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ABSTRACT
Background: Highly consistent positive associations are reported between infancy growth and later
obesity risk. However, it is unclear whether infancy growth parameters beyond body weight add to
the prediction of later obesity risk.
Aim: To assess whether infancy length and skinfold thicknesses add to infancy weight in the predic-
tion of childhood adiposity.
Subjects and methods: This analysis included 254 children with available data on infant growth from
birth to 24months and childhood adiposity at age 6–11 years measured by DXA. Multilevel linear
regression was used to examine the predictors of childhood percent body fat (%BF), with adjustment
for sex and age at follow-up visit.
Results: Birth weight and weight gain (modelled as changes in z-score) between 0–3months and
3–24months showed independent positive relationships with childhood %BF. The addition of gains in
infant length and skinfolds between 0–3months, but not 3–24months, improved overall model predic-
tion, from 18.7% to 20.7% of the variance in childhood %BF (likelihood ratio test, p< 0.0001), although
their independent effect estimates were small (infant length gain: negative trend, partial R-square
0.6%, p¼ 0.2; skinfolds: positive trend, 1.3%, p¼ 0.09).
Conclusion: Infancy length and skinfolds contribute significantly, but only modestly, to the prediction
of childhood adiposity.
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Introduction

Highly consistent findings have been reported from longitu-
dinal birth cohort studies on the relevance of rapid infancy
growth to later obesity risk. Our original studies in the
ALSPAC cohort showed that infants with faster weight gain
went on to have larger weight, BMI, WC and fat mass at age
5 years (Ong et al. 2000). While such positive association
“might be expected”, it debunked the notion held by many,
including health professions and families, that rapid weight
gain in infancy is simply “puppy fat” and without lasting con-
sequences. Our follow-up of the ALSPAC cohort showed that
rapid infancy weight gain also predicts higher adiposity and
insulin resistance at age 8 years (Ong et al. 2004), and in due
course earlier puberty timing (Ong et al. 2009), which in turn
is a risk marker for many later life diseases and earlier mor-
tality (Charalampopoulos et al. 2014; Day et al. 2015). Since
that study, similar findings have been replicated in many
other settings, and have been shown to apply to infants of
low as well as normal and high birth weight (Druet et al.
2012; Ong and Loos 2006). In a recent systematic review,
Woo Baidal et al. found that 41 out of 42 studies reported a

significant positive association between infant weight gain,
or infant body weight, and risk of childhood overweight or
obesity (Woo Baidal et al. 2016).

Our original ALSPAC report did not explore the shape of
the association between infancy weight gain and later obes-
ity (Ong et al. 2000). Alongside our primary analyses of
infancy weight gain as a continuous variable, we reported
the risks relating to infants who gained � þ0.67 in their
weight z-score, as such infants are easily clinically recognised
by upwards weight centile crossing on standard growth
charts. Subsequently, we did examine the shape of this asso-
ciation using pooled individual-level data from 10 cohort
studies, including ALSPAC (Druet et al. 2012). We found that
the risk of childhood overweight or obesity increased linearly
across most of the observed range of infant weight gain, but
increased more steeply with rates of weight gain > þ 1.33
z-scores, a threshold that identifies a minority of infants
(�10%) who cross upwards through >2 weight centile
bands. This “inverted-J” shape of association is similar to that
reported for many other epidemiological associations, such
as between adult BMI-to-mortality, blood glucose-to-diabetic
retinopathy, or blood pressure-to-stroke, and underlies
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Geoffrey Rose’s principles of preventive medicine that advo-
cate for the benefits of population-level reductions in risk
factor levels, alongside individual-level approaches that
define, identify and “treat” high-risk individuals (Rose 1993).
Both population-level and individual-level approaches are of
current interest in efforts to prevent childhood obesity
(Blake-Lamb et al. 2016). Recent reports that UK infants are
on average overnourished and overweight highlight the
need to monitor and identify population-level determinants
of excessive infant weight gain (Scientific Advisory
Committee on Nutrition (SACN) 2018). To inform the latter
individual-level approach, we showed that the addition of
data on infant weight gain to data on maternal BMI and
birthweight substantially improved the prediction of child-
hood overweight or obesity to levels with potential clinical
utility (Druet et al. 2012), and this is a topic of ongoing inter-
est (Daniels et al. 2015; Redsell et al. 2017; Lakshman et al.
2018; Paul et al. 2018).

With that in mind, there remain important questions
regarding the association between infancy growth and later
obesity risk. Foremost, and the main topic of this paper, is
that almost all of the existing evidence relates solely to
infant body weight as the exposure (Woo Baidal et al. 2016).
It is important to ascertain whether other infancy growth
parameters, beyond body weight, add to the prediction of
later obesity risk. In particular, it seems intuitive to think
that, alongside infant weight gain, faster gains in infant
length would be protective for later obesity risk and, con-
versely, faster gains in measures of infant adiposity might
exacerbate the risk of later obesity (Ong 2017). Such features
likely impact on how parents and health professionals per-
ceive the risks of overweight and obesity for individual
infants, however, there is as yet (to our knowledge) no evi-
dence published on this topic.

One major caveat to such childhood prediction studies
needs to be considered – the choice of which outcome
measure of childhood obesity might have a major influence
on the findings. Definitions of childhood overweight and
obesity that are based on body mass index (BMI) may be
‘biased’ by the positive association between childhood BMI
and childhood height, and it is possible that their associa-
tions with infancy weight may therefore largely reflect track-
ing of lean body mass. Childhood triponderal mass index
(TMI) has been proposed as an alternative measure, as
this index has a stronger numerical correction for
height (TMI¼weight/height^3, compared to BMI¼weight/
height^2) and has indeed been shown to be better than
childhood BMI as a marker of adiposity (Peterson et al.
2017). However, paradoxically childhood TMI performs less
well than childhood BMI when it comes to prediction of sub-
sequent measures of cardio-metabolic disease, including:
Type-2 diabetes, hypertension and LDL cholesterol levels,
and carotid intimal thickness (Wu et al. 2018). This is likely
because BMI additionally captures an element of childhood
height that is related to a rapid tempo of growth and
puberty timing, which is a recognised trajectory to later dis-
ease (Elks et al. 2012; Day et al. 2015). Ideally, the choice of
the optimal measure and threshold of childhood adiposity

used to define childhood overweight and obesity would
include a strong consideration of the strength and shape of
their relationships to related disease outcomes, including not
only later life cardio-metabolic diseases but also the many
childhood co-morbidities of obesity that encompass meta-
bolic, respiratory, musculo-skeletal, neurological and psycho-
logical domains (Lakshman et al. 2012). In the current
absence of such data on disease relationships, in this study,
we have chosen percent body fat as the primary outcome
because (i) it allows consideration of the balance between
fat and fat-free mass; (ii) it does not conceptually assume
that all of the influence of childhood height needs to be
removed; (iii) it is commonly used and its values are easily
understood. We included continuous variation in childhood
BMI as a secondary outcome, to allow comparison with pre-
vious studies. However, we deliberately refrained from defin-
ing any high threshold of adiposity as the outcome, because
such definitions (e.g. above 95th percentile) solely consider
obesity as a statistically “abnormal” condition compared to
growth references, and that approach ignores whether such
thresholds are meaningful with regard to disease comorbid-
ities (Scientific Advisory Committee on Nutrition
(SACN) 2012).

Subjects and methods

Study population and design

The Cambridge Baby Growth Study (CBGS) recruited expect-
ant mothers at the Rosie Maternity Hospital, Cambridge, UK
between 2001–2009 for the study of pregnancy and postna-
tal determinants of early infancy growth and metabolism
(Prentice et al. 2016). Inclusion criteria were mothers attend-
ing a single antenatal centre in Cambridge, UK. Exclusion cri-
teria were mothers aged <16 years, or unable to give
informed consent. During infancy, offspring weight, length,
and skinfold thicknesses were measured at 0, 3, 12, 18 and
24months by research nurses. A childhood follow-up visit
was performed at age 5–11 years old.

Birth measurements and infancy anthropometry

Infants’ birth weights were obtained from hospital records.
Newborn (within first 8 days) length and skinfold thicknesses,
and subsequent measurements at 3, 12, and 24months of
age were performed by three trained paediatric research
nurses, using identical protocols for all cohorts. Weight was
measured to the nearest 1 g using a SECA 757 electronic
baby scale. Length was measured to the nearest 0.1 cm using
an Infantometer (SECA 416). Skinfold thickness was measured
in triplicate at four sites (triceps, subscapular, flank, quadri-
ceps) on the left side of the body using a Holtain Tanner/
Whitehouse Skinfold Calliper (Holtain Ltd). The inter-observer
variability was assessed by repeated measurements in 8
infants; the absolute and relative technical errors of measure-
ment were 0.7 cm and 0.9%, respectively, for length, and
1.4mm and 12.6% for flank skinfolds.
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Childhood follow-up visit

At age 5–11 years old, children were invited to re-attend the
research clinic. Between September 2013 and October 2018,
we sent out 817 invitation letters to those who had previ-
ously attended the infancy phase of the study and met the
following inclusion criteria: gestational age �34weeks;
attended the infancy study at �12months old; current age
5–10 years; and exclusion criteria: previously withdrew from
the study; genetic or congenital growth disorder; serious ill-
ness or death; use of high dose oral or inhaled glucocortic-
oid medication. These data were screened by accessing the
National Health Service Information Centre for health and
social care resource. A second letter was sent if no response
was received after 1month. Of the 817 eligible children and
mothers, 365 responded and 285 consented and took part in
the childhood follow-up (Supplementary Figure 1).

Children attended the hospital’s clinical research facility
after an overnight fast. Height was measured using a wall
mounted stadiometer; weight was measured using electronic
scales to the nearest 0.1 kg in light clothing without shoes. A
whole body dual energy x-ray absorptiometry (DXA) scan
was performed to estimate total body fat mass; prior to 28
May 2015 we used the Lunar Prodigy machine (n¼ 180); sub-
sequently by iDXA (n¼ 131), including 49 children who were
scanned on both machines to provide comparative data.

Both the infancy [LREC Ref: 00/325] and childhood follow-
up phases of the Cambridge Baby Growth Study [REC Ref:
08/H0302/47] received research ethics committee approvals.
Written informed consent was provided by the child’s legal
guardian at both infancy and childhood phases; written
assent was also provided by the children at the childhood
follow-up visit.

Statistical analyses
Age- and sex-appropriate z-scores were calculated for weight
and length measurements according to current UK recom-
mendations: measurements at birth were compared to the
British 1990 growth reference (birth measurements were
adjusted for gestational age at birth); infancy measurements
were compared to the WHO 2006 growth standards
(Scientific Advisory Committee on Nutrition (SACN) 2007). For
each of the four skinfold thickness measurements, an internal
z-score was calculated, using residuals from a linear regres-
sion model, adjusting for infancy age, and sex.
Measurements at birth and 3months were also adjusted for
gestational age. Mean skinfold SDS was used in analyses.

Body composition data from the Lunar Prodigy and iDXA
were harmonised using the following equation: [total fat
mass from iDXA (kg) ¼ total fat mass from Prodigy (kg) X
0.98–0.43 (kg)], as described by Watson based on overlap-
ping measurements in 95 children aged 6-16 years, including
49 children from the current study (Watson 2018). The esti-
mated total fat mass from iDXA was used to calculate body
fat percentage (%BF) using the formula: total fat mass (kg)/
body weight (kg) X 100.

Multilevel linear spline models (Howe et al. 2016) were
used to derive individual-level infant growth velocities

(change in z-score per month) at 0–3months and
3–24months in weight, length and skinfold thickness. A knot
point at 3months was chosen on visual inspection of mean
weight z-scores in this cohort (Supplementary Figure 2).
Rapid infancy weight gain was defined as �þ0.67 change in
weight z-score between birth to 24months.

This analysis included 254 children with available data on
infant weight and childhood DXA %BF (Supplementary
Figure 1). To examine the predictors of childhood %BF,
multilevel linear regression was used, with adjustment for
sex and age at follow-up visit. The baseline model included
birth weight z-score and changes in weight z-scores at
0–3months and 3–24months. Further models were com-
puted by adding one potential predictor at a time in chrono-
logical order (i.e. gestational age, parity, length and skinfold
thickness at birth, exclusive breastfeeding for 3months, and
changes in length and skinfold thickness at 0–3 and
3–24months). Models with and without each predictor were
compared using the likelihood ratio test. Model improvement
was defined if both the likelihood ratio test p values <0.05
and a lower Akaike’s information Criterion (AIC) value were
observed. Each predictor that led to a significant overall
model improvement was retained in the next iteration of the
model building process. Results are presented with effect
estimates and partial R-squared values for those variables
included in final models. Effect estimates for infant growth
were scaled to aþ 1 change in z-score during the displayed
age period. The analyses were repeated with childhood BMI
z-score as the outcome. Sensitivity analyses were performed
(i) using rapid infancy weight gain in the baseline model, (ii)
with further adjustment for pubertal status (yes/no), and (iii)
with childhood lean mass index (total body lean mass/height
squared, kg/m2) as the outcome. All analyses were con-
ducted using Stata 15.1 (StataCorp. 2017. Stata Statistical
Software: Release 15. College Station, TX: StataCorp LLC).

Results

Sample characteristics

The 254 included children had outcomes assessed at age
6–11 years (mean: 9.5 ± 1.0), of whom the majority were aged
8–11 years (n¼ 223, 87%). Compared to excluded children
(n¼ 553), included children were more likely to be girls
(45.8% vs. 55.5%, p¼ 0.012). No difference was observed in
gestational age, parity, exclusive breastfeeding for 3months,
weight, length and skinfold thickness at birth, and changes
in weight, length and skinfold thickness z scores at 0–3 and
3–24months between excluded and included children
(Table 1).

At this follow-up visit, mean (±SD) weight was
32.6 ± 6.9 kg; height 138.8 ± 8.9 cm; BMI 16.8 ± 2.2 kg/m2 and
%BF (by iDXA) 22.9 ± 8.2%. %BF was strongly correlated with
weight (Pearson coefficient, r¼ 0.60) and BMI (r¼ 0.69), and
also positively correlated with height (r¼ 0.27; all p< 0.001).
Onset of puberty (Tanner stage 2) was reported by 34 (13%)
children, who were older (mean± SD: 10.0 ± 0.5 years), heav-
ier (weight: 38.1 ± 8.1 kg; BMI: 18.1 ± 2.7 kg/m2) and taller
(height: 144.3 ± 6.3 cm) than other children.
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Infancy weight gain associated with later adiposity

In regression models (adjusted for sex and age at follow-up
visit), birth weight z-score and changes in weight z-score
between 0–3months and 3–24months showed independent
positive relationships with childhood %BF (Table 2). Effect
sizes and standard errors were largest for change in weight
z-score over 3–24months, but partial R-squared values indi-
cated a larger contribution of birth weight z-score and simi-
lar contributions of changes in weight z-scores at 0–3 and
3–24months on later %BF. Together, these variables
explained 18.7% of the variation in childhood %BF. The add-
ition of gestational age, parity, or exclusive breastfeeding sta-
tus at 3months did not improve prediction accuracy.

Similarly, birth weight z-score, and changes in weight
z-score between 0–3 and 3–24months showed independent
positive relationships with childhood BMI z-score. Partial
R-square values indicated a larger contribution of birth
weight z-score and similar contributions of changes in
weight z-scores at 0–3 and 3–24months on later BMI (Table
3). Together, these variables explained 13.9% of the variation
in childhood BMI z-score.

Additional contributions of infancy length and skinfolds

When added to the above regression models for childhood
%BF (comprising age at follow-up visit, sex, birth weight z-
score, and changes in weight z-score between 0–3months
and 3–24months), early postnatal changes between
0–3months in infant length and skinfolds improved overall
model prediction, from 18.7% to 20.7% of the variance
in childhood %BF (likelihood ratio chi-squared ¼ 90.4,
p< 0.0001) (Table 2). However, the independent contribu-
tions of 0-3month changes in length z-score (negative trend;
partial R-square 0.6%; p¼ 0.2) and skinfolds z-score (positive
trend; 1.3%; p¼ 0.09) were small. The addition of birth
length, birth skinfold thickness, change in length z-score

3–24months or change in skinfold thickness z-score
3–24months did not further improve overall
model prediction.

Similarly, when added to the regression models for child-
hood BMI z-score, early postnatal changes between
0–3months in infant length and skinfolds improved overall
model prediction, from 13.9% to 14.7% of the variance in
childhood BMI z-score (likelihood ratio chi-squared ¼ 33.7;
p< 0.0001) (Table 3). However, again, the independent con-
tributions of 0–3month changes in length z-score (negative
trend; partial R-square 0.6%; p¼ 0.2) and skinfolds z-score
(positive trend; 0.8%; p¼ 0.2) were small. The addition of
birth length, birth skinfold thickness, change in length
z-score 3–24months or change in skinfold thickness z-score
3–24months did not further improve overall
model prediction.

Sensitivity analyses

Similar findings were seen when infant weight gain was par-
ameterised as a dichotomous variable “rapid weight gain
between 0–24 months” (change in weight z-score �þ0.67),
although overall model prediction of childhood %BF was, as
expected, lower compared to models of continuous change
in infancy weight (Supplemental Table 1). Furthermore, find-
ings were similar when pubertal status (yes/no) was added
to regression models (Supplemental Table 2).

Discussion

In this large longitudinal study, with detailed measures of
infancy growth parameters from birth to 24months and
childhood adiposity on average 7.5 years beyond infancy, we
found that infancy gains in length and skinfolds contributed
significantly, but only modestly, to the prediction of child-
hood adiposity, as estimated by DXA %BF. Similar findings

Table 1. Infancy characteristics of included children and excluded children.

Included children (n¼ 254) Excluded children (n¼ 553) p Value

Sex (n, %) 0.012
Boys 113 (44.5%) 300 (54.3%)
Girls 141 (55.5%) 253 (45.8%)

Gestational age, weeks 40.0 ± 1.2 40.0 ± 1.3 0.492
Parity 1.8 ± 0.9 1.8 ± 0.8 0.384
Exclusive breastfed for 3mo (n,%) 0.164
No 127 (51.4%) 305 (57.0%)
Yes 120 (48.6%) 230 (43.0%)

Birth weight, kg 3.54 ± 0.46 3.54 ± 0.50 0.893
Birth weight z-score 0.13 ± 0.95 0.11 ± 0.95 0.753
Change in weight z-score�
0–3mo �0.04 ± 0.35 �0.04 ± 0.33 0.725
3–24mo 0.03 ± 0.04 0.03 ± 0.05 0.614

Length at birth, cm 51.5 ± 2.50 51.4 ± 2.48 0.764
Length z-score at birth 0.42 ± 1.16 0.39 ± 1.18 0.695
Change in length z-score�
0–3mo �0.09 ± 0.41 �0.11 ± 0.38 0.406
3–24mo 0.01 ± 0.05 0.01 ± 0.05 0.235

Skinfold thickness z-score at birth �0.06 ± 0.88 0.01 ± 0.87 0.267
Change in skinfold z-score�
0–3mo 0.02 ± 0.35 0.00 ± 0.34 0.416
3–24mo 0.00 ± 0.05 0.00 ± 0.06 0.932

Values are mean ± SD unless indicated otherwise.�Derived individual-level growth velocities (change in z-score per month).
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were seen when childhood obesity risk was estimated using
BMI, also when infancy weight gain was dichotomised as
rapid or non-rapid, and when puberty status was included.

Strengths and limitations

Strengths of this study are its prospective design, incorporat-
ing detailed research clinic measurements of infancy growth
parameters beyond only body weight and performed by a
consistent team of paediatric nurses with objective validation
of the reliability of measures of skinfold thickness at 4 body
sites. The primary outcome was assessed by whole body
DXA scans, with measures harmonised across two different
machines by use of cross-validation data from a large sample
of almost 100 children who underwent imaging by
both techniques.

We acknowledge a number of limitations. Children
attended the childhood clinic visit at a range of ages. This
reflected the wide range of birth years of the original cohort
and the relatively shorter range of time during which child-
hood clinic visits were conducted. However, the large major-
ity of children attended between 8–10 years old, and effects
of age on the primary outcome were adjusted for. Other
more accurate measures of infant adiposity exist, beyond
skinfold thicknesses. However, most other such techniques
are not easily applicable across ages from birth to 2 years
(e.g. PEA POD air displacement plethysmography has a max-
imum weight of 10 Kg), may require inappropriate restraint
or sedation for this age group (DXA), or are not designed for
frequently repeated measurements in a large study sample

(deuterium labelled water). Furthermore, our recent (unpub-
lished) data show good agreement between infant fat mass
predicted by a combination of skinfolds, weight and length,
compared to PEA POD measurements. Pubertal status was
self-reported, which could introduce some misclassification.
However, we consider puberty to be a mediator rather than
a confounder (Ong et al. 2009). We used all the available
infancy growth data to estimate individual-level growth
parameters, but uncertainties in stage one estimation were
not subsequently considered when relating these infancy
growth parameters to childhood outcomes, and we acknow-
ledge that this approach underestimated the confidence
intervals in the final models.

Importantly, we acknowledge that %BF may not be the
optimal outcome measure to assess the obesity-related
effects of rapid infant growth. Ideally, such studies would
benefit from a more robust measure of the burden of obes-
ity-related metabolic disease, such as Type 2 diabetes or
carotid intimal thickness during adult life. However, to our
knowledge, there are no such studies with long-term follow-
up which collected sufficiently detailed measures of infancy
growth. Some historical cohorts have reported on very long-
term associations between infancy weight and length gain
and adult Type 2 diabetes (Eriksson et al. 2003); an important
caveat in such long-running studies is to ensure that those
populations were not exposed to infancy and early child-
hood undernutrition or other adverse conditions leading to
childhood stunting, which also appears to be separately
associated with higher risks for cardiovascular disease and
early mortality (Ong et al. 2013), as opposed to the current

Table 2. Infant body weight and other predictors of childhood percent body fat (%).

Predictor Beta SE p Value Partial R-squared Model R-squared Model AIC

Baseline model 18.7% 1746.2
Birth weight z-score 2.51 0.63 <0.001 6.2%
Change in infancy�:
weight 0–3mo 1.51 0.59 0.010 2.7%
weight 3–24mo 1.67 0.63 0.007 2.9%

Final model 20.7% 1659.8
Birth weight z-score 2.74 0.64 <0.001 7.2%
Change in infancy�:

weight 0–3mo 1.38 0.69 0.048 1.7%
weight 3–24mo 1.71 0.64 0.008 3.0%
length 0–3mo �0.57 0.49 0.244 0.6%
skinfold thickness 0-3mo 1.03 0.59 0.086 1.3%

�Parameterised as aþ 1-unit change in z-score during the displayed age period.
Likelihood ratio test comparing baseline versus final models: p< 0.0001.

Table 3. Infant body weight and other predictors of childhood BMI (kg/m2).

Predictor Beta SE p Value Partial R-squared Model R-squared Model AIC

Baseline model 13.9% 688.9
Birth weight z-score 0.47 0.08 <0.001 13.1%
Change in infancy�:
weight 0-3mo 0.29 0.07 <0.001 6.1%
weight 3-24mo 0.25 0.08 0.001 4.0%

Final model
Birth weight z-score 0.49 0.08 <0.001 13.7% 14.7% 659.2
Change in infancy�:

weight 0-3mo 0.28 0.09 0.002 4.2%
weight 3-24mo 0.26 0.09 0.001 4.3%
length 0-3mo �0.07 0.06 0.260 0.6%
skinfold thickness 0-3mo 0.10 0.07 0.179 0.8%

�Parameterised as aþ 1-unit change in z-score during the displayed age period.
Likelihood ratio test comparing baseline versus final models: p< 0.0001.
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high nutrition environment which has been shown to extend
to the general population of UK infants (Scientific Advisory
Committee on Nutrition (SACN) 2018).

Finally, the values for predictive ability in our models
were generally low. Infancy prediction of childhood obesity
is not in current practice, and therefore, it was not our inten-
tion to develop and evaluate a clinical prediction model. We
note that such an approach would require an agreed defin-
ition of the binary outcome and the models would likely be
substantially improved by information on parental BMI
(Druet et al. 2012), demographic data and possibly also on
infant eating behaviours (Llewellyn and Wardle 2015).
However, the potential clinical utility of such approaches is
yet unclear (von Kries et al. 2014; Wright et al. 2018).

Comments on possible biological mechanisms

The Karlberg model of human statural growth (i.e. in length
or height) describes 3 phases of childhood growth – infancy,
childhood and pubertal – which are distinguished by distinct
growth velocities and underpinned by different underlying
biological mechanisms (Karlberg 1989). Childhood statural
growth is dependent on growth hormone acting to stimulate
circulating and tissue production of insulin-like growth fac-
tor-1 (IGF-1), and the pubertal growth acceleration is
explained by the additional effects of sex steroids, in particu-
lar oestradiol in both sexes. By contrast, infancy growth is
less reliant on growth hormone, but rather IGF-1 levels more
reflect level of nutrition acting via insulin secretion (Ong
et al. 2007). This mechanistic understanding provides an
explanation as to why overnutrition may have unique effects
during infancy on promoting statural growth and the sub-
stantial accumulation of fat-free mass, alongside positive
effects on fat mass that are typical of all other age periods.

Recent population genetics studies support the concept
that infancy overnutrition has uniquely global effects across
both fat and fat-free tissues. The genetic susceptibility to
higher adult BMI has been extensively studied in large inter-
national collaborative efforts, which have led to the discov-
ery of hundreds of individual genomic loci that are each
robustly associated with adult BMI (Locke et al. 2015). The
genetic susceptibility captured by the additive combination
of these variants has been shown to be relevant to obesity
risk at all ages, and confers higher childhood and adult adi-
posity, and higher risks of the cardiometabolic disease conse-
quences of obesity. These genes predominantly appear to
act through central mechanisms of appetite regulation and
eating behaviours (Llewellyn and Wardle 2015; Locke et al.
2015; de Lauzon-Guillain et al. 2017), with effects being
apparent in infants as well as in adults (Llewellyn et al. 2012;
Llewellyn and Wardle 2015; de Lauzon-Guillain et al. 2019).
Consistent with the idea that the genetic susceptibility to
obesity acts by promoting appetite and food intake through-
out life, additive genetic risk scores comprising these variants
have been shown to confer a faster trajectory of weight gain
from birth through childhood, with possibly even larger
effect sizes during infancy than in other periods of life (Elks
et al. 2012, 2010). In support of the current findings and in

keeping with the Karlberg model of growth, during infancy,
higher BMI genetic risk scores confer faster symmetrical gains
in infant weight and length, as well as similar size gains in
infant fat and fat-free mass – whereas, effects on indices of
weight-for-height (e.g. BMI) and on adiposity relative to fat-
free mass (e.g. %BF) start to appear only on transition to the
childhood growth phase (Elks et al. 2014). Hence, the
Karlberg model (Karlberg 1989) provides biological plausibil-
ity for the current findings, that infancy length and adiposity
contribute only modestly when added to infancy weight to
predict later predisposition to obesity.

We note, as a caveat, that our findings do not exclude
the possibility that infancy length and adiposity (and also
infant body fat distribution) might contribute more to the
prediction of later metabolic parameters (e.g. glucose toler-
ance, insulin resistance) and related disease endpoints (Type
2 diabetes, cardiovascular disease) than to later body com-
position. For example, we have previously described pheno-
typic and genetic links between childhood height and insulin
secretion (Ong et al. 2004; Jensen et al. 2015), likely medi-
ated by insulin-like growth factor-1. Furthermore, recent
population genetic studies demonstrate the causal relation-
ship of central versus peripheral fat patterning on such meta-
bolic and disease traits (Lotta et al. 2017), and such fat
patterning is already apparent in infancy (Breij et al. 2017).

Conclusion

Infancy length and skinfolds contributed significantly, but
only modestly, to the prediction of childhood adiposity, as
estimated by DXA %BF. Hence, in infants who display rapid
weight gain, similar gains in length and body composition
do not appear to substantially modify their subsequent
higher risk of later obesity. These findings are consistent
with the widely held biological concept of an underlying
nutritional regulation of infancy growth and body compos-
ition. The possible clinical utility of infancy prediction of
childhood adiposity requires a much broader consideration,
including wider infancy and parental data, and appropriate
outcome measures and their thresholds.
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