldfield et al., 2019), it is a matter of urgency to
identify suitable agricultural land-use types and adopt measures
to preserve SOC (Aguilera et al., 2013; Searchinger et al., 2018;
Pretty, 2018; Oldfield et al., 2019). However, few studies have
been carried out with the same land use types replicated at
multiple sites to quantify the impact of Mediterranean land-use
types on soil fertility indicators and soil biota involved in crop
performance and soil quality (Armenise et al., 2013; Ciccolini
et al., 2016b; Powell and Rillig, 2018).

One important group of soil biota that supports plants in
nutrient and water uptake and contributes to soil ecosystem
services, such as soil aggregation and C sequestration, is the
arbuscular mycorrhizal fungi (AMF, phylum Glomeromycota,
Xu et al., 2017; Powell and Rillig, 2018; Tedersoo et al., 2018).

Arbuscular mycorrhizal fungi colonize the roots of most land
plants, including the majority of crops, and exchange primarily
plant-growth limiting mineral nutrients against photosynthates
(Smith and Read, 2008). They increase plant access to patches
of soil where nutrients are released (Joner and Jakobsen, 1995;
Tibbett, 2000) and exploit pore space which is inaccessible to
roots, thereby improving nutrient and water use of crops (Li et al.,
2008; Cavagnaro et al., 2015; Ercoli et al., 2017; Manoharan et al.,
2017; Mai et al., 2019).

Past studies have shown that AMF abundance and diversity
can be severely reduced by intensive land use associated with
application of mineral fertilizer and tillage (Jansa et al., 2002; Oehl
et al., 2005; Brito et al., 2012; Xu et al., 2017). Tillage and crop
identity have been shown to shape the composition and structure
of the communities of AMF and other microbes (Helgason et al.,
1998; Six et al., 2006; Ngosong et al., 2010; Pellegrino et al., 2014;
Ciccolini et al., 2015, 2016b). Diversity and continuous presence
of different AMF host plants, as it is the case in grasslands and
when multispecies forage and cover and catch crops are grown,
are known to maintain high AMF abundance and diversity (Oehl
et al., 2005; Verbruggen et al., 2010; Creamer et al., 2016; Klabi
et al., 2018; Higo et al., 2019; Schmidt et al., 2019) and to sustain
C sequestration in soil (Six et al., 2006; Xu et al., 2017).

Preceding crops and residual effects of agronomic
interventions cause legacies in chemical and biological soil
properties (Hallama et al., 2019), including microbial biomass,
AMF abundance and diversity (Ngosong et al., 2010; Brito et al.,
2012; Detheridge et al., 2016; Klabi et al., 2018; Faggioli et al.,
2019; Higo et al., 2019; Lehman et al., 2019) with cascading
effects on crop productivity (Manoharan et al., 2017). Moreover,
composition and structure of AMF communities are affected
by soil texture, moisture and aeration (Lekberg et al., 2007).
Accounting for confounding effects by differences in soil texture
is thus important in field surveys to study the effects of land use
on soil fertility at different locations, such as on different farms
(Ciccolini et al., 2016a).

Different land uses act as an ecological filter in the assembly
of AMF communities, since they determine the survival and
propagation of AMF (Lekberg et al., 2007; Pellegrino et al.,
2014; Ciccolini et al., 2016b). Particular land-use types determine
the prevalence of AMF (i.e., the absolute abundance expressed
as root colonization), the dominance of specific AMF taxa
and the AMF diversity (i.e., the combination of richness and
relative taxon abundance) within land-use types (α-diversity) as
well as AMF community composition (i.e., taxon occurrence)
and structure (i.e., relative taxon abundance), which may differ
among sites (β-diversity). Agricultural soil management is also
likely to homogenize the communities of AMF by dispersing
and favoring ruderal and disturbance-tolerant taxa, and by
reducing spatial heterogeneity in soil fertility and vegetation
cover (Rosendahl et al., 2009; Chagnon et al., 2013; Pärtel et al.,
2017; De León et al., 2018). Therefore, fast-growing, disturbance-
tolerant and abundantly sporulating AMF taxa can be expected
to become dominant (Chagnon et al., 2013; Xu et al., 2017).
Moreover, the occurrence of tillage-sensitive taxa can be expected
to become restricted to deeper soil layers, vegetation buffer strips,
or to agricultural land-uses with less intensive tillage, such as
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multiyear forage (Oehl et al., 2005; Peyret-Guzzon et al., 2015;
Sosa-Hernández et al., 2018).

In the Mediterranean climate, forage systems are characterized
by dense and continuous ground cover and hence abundant and
continuous fluxes of C to roots and AMF. Conversely, woody
crops, such as olive trees and vineyards, show reduced C fluxes
to the topsoil layer, because of necessary frequent surface tillage
to minimize nutrient and water competition by weeds. Rarity
and low abundance of AMF with long life cycles and limited
spore production were already reported in another study in
olive orchards (Montes-Borrego et al., 2014). Moreover, while
abundant root litter and exudation under multiyear forage crops
can be expected to replenish SOC (Six et al., 2006; Aguilera
et al., 2013; Sokol et al., 2019), surface tillage under woody crops
can be expected to promote the microbial degradation of SOC
(Six et al., 2006; Schmidt et al., 2019). Residual mineral fertilizer
not absorbed by crops is, furthermore, probable to promote the
microbial degradation of SOC even further, particularly under
conditions of relative N limitation (Pausch et al., 2016). Temporal
P and K excess in the topsoil in absence of a dense ground
cover of vigorously growing plants is, hence, likely promoting the
decomposition of SOC and reducing C allocation to AMF. On
the contrary, presence of large root masses that introduce C to
soil and allow for C fluxes to AMF can be expected to support
SOC formation and AMF abundance.

The present field study was conducted with the objective
to fill the gap of information on Mediterranean land-use types
with the intention to identify the agricultural land-use type(s)
with the least negative impact on soil C, AMF diversity and
soil fertility. We hypothesized that soil C, indicators of soil
fertility and AMF abundance, richness and diversity decline
with the increase of agricultural intensification (i.e., tillage,
fertilization and ground cover). We hence tested for differences
among land uses in chemical and microbiological soil properties,
AMF abundance in roots and AMF composition and relative
abundance (i.e., diversity) in soil. Moreover, we studied the
direction and magnitude of change with respect to adjacent
woodlands not under agricultural management. We further
explored the relationship between AMF α- and β-diversity and
soil properties and between AMF α- and β-diversity.

MATERIALS AND METHODS

Study Area, Soil Type and Climate
The study area is located in the municipality of Manciano next
to the town of Grosseto (42◦ 33′ N, 11◦ 26′ E; 306 m above sea
level), a hilly, inland area in southern Tuscany in central Italy
(Supplementary Figure S1), which had been covered by mixed
oak (Quercus spp.) - ash (Fraxinus spp.) woodland until the 1950’s
when it was converted for agricultural use. Today, 63% of the total
land surface in the area is used for agriculture and only about 19%
is covered by either relict or re-established woodlands (ISTAT,
2010). The agricultural land is mostly used for five crops, namely
multiyear forage crops, such as alfalfa (Medicago sativa L., 4.3%
of the total agricultural land) and oat (Avena sativa L.) - berseem
clover (Trifolium alexandrinum L.) mixtures (52.1%) for forage

production, olive orchards (Olea europaea L., 6.3%) or vineyards
(Vitis vinifera L., 2.5%).

The soil of the area is a Haplic Calcisol, according to the FAO
classification system (IUSS, 2015), and an Inceptisol, according
to the USDA classification (Soil Survey Staff, 1999). Its texture
ranges from clay to loam (Table 1). The climate is Mediterranean
(Csa, according to the Köppen–Geiger climate classification) with
dry and hot summers and most rainfall occurring in autumn
and spring. The mean annual rainfall is 730 mm and the average
monthly air temperature ranges between 4.7◦C in January and
22.1◦C in July (annual mean 13.1◦C, Vallebona et al., 2015).

Study Design
The study focused on five common land-use types that are
typically found on the same mixed crop-livestock farm in
the study area, namely 5-year rotation with 4 years of alfalfa
(Medicago sativa L.) and 1 year of a winter cereal [durum
wheat (Triticum turgidum L. subsp. durum (Desf.) Husn.) or
triticale (× Triticosecale Wittm. ex A. Camus)] (AA), 3-year
rotation with 2 years of oat (Avena sativa L.) - berseem clover
(Trifolium alexandrinum L.) mixture and 1 year of a winter
cereal (durum wheat or triticale) (OC), tilled olive orchard
(Olea europaea L.) (TO), tilled vineyard (Vitis vinifera L.)
(TV), and woodland (WO). The WO sites were chosen as
pre-agricultural vegetation type and they were open-canopy
woodlands dominated by Quercus cerris L. and Fraxinus ornus
L. with a herbaceous ground cover.

Three farms were chosen that had been hosting all these
five land-use types for at least 15 years on the same field
before sampling, resulting in a randomized block design with
a total of 15 study units (Supplementary Figure S1 and
Supplementary Table S1). The three farms were treated as the
blocks. The largest distance among any sampled field on any of
the farms was 1.6 km and the smallest 60 m (Supplementary
Figure S1 and Supplementary Table S1). Except for two fields
on the largest farm, the distances between fields on the same
farm were smaller than the distances between fields among
farms. Detailed information about the applied crop management
practices for the different land-use types can be found in the
Supplementary Text S1.

Root and Soil Sampling
The root systems of five English ryegrass (Lolium perenne L.)
plants and five soil cores of 5 cm diameter and 30 cm depth,
corresponding to the tilled and fertilized soil layer, were taken
and pooled to obtain a composite root and soil sample of each
field. The colonization of the roots of ryegrass by AMF was used
as an indicator of AMF community abundance as influenced by
land use (crop plant identity and agricultural management). The
AMF in the soil samples were used to determine the influence of
land use, i.e., crop plant identity and agricultural management
on AMF diversity. English ryegrass was a suitable plant to
determine the infection pressure of the soil-indigenous AMF,
since it occurred under all five investigated land use types and
had previously been used as a generalist host plant to trap AMF
in pot cultures (Oehl et al., 2003). The root and soil sampling
was done at the same time in April 2012 after the onset of plant
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TABLE 1 | Physical, chemical, and microbiological soil properties under five land-use types on three mixed crop-livestock farms in the municipality of Manciano
(Tuscany, central Italy).

Parametera Land-use typeb

AA OC TO TV WO

Physical

Clay (%) 38.7 ± 1.2 bc 43.2 ± 1.9 b 34.3 ± 1.4 b 40.6 ± 2.9 b 16.4 ± 5.6 a

Silt (%) 31.0 ± 1.2 38.3 ± 3.4 30.5 ± 1.9 35.9 ± 2.6 35.7 ± 2.3

Sand (%) 30.3 ± 1.7 bc 18.5 ± 1.5 a 35.2 ± 0.4 c 23.5 ± 1.6 ab 47.9 ± 5.0 d

Texture class Clay-loam Clay Clay-loam Clay Loam

Chemical

pH (H2O)d 7.1 ± 0.1 ab 8.1 ± 0.0 b 7.7 ± 0.1 ab 7.9 ± 0.1 ab 6.2 ± 0.0 a

Kexch (mg kg−1) 167.4 ± 6.3 a 177.9 ± 24.2 a 290.7 ± 3.5 ab 223.0 ± 21.8 ab 340.3 ± 53.0 b

Pavail (mg kg−1) 9.62 ± 2.42 ab 6.46 ± 1.72 a 22.83 ± 6.40 ab 36.17 ± 18.96 b 7.53 ± 1.28 ab

Ptot (mg kg−1) 824.4 ± 75.9 a 1172.2 ± 34.8 ab 1608.0 ± 78.9 b 1667.0 ± 208.2 b 918.3 ± 109.0 a

Ntot (g kg−1) 1.48 ± 0.11 a 1.43 ± 0.04 a 3.10 ± 0.32 b 1.52 ± 0.20 a 5.12 ± 0.17 c

SOC (g kg−1) 17.0 ± 1.6 ab 10.6 ± 0.9 a 26.9 ± 0.9 b 11.1 ± 2.2 a 68.9 ± 5.8 c

C/N (mass-based) 11.5 ± 0.3 cd 7.5 ± 0.7 ab 8.8 ± 0.7 b 7.2 ± 0.5 a 13.4 ± 0.7 d

CEC (meq 100 g) 28.8 ± 1.1 c 22.9 ± 1.8 ab 25.6 ± 0.9 b 26.3 ± 1.9 a 36.2 ± 3.8 d

Biochemical

SR (mg C kg−1 soil) 107.5 ± 4.1bd 102.3 ± 16.7 ab 89.5 ± 2.2 ab 142.3 ± 0.8 c 81.7 ± 3.84 a

MBC (mg C kg−1 soil) 186.7 ± 9.3 ab 166.7 ± 27.9 ab 143.7 ± 5.7 a 148.3 ± 4.4 a 216.3 ± 6.52 b

qCO2 (mg CO2-C g−1 Cmic h−1) 0.58 ± 0.05 b 0.64 ± 0.13 b 0.62 ± 0.01 b 0.96 ± 0.02 c 0.38 ± 0.03 a

Cmic/Corg (%) 1.11 ± 0.08 abc 1.61 ± 0.36 c 0.53 ± 0.04 ab 1.43 ± 0.26 bc 0.32 ± 0.02 a

Values represent the means ± standard errors of composite soil samples taken at 0–30 cm soil depth from each field. aKexch, exchangeable potassium; Pavail, available
phosphorus; Ptot, total phosphorus; Ntot, total nitrogen; SOC, soil organic carbon; CEC, cation exchange capacity; SR, soil respiration; MBC, microbial biomass carbon;
qCO2, metabolic quotient; Cmic/Corg, microbial carbon to soil organic carbon ratio. bAA, 5-year rotation with four years of alfalfa (Medicago sativa L.) and one year of
winter cereal [durum wheat (Triticum turgidum L. subsp. durum (Desf.) Husn.) or triticale (×Triticosecale Wittm. ex A. Camus)]; OC, 3 years rotation with two years of oat
(Avena sativa L.) – berseem clover (Trifolium alexandrinum L.) mixture and one year of winter cereal (durum wheat or triticale); TO, tilled olive orchard (Olea europea L.);
TV, tilled vineyard (Vitis vinifera L.); WO, woodland dominated by Quercus cerris L. and Fraxinus ornus L. cValues for a variable followed by different letters are statistically
different, according to the Tukey test (P ≤ 0.05). Data were analyzed by the analysis of variance (ANOVA) according to the randomized block design and using the
percentage of clay and sand as covariables. dMean comparisons of the parameters C/N and SR are based on the Dunn non-parametric test (P ≤ 0.05).

growth, when the soil microflora and fauna are sufficiently active
and abundant to reliably detect differences among land use types,
as well as, to avoid direct influences by tillage and fertilization
(Picci and Nannipieri, 2002). In case of the woody crops (olive
and vine), the samples were taken in the interrow.

The roots were rinsed thoroughly after collection and only
fine roots (<1 mm) were used to measure colonization by AMF
(see below). The soil samples were immediately sieved to 2 mm
and stored at 4◦C before the microbiological analyses and the
extraction of the total DNA. The chemical and textural analyses
were done after air-drying.

Soil Textural, Chemical and
Microbiological Analyses
The soil samples were analyzed for texture by the hydrometric
method (Gee and Bauder, 1986), pH in water (1:2.5 w/v),
exchangeable potassium (Kexch) with 1 M KCl (1:10 w/v,
30 min shaking), and total nitrogen (Ntot) by Kjeldahl digestion
(Bremner and Mulvaney, 1982). The SOC was determined
using the modified Walkley–Black wet combustion method
(Nelson and Sommers, 1982). The total phosphorus (Ptot) was
extracted with perchloric acid and the bioavailable phosphate
(Pavail) was extracted alkaline sodium bicarbonate following
Olsen and Sommers (1982) and measured by colorimetry

(Ohno and Zibilske, 1991). The cation exchange capacity (CEC)
at pH 8.1 was determined by displacement with 0.1 M BaCl2
triethanolamine (Hendershot and Duquette, 1986). The C/N
ratio was calculated as the ratio of SOC and Ntot (Jagadamma
et al., 2007). The microbial biomass carbon (MBC) and soil
respiration (SR) were assessed in soil samples whose humidity
had been adjusted to 60% of field capacity. The MBC was
determined in 60 g of soil, using chloroform fumigation for
5 days at 20◦C (Vance et al., 1987). The SR was estimated in
45 g of soil incubated at 30◦C in the dark in closed glass jars,
according to the Isermeyer method (Alef and Nannipieri, 1995),
which involves trapping the evolved CO2 with 0.5 N NaOH over
the course of 5 days of incubation and determining the NaOH
excess by titration with 0.1 N HCl. The microbial carbon (Cmic)
to total carbon (Cmic/Corg) ratio and metabolic quotient (qCO2),
calculated as the SR/MBC ratio, were used as indicators of the
microbial contributions to SOC and SR, respectively (Insam and
Haselwandter, 1989; Anderson and Domsch, 1990).

Arbuscular Mycorrhizal Fungal
Abundance in Roots
The roots of English ryegrass were cleared and the AMF
structures stained for microscopic quantification of the
percentage of root colonization, using the method of
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Phillips and Hayman (1970), except that the phenol was
replaced with lactic acid. The fraction of roots colonized by AMF
was determined under the dissecting microscope (Olympus SZX
9, Olympus Optics, Tokyo, Japan), using gridline intersection
counting of the colonized and not colonized root sections
(Giovannetti and Mosse, 1980). To verify that AMF and not
mistakenly other fungi or staining artifacts were quantified,
some root fragments were mounted on microscopic slides
and examined in detail at 125-500-1250 × magnification for
characteristic features of AMF, such as thick and aseptated
hyphae of unequal diameter filled with oil globules.

DNA Extraction, PCR Amplification and
18S rRNA Partial Gene Sequencing
Total DNA was extracted from approximately 0.5 g of dry soil,
using the PowerSoil R© MoBio extraction kit (Mo Bio Laboratories
Inc., New York, NY, United States). The purity and approximate
concentration of the extracts were measured using a ND-1000
spectrophotometer (NanoDrop Technology, Wilmington, DE,
United States). A fragment of the nuclear ribosomal small subunit
gene (18S rRNA) was amplified by polymerase chain reaction
(PCR), using the primer pair NS31 and AM1 (Simon et al., 1992;
Helgason et al., 1998). In brief, 10 ng µl−1 of genomic DNA
template were used in reactions of 20 µl, using 0.5 U of GoTaq R©

Hot Start Taq polymerase (Promega Corporation, Madison, WA,
United States), 0.2 µM of each primer (NS31/AM1), 0.2 mM of
each dNTP, 1.25 mM of MgCl2 and 1x reaction buffer in a S1000
Thermal CyclerTM (Bio-Rad, Hercules, CA, United States). The
PCR amplicons were column-purified with the QIAquick PCR
purification kit (Qiagen, Hilden, Germany), quantified using a
ND-1000 spectrophotometer, and ligated into the pGem R©-T Easy
vector (Promega Corporation, Madison, WA, United States),
which was used to transform XL10-Gold R© Ultracompetent
Escherichia coli cells (Stratagene R©, La Jolla, CA, United States)
to multiply it clonally. At least 25 recombinant clones per
amplicon library, which corresponded to a field soil sample,
were screened by PCR reamplification for the approximately
550 bp-long NS31/AM1 insert. Inserts of appropriate size were
Sanger sequenced on an ABI R© Prism 3730XL automated capillary
sequencer (Applied Biosystem, Foster City, CA, United States)
from plasmid DNA extracted from miniprep liquid cultures at the
High-Throughput Genomics Unit (Seattle, WA, United States),
using vector primer SP6.

Phylogenetic Sequence Analysis and
Inference of Taxonomic and
Phylogenetic Diversity
Two hundred and seventy nine newly generated partial 18S rRNA
gene sequences, showing similarities to AMF in BLASTn searches
against the public sequence databases, were aligned with MUSCL
version 3.8.31 in SeaView version 4.5.4. Then, after excluding
identical sequences from the multiple alignment, a maximum
likelihood (ML) tree was calculated in RAxML version 8.2.10
on CIPRES Science Gateway version 3.3. Corresponding Virtual
Taxon (VT) reference sequences (>97% sequence identity, Öpik
et al., 2010), as identified in BLASTn similarity searches, were

downloaded from the MaarjAM sequence database and included
into ML trees inferred by the GTR + GAMMA sequence
evolutionary model. The final ML tree, for which the most
phylogenetically related VT reference sequence was chosen for
each clade of new sequences, was rooted with representative
sequences of each of the genera of the phylogenetically
basal orders of AMF, the Archaesporales and Paraglomerales
(Figure 1).

The ML analysis considered 217 informative sites after manual
optimization of the multiple sequence alignment and exclusion
of potentially misaligned indel sites, using Mesquit version 3.51.
Branch support values were obtained by Rapid Bootstrapping,
using 1000 resampled datasets. To calculate weighted UniFrac
distances and Faith’s Phylogenetic Diversity (PD) (see below)
another ML tree was inferred in RAxML with only the new
sequences, after exclusion of all reference sequences. The
presented ML tree was edited in FigTree version 1.4.4 and further
annotated in Inkscape version 0.93. Bootstrap branch support
values>60% were retained and shown at the internal nodes of the
tree (Krüger et al., 2012). All the sequences were deposited in the
nucleotide sequence database of the European Molecular Biology
Laboratory (EMBL) under the accession numbers LN714838-
LN715116. Detailed information about the raw sequence data and
taxonomic coverage can be found in the Supplementary Text S2.

The taxonomic diversity of the AMF communities in the
soil of each sampled field and among the land-use types were
analyzed at the genus level, which are monophyletic clades
and whose members thus may share traits. This level of
phylogenetic resolution was chosen to ensure that the sequencing
effort was sufficient for adequate community coverage for
the statistical analyses. The adequacy of the chosen effort of
clone library sequencing and level of taxonomic resolution
was verified by rarefaction analysis in Analytic Rarefaction
version 2.0 (Supplementary Figure S2). Genus richness (#AMF),
dominance (D) and Shannon diversity (H) were determined as
components of α-diversity in PAST version 3.20 and β-diversity
in the form of Bray-Curtis distances was calculated from
the square roots of the number of sequences per genus
(Supplementary Table S2). The PD was calculated as the
weighted UniFrac distances in mothur version 1.40.5, using the
ML tree of only the sequences of this study and the identical
sequences as a measure of relative abundance (Supplementary
Code S1). An indicator taxon analysis for the land-use types
was run in R package labdsv version 1.8.0, using the indval
function and as proposed by Dufrene and Legendre (1997)
(Supplementary Code S2).

Uni- and Multivariate Statistical Analyses
All measured microbiological and chemical soil properties, the
fractional root length of English ryegrass colonized by AMF
(%AMF), and the taxonomic α-diversity parameters (#AMF, D,
H) were tested for possible influence of land use, using analysis of
variance (ANOVA), according to the study design with farm as a
blocking factor (i.e., ‘land-use type’ nested in ‘farm’), in the case
that the residuals were normally distributed and the variances
homogeneous, and, using non-parametric Kruskal–Wallis tests,
in the case that the ANOVA assumptions were not fulfilled, even
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FIGURE 1 | Maximum likelihood (ML) tree to phylogenetically assign the new partial 18S rRNA gene sequences from soil to seven genera of arbuscular mycorrhiza
fungi (AMF, phylum Glomeromycota) and accession sequences of Virtual Taxa (VT) of the MaarjAM database (Öpik et al., 2010). The absolute abundance (pie
diameter) and relative abundance of the genera in five land-use types (size of pie slices) is indicated at the right [AA, 5 years rotations with 4 years of alfalfa (Medicago
sativa L.)] and 1 year of a winter cereal [durum wheat (Triticum turgidum L. subsp. durum (Desf.) Husn.) or triticale (× Triticosecale Wittm. ex A. Camus)]; OC, 3-year
rotation with 2 years of oat (Avena sativa L.) – berseem clover (Trifolium alexandrinum L.) mixture and 1 year of winter cereal (durum wheat or triticale); TO, tilled olive
(Olea europea L.) orchards; TV, tilled vineyards (Vitis vinifera L.); WO, woodlands dominated by Quercus cerris L. and Fraxinus ornus L. The tree (GAMMA-based ML:
−4051.61) was constructed with 279 new partial 18S rDNA gene sequences (550 bp, accession numbers: LN714838-LN715116) and phylogenetically closest
accessions of VT reference sequences of >97% identity. The tree is rooted with representative sequences of the five genera of phylogenetically basal AMF orders
Archaeosporales and Paraglomerales. Bootstrap values > 60% are shown at the internal nodes of the tree. The number of identical sequences per representative
sequence is indicated as dots, whose colors refer to the land-use type from which they were recovered. See Supplementary Figure S2 and Supplementary
Table S2 for the accession numbers of the representative and identical sequences and the accession numbers of the phylogenetically closest accessions of VT.

after Box–Cox transformation of the data. In case of a significant
overall effect by the factor land use, the means for all land-
use types were further compared by Tukey–Honestly Significant
Difference, or Dunn’s non-parametric multiple comparison tests,
respectively. Clay, silt and sand were used as covariables, since
these are site-inherent mediating parameters, not affected by land
use. All univariate statistical analyses were carried out in JMP
version 14.1.0 (SAS, Institute Inc., Cary, NC, United States).

The phylogenetic divergence and taxonomic differentiation of
the AMF communities (β-diversity) and distinctiveness of the
soils with respect to microbiological and chemical properties
under the different land uses were visualized by non-metric
multidimensional scaling (NMDS) of the UniFrac, Bray–Curtis
of the AMF communities and Euclidean distances of the

microbiological and chemical soil properties. The analyses were
performed in the software PAST. The AMF diversity data was
set in relation to all those soil microbiological and chemical
parameters found to be significantly affected by land use
(Table 1), in an attempt to identify possible indirect effects,
i.e., effects contingent on changes in soil properties and not
direct effects of land use or agricultural practices on the AMF
communities. To identify the land-use types, soil microbiological
and chemical properties and components of AMF α-diversity
that could have structured the AMF communities, the Bray–
Curtis distances calculated from the square root-transformed
AMF genus abundances were analyzed by constrained ordination
analysis (Redundancy Analysis, RDA) with forward selection
and unrestricted Monte Carlo permutation. The soil clay and
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sand contents, characterizing the sampling sites, were used as
covariables. Since only few parameters were found to structure
the AMF communities, also a Principle Component Analysis
(PCA) was run to highlight the correlative relationships and
relative importance of all parameters. For these analyses and
those mentioned below, the microbiological and chemical soil
properties and components of AMF α-diversity were rescaled
to 0–1. The RDA and PCA were run in CANOCO for
Windows version 5.11.

To further test the effect of land use and soil texture on AMF α,
β-, and PD and the soil microbiological and chemical properties,
permutational multivariate analyses of variance (PERMANOVA)
were carried out, using the soil clay and sand contents as
covariables and the farms as blocks (random factor) to account
for the study design. The effect sizes were quantified by variance
partitioning. The assumption of homogenous data dispersion
among land-use types was verified by permutation testing
(PERMDISP). These analyses were carried out with PRIMER
version 6.1.15, using the add-on PERMANOVA+ version 1.0.3.
The simultaneous effect of land use on (i) AMF β-diversity
and soil microbiological and chemical properties, (ii) AMF
α-diversity and soil microbiological and chemical properties,
and (iii) AMF α- and β-diversity was analyzed by Partial Least
Square (PLS) analyses in the software PAST. By considering
the direction and proportional contributions (axis loadings)
of the measured parameters, PLS analyses can reveal complex
additive and subtractive effects among a multitude of measured
parameters in multivariate space along the axes of greatest
resolution. This analytical approach was thus considered ideal
to reveal simultaneous land-use effects on soil microbiological
and chemical properties as well as on AMF communities, which
are key aspects of abiotic and biotic soil fertility, but whose
correlation is not yet much explored.

RESULTS

Soil Physico-Chemical and
Microbiological Properties
Soil texture of the four agricultural land-use types was clay or
clay-loam, while it was loam in WO (Table 1). The soil pH was
lowest (slightly acidic) under WO, highest under OC (moderately
alkaline) and neutral under the other land-use types (AA, TO,
and TV). The bioavailable potassium (K) and phosphorus (P)
concentrations were highest under TO and TV and total nitrogen
(N) under WO, where SOC was also highest. The CEC was
highest under WO sites and also higher under AA than under
all other agricultural land-use types. SR was higher under TV
and lowest under WO (Table 1). MBC was higher in the soil of
the WO sites than in the intensively surface-tilled TO and TV.
The metabolic quotient (qCO2) was lower in the soils of the WO
sites than in the soils under agricultural land use. The microbial
carbon to total organic carbon ratio (Cmic/Corg) was highest in
the soil under OC and lowest in the soils under WO.

Across all land-use types, Kexch negatively correlated with pH
(R2 = 0.27, P < 0.05). Total N positively correlated with SOC
(R2 = 0.92, P < 0.001) and MBC negatively with pH (R2 = 0.51,

P < 0.01). The qCO2 positively correlated with pH (R2 = 0.45,
P < 0.001) as did Cmic/Corg with SR (R2 = 0.48, P < 0.01).

AMF Abundance in Roots and AMF
Community Composition and Structure
in Soil
The colonization of the roots of English ryegrass by AMF
varied more than sevenfold among the studied agricultural land-
use types. It was under all, except one agricultural land-use
type, considerably lower than at the non-agricultural woodland
reference sites (WO) (Figure 2). The roots were colonized to
approximately 45% of root length under AA, similar as at the
WO reference sites. Under OC and TO, the colonization was on
average only 16% and under TV even only 6%.

Clone library sequencing yielded 279 new partial 18S rRNA
gene sequences of AMF from the soil samples (Supplementary
Tables S2, S3). Rarefaction analyses at the genus level confirmed
that the sequencing effort was sufficient for analyses of land
use impacts on AMF diversity at this taxonomic resolution
(Supplementary Figure S3).

Most AMF genera were recovered from soil at sites under
AA, an intermediate number from the soils at sites used
for OC, TV and WO, and least from the soil of TO
(Supplementary Figure S4a), which was also reflected in
the Shannon diversity (H), which followed a similar pattern
(Supplementary Figure S4b). The dominance among the
recorded AMF genera was highest in TO, intermediate in OC,
TV, and WO, and lowest in AA (Supplementary Figure S4c). The
PD of the AMF communities followed the Shannon diversity (H)
(Supplementary Figure S4d).

Two AMF genera Acaulospora and Diversispora that were low
in abundance were unique to AA (Figure 1 and Supplementary
Figures S2, S5). Members of the genus Funneliformis were
generally abundant and found in the soils of all land-use
types. The genus Funneliformis was most dominant in TO
and TV. Members of the genus Rhizophagus were found in
all land-use types, except WO, but never reached dominance
(Supplementary Figure S5). Members of Scutellospora were
found in the soils under AA and TV and at the WO sites.
The genus Scutellospora was dominant in WO. Members of
the form genus Glomus occurred in the soils under AA and
OC. The three genera Funneliformis, Glomus, and Rhizophagus
were all about equally abundant in OC. Members of the genus
Claroideoglomus were only found under OC and at the WO
sites. The occurrence and prevalence of all seven AMF genera
was, however, not sufficiently distinct and field replication not
sufficient to recognize indicator taxa with statistical support
(data not shown).

AMF Communities and Soil Fertility
Indicators Within and Among Land Use
Types and Correlations Among Them
The AMF communities and soil properties at the WO sites
were very distinct from those at the sites under agricultural land
use (Figures 3A–C). The AMF communities and soil properties
under agricultural land uses associated with frequent surface
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FIGURE 2 | Arbuscular mycorrhizal fungal root colonization (%) of English
ryegrass (Lolium perenne L.) under five land-use types. See Figure 1 for
land-use abbreviations. Each bar represents the mean value ± SE of three
fields on different farms per land-use type. Different letters above the bars
indicate statistically significant differences, according to the Tukey test at
P ≤ 0.05, following a one-way analysis of variance (ANOVA).

tillage (TO and TV) were furthermore distinct from those with
a continuously present and active herbaceous ground cover (AA
and OC), the forage crops. The microbiological and chemical soil
properties between the land uses OC and AA were more distinct
(Figure 3C) than the AMF communities (Figures 3A,B), which is
graphically visualized by the NMDS plots (stress values < 0.136)
and statistically supported (ANOSIM, P < 0.001).

Across all land-use types, the composition and structure of the
AMF communities was best explained by differences in soil pH,
AMF genus richness and the land use OC, according to a RDA
(Supplementary Figure S6a). Many other soil parameters, AMF
α-diversity parameters, and land-use types, however, correlated
strongly with these three statistically influential variables, as
evident from the PCA plot (Supplementary Figure S6b).
According to this PCA, the occurrence and abundance of
the genus Scutellospora was negatively correlated with soil pH
(Supplementary Figure S6a). The occurrence and abundance
of the genera Claroideoglomus, Glomus, and Rhizophagus
were associated with the land-use type OC (Supplementary
Figure S6b), whose soils are characterized by a high Cmic/Corg
ratio. The occurrence and abundance of the genera Acaulospora,
Diversispora, and Scutellospora correlated with the land-use type
AA, whose soils were characterized by high soil C/N, SOC,
CEC, and %AMF. The prevalence of the ubiquitous, abundant
and usually dominant genus Funneliformis (Supplementary
Figure S5) was positively correlated with the availabilities of NPK
(Supplementary Figure S6b), which were high in the soil in
TO (Table 1).

Permutational multivariate analyses (PERMANOVA)
revealed significant and quantitatively stronger effects on
the composition and structure of the AMF communities by
land use than soil texture (clay and sand content) (Table 2).
Land use explained 47 and 49% of the total variance in
the phylogenetic and taxonomic divergence of the AMF

FIGURE 3 | Non-metric multidimensional scaling (NMDS) of (A) phylogenetic
dissimilarities and (B) genus-level structural differences of arbuscular
mycorrhizal fungal (AMF) communities (β-diversity), and (C) differences in soil
microbiological and chemical properties under five land-use types. See
Figure 1 for land-use abbreviations. Each land-use type is represented by
three fields on different farms (Supplementary Figure S1). The
corresponding stress values and results of analyses of similarity (ANOSIM) are
listed at the bottom right of each subfigure.
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TABLE 2 | Permutational multivariate analyses of variance to test the effect of five
land-use types on the composition and structure of arbuscular mycorrhizal fungal
(AMF) communities among land-use types (β-diversity) and within land-use type
(α-diversity), phylogenetic diversity (PD) and microbiological and chemical
soil properties.

df Pseudo-F P(perm) Explained
variance (%)

PERMDISP

β-diversity (occurrence and abundance of AMF genera)

Factors

Land use 4 10.180 0.001 46.9 F4,10 = 6.264a

Farmrand 2 3.090 0.062 4.4

Covariables

Clay (%) 1 25.514 0.004 15.8

Sand (%) 1 9.141 0.017 23.9

Residual 6 9.0

Total 14

Phylogenetic diversity (PD, based on UniFrac distances)

Factors

Land use 4 9.170 0.002 49.4 F4,10 = 11.852a

Farmrand 2 1.120 0.380 0.3

Covariables

Clay (%) 1 26.794 0.001 20.4

Sand (%) 1 6.495 0.003 18.1

Residual 6 11.8

Total 14

α-diversity (%AMF, #AMF genera, D, H, PD)b

Factors

Land use 4 11.867 0.001 63.9 F4,10 = 2.688a

Farmrand 2 1.049 0.417 0.1

Covariables

Clay (%) 1 8.778 0.009 6.0

Sand (%) 1 6.778 0.012 18.5

Residual 6 11.5

Total 14

Soil microbiological and chemical properties

Factors

Land use 4 1.600 0.001 31.6 F4.10 = 9.776a

Farmrand 2 5.177 0.159 2.0

Covariables

Clay (%) 1 36.687 0.001 34.9

Sand (%) 1 5.121 0.003 17.2

Residual 6 14.4

Total 14

Each land-use type was replicated on three farms, which were treated as a random
factor according to the randomized block design. The percentages of clay and
sand were used as covariables. The percentage of variance explained by land
use and farm and covariables and the test of permutational analysis of multivariate
dispersion (PERMDISP) are also shown. a P > 0.05. b %AMF, percentage of root
length of English ryegrass (Lolium perenne L.) colonized by AMF; #AMF, number
of AMF genera; D, dominance of AMF at the genus level; H, Shannon diversity of
AMF at the genus level; PD, phylogenetic diversity of AMF.

communities (β-diversity), respectively, while clay and sand
content explained 40 and 39% of the variance in these two
aspects of community differentiation, respectively. Likewise,
land use and soil texture explained 64 and 25% of total
variance in AMF α-diversity, respectively. On the contrary, the
variance in the soil microbiological and chemical properties

was better explained by soil texture than land use. Soil texture
explained 52% and land use 32% of the total variance in the
soil properties. Differences in AMF α- and β-diversity were
better explained by the sand content of the soil than the clay
content. The clay content, however, explained the differences
in the soil microbiological and chemical properties better than
the sand content.

Joint ordination of the sampling sites along the axes of highest
resolution through variation in AMF α- and β-diversity and
soil microbiological and chemical properties (Figure 4) revealed
strong and divergent impacts of agricultural land use on these
aspects of abiotic and biotic soil fertility. The different land
uses affected, both, the AMF β-diversity and soil microbiological
and chemical properties, leaving behind distinctive multivariate
legacies (Figure 4A). The legume-cereal forage rotation with
4 years of alfalfa (AA) was, notably, the least disruptive land-
use type with reference to the WO sites, as evident by the
smallest distance between AA and WO and its separation from
other agricultural land-use types in the PLS plot. Increases in
occurrence and abundance of the AMF genus Rhizophagus, and
decreases in those of the genus Scutellospora under agricultural
land use accounted for the largest difference in AMF β-diversity
between the agricultural land-use types and the WO reference
(see PLS axis loadings). The differences among the land-use types
in soil microbiological and chemical properties were mostly due
to soil alkalinization (increase in pH), reduction of SOC and
increases in parameters indicative of microbial activity (C loss)
(see axis loadings in Figure 4A and Table 1).

The land-use types were also clearly resolved by the axes of
greatest variability in AMF α-diversity and greatest variability
in microbiological and chemical soil properties (Figure 4B).
Differences in AMF α-diversity were mainly due to changes in
Shannon diversity (H), genus richness (#AMF), dominance (D),
and PD, but less due to changes in AMF abundance in roots
(%AMF). The differentiation of the AMF communities among
the land uses in α-diversity originated from variability in the
availabilities of N, P, and K from soil, but not SOC (see axis
loadings in Figure 4B).

Land uses with multiyear legume-cereal forage rotations (AA
and OC), on the one hand, and cultivation of woody crops
(TO and TV) under high fertilizer input and frequent surface
tillage (TV and TO), on the other hand, are clearly resolved by
the variance in AMF α- and β-diversity in soil (Figure 5). The
resolution by AMF β-diversity is mostly due to the dominance
of the AMF genus Funneliformis under land uses associated
with frequent surface tillage. All aspects of α-diversity, however,
contributed to the resolution of the land-use types along the
axis of greatest variability in AMF α-diversity (see axis loadings
in Figure 5).

DISCUSSION

This comparative field study on the influences of common
Mediterranean land-use types on soil C, AMF diversity and soil
fertility recognized a multiyear legume-winter cereal rotation as
the land-use type that is least detrimental to C sequestration,
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FIGURE 4 | Partial least square (PLS) ordination plots separating five land-use
types along the first ordination axes of soil microbiological and chemical
properties and α- and β-diversity of arbuscular mycorrhizal fungal (AMF)
communities at the genus level. (A) Ordination along the PLS axes of AMF
β-diversity and soil microbiological and chemical properties and (B) ordination
along the PLS axes of AMF α-diversity and soil microbiological and chemical
properties. Three fields on different farms were analyzed per land-use type.
The magnitude of influence (PLS axis loading) of the explanatory variables is
indicated in the form of bar plots next to the ordination axes. The percentage
contribution of the individual variables to the variance resolved by the
respective ordination axis is indicated in brackets. See Figure 1 for land-use
abbreviations. The AMF genera were: Aca, Acaulospora Gerd. and Trappe;
Cla, Claroideoglomus C. Walker and A. Schüßler; Div, Diversispora C. Walker
and A. Schüßler; Fun, Funneliformis C. Walker and A. Schüßler; Glo, Glomus
Tul. and C. Tul.; Rhi, Rhizophagus P.A. Dang; Scut, Scutellospora C. Walker
and F.E. Sanders. #AMF, number of AMF genera; %AMF, percentage of root
colonization by AMF; CEC, cation exchange capacity; Cmic/Corg, microbial:soil
organic carbon ratio; C/N, carbon:nitrogen ratio; D, dominance of AMF at the
genus level; H, Shannon diversity of AMF at the genus level; Kexch,
exchangeable potassium; Ntot, total nitrogen; PD, phylogenetic diversity of
AMF; Ptot, total phosphorus; Pavail, bioavailable P; SOC, soil organic carbon;
MBC, microbial carbon; qCO2, soil metabolic quotient; SR, soil respiration.

AMF abundance and diversity in comparison to woodland
reference sites. This is an important advance in recent efforts
to identify land-use types and agricultural practices in the
Mediterranean that do not reduce the fertility of soil over the
long-term (Brito et al., 2012; Kassam et al., 2012; Aguilera et al.,
2013). Using a robust multi-farm comparative approach, we
found that AMF abundance and community composition and
structure were heavily influenced by the type of land use and
probably ultimately by the agricultural practices associated with
them, such as tillage. This study thus suggests that shifts among
AMF communities could be used as indicators of influences
of agricultural land uses and possibly the associated soil
management practices on soil fertility, taking into consideration
that AMF are known to be important mediators of soil fertility, C
sequestration and crop nutrition and productivity (Zhang et al.,
2016; Manoharan et al., 2017; Xu et al., 2017; Powell and Rillig,
2018; Hallama et al., 2019). The direction and magnitude of
change in composition and structure of the AMF communities,
relative to a (semi-) natural reference ecosystem, or compared
among various land-use types, can provide indications about the
severity and nature of the impact of different land-use types.

Soil Chemical and Microbiological
Properties and AMF Abundance and
Communities Differed Among the Five
Studied Land-Use Types
The 5-year forage-winter cereal rotation with 4 years of alfalfa
(AA) maintained higher SOC, C/N and MBC, compared to the
other agricultural land-use types and the WO reference sites. It
also sustained a high AMF root infection pressure as evident
from a high colonization of the roots of English ryegrass by
AMF. The soil CEC, C/N ratio, and microbial carbon (MBC)
content were highest in AA and WO, where members of the AMF
genus Scutellospora prevailed. The occurrence and prevalence of
Scutellospora coincided, however, also with a slightly higher soil
pH in WO and AA than the other agricultural land-use types.
In TO and TV, on the contrary, where members of the AMF
genus Funneliformis prevailed, soil K and P levels were high,
and MBC, and by inference microbial abundance were low. This
may indicate that physical soil disturbance in combination with
reduced C returns to soil and reduced C allocation to AMF lowers
SOC and AMF abundance and is detrimental to some AMF taxa.
This is a previously not much recognized aspect. Previous studies
have mostly shown that AMF taxon distribution and abundance
in agroecosystems relates to soil pH and tolerance to increased
mineral nutrient levels and physical disturbance by tillage (Jansa
et al., 2002; Oehl et al., 2005, 2017). The comparison of the
effects of the different land-use types shows, furthermore, that
AA via continuous vegetation cover and plant growth throughout
the year, as well as infrequent tillage, must be able to sustain
high AMF abundances. That AMF benefit from infrequent tillage
and a high abundance and continuous presence of host plants
becomes obvious when the data of the olive and wine production
systems (TO and TV) are compared to those of the forage
systems (AA, OC) and woodland reference sites (WO). Under
the soil management intensive agricultural land-use types, TO
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FIGURE 5 | Partial least square (PLS) ordination plots separating five land-use types along the first ordination axes of α- and β-diversity of arbuscular mycorrhizal
fungal (AMF) communities at the genus level. Three fields on different farms were analyzed per land-use type. The magnitude of influence (PLS axis loading) of the
explanatory variables is indicated in the form of bar plots next to the ordination axes. The percentage contribution of the individual variables to the variance resolved
by the respective ordination axis is indicated in brackets. See Figure 1 for land-use abbreviations. The AMF genera were: Aca, Acaulospora Gerd. and Trappe; Cla,
Claroideoglomus C. Walker and A. Schüßler; Div, Diversispora C. Walker and A. Schüßler; Fun, Funneliformis C. Walker and A. Schüßler; Glo, Glomus Tul. and C.
Tul.; Rhi, Rhizophagus P.A. Dang; Scut, Scutellospora C. Walker and F.E. Sanders. #AMF, number of AMF genera; %AMF, percentage of root colonization by AMF;
D, dominance of AMF at the genus level; H, Shannon diversity of AMF at the genus level; PD, phylogenetic diversity of AMF.

and TV, the root colonization by AMF in English ryegrass was
particularly low, in line with the notion that frequent tillage and
high nutrient availabilities are detrimental to AMF abundance
(Plenchette et al., 2004) and that root colonization in English
ryegrass is strongly determined by present and previous presence
of mycotrophic host plants (Eason et al., 1999; Morris et al., 2013;
Detheridge et al., 2016). The colonization of the roots of English
ryegrass by AMF was also higher in the biannual mixed oat-
clover forage-winter cereal rotation (OC) than in TO and TV,
probably also because characterized by a denser and continuous
herbaceous vegetation cover. This dependency of AMF root
colonization on the type of land use in English ryegrass together
with this grass’ wide occurrence in agroecosystems (Fuhrer, 2003)
suggests English ryegrass as a suitable bioassay plant to probe the
activity and abundance of AMF in observational field studies.

Our study demonstrated also that members of AMF genera,
otherwise known to be either sensitive to intensive (arable)
land use, or such that are in general rare, like Acaulo-,
Diversi-, and Scutellospora (Jansa et al., 2002; Oehl et al., 2005),
remain abundant under multiyear alfalfa-winter cereal forage
rotation. This finding is in line with the known differential
sensitivity of AMF taxa to physical soil disturbance, high mineral
nutrient levels and AMF’s dependency on a continuous supply
of carbohydrates from living plants (van der Heyde et al.,
2017). We can thus conclude that multiyear legume-cereal forage
rotation not only preserves SOC and soil microbial activity

(MBC), but also sustains large AMF populations and diverse
AMF communities, which has also recently been noted by Klabi
et al. (2018). Since AMF are known to be functionally diverse
(Maherali and Klironomos, 2007), a higher AMF diversity can
be expected to allow for more different services and hence
most likely increased overall crop plant benefits, including
improvements to crop yield and quality and soil fertility over the
long-term (Manoharan et al., 2017; Klabi et al., 2018; Powell and
Rillig, 2018; Rillig et al., 2019).

The AMF communities in soil differed in their phylogenetic
and genus-level taxonomic composition and structure among
the different land-use types. The AMF communities of the
legume-winter cereal forage rotations (AA and OC) and the
tillage-intensive olive and wine production systems (TO and TV)
diverged in opposite directions from those of the woodland sites.
The phylogenetic and genus-level composition and structure of
the AMF communities of the two types of legume-cereal forage
rotation differed considerably, despite only small differences in
their soil microbiological and chemical properties. This points
to AMF taxon filtering by the crop during AMF community
assembly as previously recorded (Ciccolini et al., 2016b) and
mechanistically conceivable, since AMF are entirely dependent
as obligate biotrophs on their host plants as sources of
carbohydrates, the supply of which is reduced under fertile
soil conditions. The AMF communities may, however, also be
affected by land use-related differences in soil microbiological
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and chemical properties as well as site-specific differences in soil
texture. To account for these confounding influences and look for
consistent land-use effects, we studied the same land-use types on
three different farms. Reference woodland sites were included to
be able to determine trajectories and magnitudes of change in the
AMF communities and soil properties.

Agricultural Land-Use Types Are
Associated With Changes in Chemical
and Microbiological Soil Properties and
AMF Communities
Singling out individual drivers of the observed differences in
the microbiological and chemical soil fertility indicators and the
AMF communities turned out as a matter of impossibility in
this comparative field study. Most of the measured indicators
of soil fertility and of the components of AMF diversity were
highly and comparably strongly correlated to each other and
associated with different land-use types. This made it necessary to
link the whole set of soil microbiological and chemical properties
to the whole sets of α- and β-diversity components, using
partial least square (PLS) analysis, a type of analysis that can
deal with such data. Considering the sign and magnitude of
the axis loadings of the PLS plots allows a comparatively easy
recognition of concurrent responses and effects to different land
uses, as it was the case in this study with the soil chemical
and microbial properties and aspects of AMF diversity. Arising
patterns from PLS analyses allow recognizing possible underlying
causative processes.

The PLS analysis revealed that differences in occurrence and
relative abundance of members of the AMF genera Rhizophagus
and Scutellospora were most strongly correlated with differences
in soil C-related parameters, such as C/N, MBC, qCO2 and
SOC. This is a novel finding, not previously reported in the
literature. It suggests that different land use has altered the
C-fluxes to and from the soil and C allocation to AMF. The
latter would also explain differences in AMF root colonization
and AMF genus occurrence and prevalence in soil. In short,
this study points at land use-dependent concurrent changes
in soil C and AMF communities. The PLS analysis further
revealed differences in dominance of AMF genera as the most
important contribution to differences in AMF α-diversity, which
responded most to differences in soil pH and soil mineral
nutrient contents and availabilities under the different land
uses. The land uses for legume-cereal forages (AA and OC)
and woody crops (TO and TV) induced divergent changes to
the soil properties and AMF α-diversity with reference to the
woodland (WO) control sites. We may, in fact, recognize a
land use intensity gradient as previously reported in studies on
AMF communities in different farming and cropping systems
(Oehl et al., 2003; Lumini et al., 2010). The correlation of
the α- and β-diversity datasets showed that overdominance
of members of the genus Funneliformis influenced both α-
and β-diversity. Overdominance of Funneliformis reduced the
richness and compositional similarity of the AMF communities.
All in all, we conclude from involvement of always several
response parameters to a clear pattern of difference that land

use impacts on soil fertility express themselves as multivariate
response syndromes rather than changes in only few parameters.

Possible Trait- and Life History-Related
Explanations for Shifts in AMF
Occurrence and Abundance
In absence of in situ studies on the functioning of AMF
communities in agroecosystems, we can at present only speculate
about the functional implications that loss of AMF taxa due to
intensive agricultural land use may have (Ryan and Graham,
2018; Rillig et al., 2019; Ryan et al., 2019). Gigasporaceae, such
as Scutellospora spp., are reported to be particularly important
for plant mineral nutrient uptake (Maherali and Klironomos,
2007), while AMF richness and diversity are known to promote
the productivity of grasslands through increased soil resource use
by functional niche differentiation (van der Heijden et al., 1998;
Wang et al., 2019). However, since crop plants are cultivated in
fertile soil as single, or low-diversity mixtures, AMF diversity
may overall take a less important role in their mineral nutrition,
which is less compromised by competition for nutrients. Yet,
high AMF diversity may still be important for not directly yield-
related plant benefits, such as resistance against and tolerance of
abiotic and biotic stress as well as ecosystem services, such as soil
structure formation and prevention of nutrient leaching, i.e., soil
health and fertility over the long-term (Jeffries et al., 2003; Powell
and Rillig, 2018; Rillig et al., 2019). It is thus highly probable
that diverse AMF communities are contributing to soil fertility,
plant health, and hence an ecologically sustainable crop plant
production in general (Mäder et al., 2002; Jeffries et al., 2003;
Manoharan et al., 2017; Powell and Rillig, 2018).

In this study, members of the genus Funneliformis were
the most abundant AMF across all land-use types. Forty-four
percent of the recovered 18S rRNA gene sequences from soil
were assigned to this genus. Species of this genus are known
to have short life cycles (Stahl and Christensen, 1991; Oehl
et al., 2009; Rosendahl et al., 2009) that may reduce their
sensitivity to discontinuous plant presence and disruption of
the extraradical mycelia by frequent tillage in TO and TV and
thus explain their persistence and dominance under these land
uses. Members of the genus Funneliformis may, however, also
be efficient and thus competitive C scavengers when plants
allocate less C to AMF under conditions of relatively low
N and high K and P bioavailability in soil (Treseder, 2004;
Johnson, 2010). This and their additional apparent preference
for neutral to alkaline agricultural soils (Stahl and Christensen,
1991; Rosendahl et al., 2009) are alternative explanations for their
relative abundance in TO and TV.

Members of the genus Scutellospora were only abundant
in AA and WO, but not under other land-use types (OC,
TO, and TV), suggesting that they may depend on continuous
presence of host plants or suffer from physical disruption
of their extraradical mycelia by frequent tillage under these
land-use types. Members of Gigasporaceae, the family to
which the genus Scutellospora belongs, are, in fact, known
to fail to reconnect their extraradical hyphae once they are
severed, rendering them particularly sensitive to physical soil
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disturbance (De La Providencia et al., 2005). Members of the
genus Scutellospora must thus chiefly perennate as spores in
tilled soils, while having their main growth habitat below the
tillage layer under arable land use (Oehl et al., 2005). Moreover,
Gigasporaceae are known to show preferences for sandy soils,
to develop more hyphae in soil than roots (Maherali and
Klironomos, 2007), and to drain more photosynthates from their
host plants than other AMF taxa (Lerat et al., 2003; Maherali and
Klironomos, 2012). The latter could indicate that Gigasporaceae
have large demands of photosynthates, which alfalfa may be best
able to provide all over the year and probably, particularly, under
conditions of reduced mineral nutrient availability and hence
shoot growth during drought periods.

Members of the AMF genus Claroideoglomus were only
recovered from the soil of the biannual oat-clover mixture (OC)
and the woodland (WO) reference sites. This may indicate that
these AMF depend on dense vegetation cover like Scutellospora
spp., but by other plants than alfalfa. Since the AMF community
composition and structure were different between AA and OC,
our study, in fact, may indicate that alfalfa and berseem clover
could rely on different AMF. That different legume species and
species abundances select for AMF communities differing in
composition, structure and abundance has recently also been
demonstrated experimentally (Xiao et al., 2019). Reduced AMF
growth as a consequence of C limitation in absence of a dense
vegetation may further explain why members of the genus
Claroideoglomus were only infrequently recovered under the
studied agricultural land-use types. Another possibility is that
Claroideoglomus spp. are deep soil dwellers (Sosa-Hernández
et al., 2018) and hence not found when soil samples are taken
from only the plowed soil layer.

Possible Methodological Biases in the
Analysis of the AMF Communities From
Soil
The clone library sequencing to characterize the AMF
communities was shallow. Nevertheless, the accumulation curves
at genus resolution reached saturation for four of five land-use
types. The employed 18S rRNA marker, widely use in community
studies on AMF is furthermore controversial for analyses at the
species level for some lineages of AMF (Krüger et al., 2012; Bruns
and Taylor, 2016). This was one reason to focus the analysis of
the AMF communities at genus level. An additional reason was
that trait information for AMF is only available for this level
(Hart and Reader, 2002; Maherali and Klironomos, 2007). We
focused our discussion and interpretation on the most solid part
of our community dataset, which is AMF community difference
among sites (ß-diversity) at the genus level, known to be robust
to limited community sampling (Pos et al., 2014). The robustness
of the genus level analyses was also evident from the comparison
with the phylogenetic distances. Further studies should cover a
larger geographical area, use more resolving markers and sample
the community more thoroughly to confirm and generalize the
findings of this study.

Members of the genus Funneliformis could, however, also
just appear dominant in soil purely due to methodological

analytical reasons. This, because the DNA from their big and
enduring spores and sporocarps may well dominate over the
DNA from extraradical hyphae and hence bias the structure
of AMF communities with respect to plant nutritionally and
soil structure-relevant hyphal abundance. On the contrary, the
relative abundances of members of the AMF genera Glomus and
Rhizophagus may just have appeared low, because their nucleus-
rich vesicles and a large proportion of their hyphal biomass
are formed in the roots and not the soil in which we recorded
the AMF communities (Clapp et al., 1995; Hempel et al., 2007;
Maherali and Klironomos, 2007; Balestrini et al., 2010). The
uncommonly high abundance of members of the AMF genus
Scutellospora based on the number of DNA sequences could
further, as well, just have resulted from DNA of spores persisting
in soil as those of members of the genus Funneliformis, hence, also
not be indicative for the ecologically relevant hyphal abundance
in soil. In short, we cannot know the magnitude of analytical
bias in AMF community studies, unless AMF occurrence and
abundance are simultaneously determined in roots and soil
(Clapp et al., 1995; Hempel et al., 2007; Balestrini et al., 2010).
Differential occurrence and abundance of several taxa suggests,
however, that diversity in land uses on the same farm may at least
maintain AMF diversity at the landscape scale.

CONCLUSION

This comparative study on the effects of four typical
Mediterranean land uses on indicators of soil fertility, and
abundance, composition and structure of soil-indigenous AMF
communities found multiyear forage-winter cereal rotation as
the land-use type that best conserves SOC, AMF abundance
and AMF taxa which are sensitive to intensive agricultural
soil management. It appears that discontinuous and sparse
vegetation cover and physical soil disturbance as a consequence
of frequent soil tillage associated with intensive agricultural
land use impair the sequestration of C in soil and growth and
taxon persistence of AMF. Differences in AMF community
composition and structure were more strongly related to land use
and less to differences in soil texture than differences in chemical
and microbiological soil properties, suggesting they could be
used as robust indicators of impacts of agricultural land use on
soil fertility and health.
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