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Pulling cylindrical particles using a 
soft-nonparaxial tractor beam
Andrey Novitsky1,2, Weiqiang Ding  3, Maoyan Wang4, Dongliang Gao5, Andrei V. 
Lavrinenko1 & Cheng-Wei Qiu4

In order to pull objects towards the light source a single tractor beam inevitably needs to be strongly 
nonparaxial. This stringent requirement makes such a tractor beam somewhat hypothetical. Here 
we reveal that the cylindrical shape of dielectric particles can effectively mitigate the nonparaxiality 
requirements, reducing the incidence angle of the partial plane waves of the light beam down to 45° and 
even to 30° for respectively dipole and dipole-quadrupole objects. The optical pulling force attributed 
to the interaction of magnetic dipole and magnetic quadrupole moments of dielectric cylinders occurs 
due to the TE rather than TM polarization. Therefore, the polarization state of the incident beam can be 
utilized as an external control for switching between the pushing and pulling forces. The results have 
application values towards optical micromanipulation, transportation and sorting of targeted particles.

Tractor beams have recently drawn great attention of researchers owing to intriguing and sometimes counterin-
tuitive physics behind them1–11. Electromagnetic1–4 and acoustic5, 6 wave tractor beams can possess continuous1–3 
and discrete propagation invariance4, 12, 13, being able to pull an object over a long distance. Backward or pulling 
forces imposed by a continuous propagation-invariant tractor beam (single tractor beam, e.g., Bessel beam) are 
nonconservative forces. They emerge as a result of interaction of particle’s multipole moments, the most con-
tribution being usually introduced by the dipole moments. The far-field indicator of pulling forces is large for-
ward scattering, that is, the enhanced forward field momentum8, 9. Recent prediction of the negative torque10 and 
experiments on tractor beams11 stimulate further investigations of physics of tractor beams and their applications 
in optical manipulation14–25.

In order to produce a tractor beam exerting an optical pulling force, there are generally three different options. 
The first one is to employ a special kind of an incident light wave, such as a nonparaxial Bessel beam1, 2, 7, inter-
fering multiple paraxial Bessel beams4, or properly designed superposition of multiple plane waves3. The second 
option is to impose restrictions on the background medium. Recently, it has been reported that complex struc-
tured dielectric9, 26 and metallic27 backgrounds are beneficial for the optical pulling force due to the forward 
light momentum amplification. The third approach is to apply restrictions on the object. When a light beam is 
absorbed by a lossy object, both the energy and momentum are transferred to the object, exerting naturally the 
pushing force due to the momentum conservation28. In this connection, when loss is ‘reversed’, an object with 
optical gain may generate an optical pulling force29, since it can greatly amplify the number of forward-scatterred 
photons.

In this article we deal with the continuous propagation-invariant tractor beams (nonparaxial superposi-
tions of plane waves). Nonmagnetic objects in the Rayleigh approximation are always pushed by the continu-
ous propagation-invariant light7, 30. Bigger spherical beads in the dipolar approximation have both electric and 
magnetic dipole moments and require α ≥ 60°, where α is the angle between the optical axis x and wavevectors 
k of the partial plane waves of the light beam (see Fig. 1). Angle α can be further reduced for bigger particles due 
to the interaction of the dipole and quadrupole moments, but still it is beyond the experimental possibilities of 
conventional optics in the case of Bessel tractor beams. Here we show that angle α can be decreased by shaping 
the particle in a specific way. Optical pulling forces exerting on cylindrical particles are first revealed by numerical 
modeling and then justified by closed-form calculations. Curiously, the discrete propagation-invariant beams 
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have no limitations on angle α13. They can be employed in the Rayleigh approximation for attracting even tiny 
particles.

Results
Let us consider an infinitely long dielectric cylinder of radius R and permittivity ε ε ε= ′ + ″i  in free space. It is 
illuminated by an incident monochromatic wave with the field strengths ω−x y tE( , )exp( i ) and ω−x y tH( , )exp( i ), 
where ω is the circular frequency. For the sake of simplicity we exploit a model of such a light beam as a couple of 
plane waves with the same longitudinal wavenumbers k0β = k0 cos α (see Fig. 1):
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where k0 = ω/c is the vacuum wavenumber, c is the speed of light in free space, and β α= = − =q k k/ 1 siny 0
2  

is the normalized transverse wavenumber. Complex amplitudes A and B relate to TE (Ex = 0 for B = 0) and TM 
(Hx = 0 for A = 0) electromagnetic beams, respectively.

In closed-form calculations we deal with particle’s parameters that allow only the excitation of electric p and 
magnetic m dipole and electric q̂e and magnetic q̂m quadrupole moments in the dielectric cylinder. Their values 
per unit cylinder’s length in terms of the scattering Mie coefficients am and bm read (see Methods)
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where the quantity ⊗ = a ba b( )ij i j (i and j run from 1 to 3) stands for a dyad (external or tensorial product of two 
vectors),
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Figure 1. Continuous propagation-invariant light beam exerts pulling force F < 0 on a cylindrical object. The 
interference electric field pattern from a couple of TE-polarized plane waves (see equation (1)) is shown as the 
background.
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Mie coefficients am = a−m and bm = b−m describing the scattered field from respectively TM- and TE-polarized 
plane waves31 equal
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where ξ = k0R is the dimensionless size parameter of the cylinder of radius R, μ is the magnetic permeability (in 
our case μ = 1), εµ=n  is the refractive index, Jm (Hm

(1)) and ′Jm ( ′Hm
(1) ) are the m-order Bessel functions (Hankel 

functions) of the first kind and their derivatives.
First we carry out numerical calculation of the time-averaged optical forces using the integration of Maxwell’s 

stress tensor over the cylinder interface with outer normal vector n as ∫ ∫= =ˆ ˆT ds T n dsF n ( )ij j  (summation over 
r e p e a t e d  i n d e x  j  =  1 ,  2 ,  3  i s  a s s u m e d ) .  T i m e - a v e r a g e d  s t r e s s  t e n s o r 

π= ⊗ + ⊗ − +ˆ ⁎ ⁎T c E E H H E H( /8 )Re[ ( )/2]2 2  depends on total electric E and magnetic H fields defined 
as the sum of the incident and scattered fields. We denote the force per unit cylinder’s length as f. The force is 
pulling, if its direction is opposite to the direction of propagation of the incident beam (see Fig. 1), that is, if fx < 0.

We numerically study the optical forces exerted on dielectric cylinders illuminated by the incident 
TE-polarized electromagnetic beam (1). There are four parameters in such a system: dielectric permittivity ε′, loss 
parameter ε″, cylinder radius R and angle α (see Fig. 1). When angle α is sufficiently great (and the beam is 
strongly nonparaxial), the pulling force is mainly caused by the interaction of the electric |p| ~ b0 and magnetic 
|m| ~ b1 dipole moments (see the solid curve in Fig.  2(a)). Representing α α φ= iexp( )e e 0  and 
α α φ=⊥ ⊥ iexp( )m m 1 , the interaction term (recoil force) is proportional to α α φ φ− ∼ − −⊥⁎Re( ) cos( )e m 0 1 . The 
recoil force is negative and, therefore, may result in pulling, if φ φ− >cos( ) 00 1  or the dipoles are in phase. When 
the dipoles are in antiphase, the recoil force facilitates pushing. A nonzero loss coefficient ε″ increases the imagi-
nary parts of polarizabilities. Subsequently, the conditions for getting the negative force are worsened (dashed 
curve in Fig. 2(a)).

Figure 2. Optical force per unit cylinder length f k A/x 0
2  vs. dielectric permittivity ε′ for (a) lossless and lossy 

cylindrical particles (k0R = 1) and (b) different angles α of the oblique plane-wave incidence (ε″ = 0). (c) 
Absolute values of the Mie coefficients bn responsible for the appearance of induced electric dipole (b0), 
magnetic dipole (b1) and magnetic quadrupole (b2) moments (the force shown on the right-hand axis 
corresponds to parameters α = 35°, k0R = 1). Incident beam is TE-polarized (B = 0). The cylinder is 
nonmagnetic (μ = 1) and lossless.
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When incident angle α diminishes to 45°, the pulling force owing to the interaction of dipoles cannot be real-
ized (see Fig. 2(b)). Nevertheless, greater dielectric permittivities ε induce the non-vanishing magnetic quadru-
pole moment q̂m. And angle α suitable for pulling decreases down to 30° (see Fig. 2(b)). To check whether the 
magnetic quadrupole moment is responsible for the pulling effect, we plot the absolute values of the Mie coeffi-
cients |bn|, Fig. 2(c). As we mentioned above, the first two Mie coefficients are proportional to the dipole moments. 
According to equation (4) the magnetic quadrupole moment is proportional to the Mie coefficient b2. Interaction 
of multipole resonances, the first of which (magnetic dipole) is wide and the second one (magnetic quadrupole) 
is narrow, results in the Fano-like response similar to that of plasmonic particles32, 33. Thus, the negative force near 
ε = 14.5 is caused by interaction of the magnetic dipole and quadrupole moments.

The aforementioned decrease of incident angle α is demonstrated in a more vivid manner in Fig. 3(a). 
The dipole-dipole interaction is bottom limited by α = 45°. The region of the pulling force caused by the 
dipole-quadrupole interaction spreads from 30° to 45° and corresponds to the position of the magnetic quadru-
pole resonance. The dashed curve in Fig. 2(b) demonstrates the optical pulling force at the two positions of quad-
rupole resonances. The higher-order multipoles are excited as well, but they do not contribute into the pulling 
effect in this case.

In principle, higher-order multipoles could also produce a pulling force corresponding to α < 30°. However, 
the higher the order of a multipole, the narrower the resonance. This may manifest the problem with exploiting 
them, because the parameters should be selected with the high accuracy. Moreover, even a small loss can degrade 
the narrow resonance and, therefore, forbid the pulling force. So, it is impossible to loosely decrease α to any small 
value.

One can expect that magnetic properties of the cylinder facilitate stronger interaction between magnetic 
dipole and quadrupole, but it is not the case. The magnetic permeability shifts the position of the resonance, but 
does not extend much the range of the pulling force as it is shown in Fig. 3(b). It should be noted that the negative 
force exists both for paramagnetic and diamagnetic materials, and the force reaches the minimum value for par-
amagnetic substances. When the cylinder radius is enlarged, the number of resonances in the considered region 
of permittivities ε′ increases.

Figure 4 illustrates the behaviour of Poynting vector S in the near-field zone of the cylinder. The maps (a), (b) 
and (d) are similar, because they show interaction of the incident field with the two multipole moments, electric 
and magnetic dipoles in (a) and (b) and magnetic dipole and quadrupole in (d). If the quadrupole and both dipole 
moments are comparable, the Poynting vector distribution is more complicated. Instead of the vortex-saddle cou-
ples of singular points one observes the sets of four points, Fig. 4(c). Obviously, the grouping of the singularities 
to quartets is the indication of the equal excitation of the moments. Keeping in mind that S is composed of both 
incident and scattered fields, the Poynting vector can be presented as the sum of the Poynting vectors of the inci-
dent and scattered beams and the interference term: S = Sinc + Ssc + Sint. In Fig. 4(a) the energy flux density max-
imum inside the cylinder is shifted to the light source (to the left-hand side). To ensure the force is negative, the 
backscattering should be smaller than the forward scattering, i.e. the interference term for backward scattering is 
greater than that for the forward scattering. Then the enhanced forward scattering would push back the particle 
in accordance with the momentum conservation. Behaviour of the Poynting vector in the case of the Bessel beams 
scattered by dipole spherical particles possesses the similar features34.

Now we shall analytically obtain the range of incident angles required to pull a cylindrical particle. We stress 
that this range is not sufficient to have the negative force. The analytical expression for the time-averaged optical 
force exerting on the dipole-quadrupole cylinder follows from the substitution of the scattered electromagnetic 

Figure 3. Dependence of the optical pulling force <f k A/ 0x 0
2  on (a) incident angle α and dielectric 

permittivity ε′ (μ = 1) and (b) magnetic permeability μ and permittivity ε′ (α = 35°). Incident wave is TE-
polarized (B = 0). Cylinder parameters are k0R = 1 and ε″ = 0.
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fields up to quadrupole terms into the Maxwell stress tensor and subsequent integration over the surface at infin-
ity (see Methods). In the case of the nondiffractive light field of the form β=x y y k xE e( , ) ( )exp(i )0  we get
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Since the optical forces in the particular cases of TE and TM polarizations of the incident beam have the similar 
structure, we consider only one polarization to derive the required ranges of angles α. Introducing the dipole and 
quadrupole moments into (6) one writes for the TE-polarized beam (see Methods)
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The pulling force (7) for dipolar particles possessing mxy = 0 is realized, if inequality

α β α π α α+ − <⊥ ⊥⁎kIm Im Re( ) 0 (8)e m e m
2

0
2

holds. We shall rewrite it in the conditional form for β = cos α as

Figure 4. Poynting vector maps for (a) ε′ = 6, α = 60° (optical force = − .f k A/ 0 156x 0
2 ), (b) ε′ = 6, α = 35° 

= .f k A( / 0 183)x 0
2 , (c) ε′ = 14.5, α = 60° = .f k A( / 0 101)x 0

2  and (d) ε′ = 14.5, α = 35° = − .f k A( / 0 015)x 0
2 . 

Colour and arrows indicate the magnitude |S| and direction S/|S| of the Poynting vector, respectively. 
Parameters: μ = 1, ε″ = 0, k0R = 1, B = 0.
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The recoil force proportional to the dipoles interaction term α α ⊥⁎Re( )e m  determines the appearance of the pulling 
force. The recoil force takes the greatest value, when both polarizabilities are simultaneously maximized, i.e. the 
Mie coefficients are b0 = b1 = 1. Thus, one gets
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The longitudinal wavenumber β should be less than 1/ 2 ; therefore, angle α should be greater than 45°. It should 
be noted that the limiting angle obtained for dipole cylinders is smaller than that for spherical beads (α = 60°)7, 30.

The first three terms in equation (7) are positive for dipole-quadrupole cylinders, because α >Im( ) 0e , 
α >⊥Im( ) 0m  and − >mRe( ) 0xy . The fourth and fifth terms in equation (7) represent the recoil force that can be 

negative at some conditions. The first recoil term (interaction of electric and magnetic dipoles) is negative only if 
α α >⊥⁎Re( ) 0e m . The second recoil term (interaction of magnetic dipole and quadrupole moments) may result in 

pulling the cylinder, if (i) α <⊥⁎mIm( ) 0m xy  for β < 1/ 2  and (ii) α >⊥⁎mIm( ) 0m xy  for β > 1/ 2 . Since case (i) 
yields the same range of β as that for the dipole cylinders, we consider only case (ii) presented below as an 
inequality

β β+ + <a b c 0, (11)4 2
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Inequality (11) holds true, if β is between the positive roots of the biquadratic equation β β+ + =± ±a b c 04 2 :
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because for β2 > 1/2
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and at the magnetic quadrupolar resonance b2 = 1 (quantity π= −m k4/xy 0
3)
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The resonant condition is necessary to provide the strongest recoil force as it was done for the dipolar cylin-
ders. To catch all possible values of β suitable for dragging cylinders by light we need to consider the widest range 
of β− < β < β+. The widest range of β is achieved for the maximum achievable v, i.e. for v = 0.
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in equation (14) is maximized in the case of the greatest recoil force, when Mie coefficients b1 and b2 turn to the 
unity resulting in π= −m k4/xy 0

3 and α π=⊥ k2/m 0
2. Then
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i.e. incident angles are within 30° < α < 45°. Analytically derived α for dipole and dipole-quadrupole cylindrical 
particles fully support previous conclusions grounded on the numerical calculations.

When nonmagnetic cylindrical particles are illuminated by a TM-polarized beam (A = 0 in equation (1)), 
the negative force due to the interaction of dipoles exists, but the pulling force due to the interaction of electric 
dipole and electric quadrupole does not. There is no contradiction with the derived range of angles 30° < α < 45°, 
because this inequality is not the sufficient condition for the emergence of an optical pulling force. To show the 
reason of vanishing of the quadrupolar pulling force we plot the terms of dipole-quadrupole interaction in Fig. 5. 
The TE-polarized light beam yields much stronger recoil force than the TM-wave, therefore, the pulling is availa-
ble for the TE polarization only. So, controlling the polarization of the incident wave can be used for the switching 
direction of the optical force in the quadrupolar regime. Noting that the Mie coefficients flip, when the dielectric 
permittivity and magnetic permeability interchange, one concludes that the TM-polarized beam illuminating 
magnetic cylindrical particles (ε = 1) introduces the same force as the TE-polarized beam incident on dielectric 
cylinders (μ = 1).

Discussion
In general, nonparaxial light beams with continuous propagation invariance have to be used for pulling both 
spherical and cylindrical particles, although the nonparaxial condition for dragging cylindrical particles is less 
stringent being α > 45° and 30° < α < 45° in dipolar and quadrupolar approximations, respectively. Curiously, 
particle’s geometrical shape plays an important part in changing the minimum angle α, which is 60° for 
three-dimensional spherical particles7, 30 and 45° for two-dimensional cylinders in the dipolar approximation. 
Since a prolate spheroidal form is something intermediate between the spherical and cylindrical ones, the mini-
mum angle α in this case is expected to be between 45° and 60°. Concave particles having rather hyperboloid-like 
than spheroid-like form may give us the opportunity for further reduction of the minimum α.

The optical pulling forces exerting on cylindrical particles in the quadrupolar approximation are caused by the 
dipole-quadrupole recoil force. Theoretically it is possible to reduce angle α down to 30°, but with costs associated 
with the thorough control on the system parameters. In principle, one may move further towards the paraxial 
regime of the incident light beams, if the recoil force is guaranteed by the higher-order multipoles. However 
their resonant response is narrow and can be easily suppressed by the presence of material losses. That is why 
the decrease of α below 30° is questionable. The dipole-quadrupole optical pulling force is known for dielectric 
spherical particles as well1, 2.

In this article we consider the idealized geometry, when the cylinder position is fixed with respect to the 
incident beam. But position of a free-standing cylinder is not stable: it should be exerted by the optical torque35. 
Nevertheless, we expect that the results obtained in this article could be exploited in a periodic metamaterial 
with dielectric cylinders as meta-atoms. Then there are no problems with the illumination of the metamaterial 
in a proper manner. We can anticipate that the whole metamaterial can be pulled by the light beam, if a single 
meta-atom is pulled. According to work36 the optical force acting on a finite metamaterial is not defined by its 

Figure 5. Electric and magnetic dipole-quadrupole-interaction terms, α ⊥⁎qIm( )e xy  and α ⊥⁎mIm( )m xy , as 
function of dielectric permittivity ε′. Parameters: μ = 1, ε″ = 0, k0R = 1.
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microstructure and, therefore, the effective medium approximation can be employed. Homogenizing a nanorod 
metamaterial as a dipole-quadrupole continuum37, 38 one may potentially pull it using incident light.

Methods
Derivation of the dipole and quadrupole moments. We find multipole moments by comparing the 
magnetic fields in the far-field zone excited by the multipoles and scattered by a couple of plane waves (1). 
Considering the infinite cylindrical particle as a line of homogeneously distributed point dipoles and quadru-
poles1, 39, we denote the linear densities of the electric dipoles, magnetic dipoles, electric quadrupoles and mag-
netic quadrupoles as p, m, q̂e and q̂m, respectively.

Then from the vector potential in the far-field zone
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On the other hand, the magnetic field scattered by a dipole-quadrupole cylinder, i.e. up to the Mie coefficients 
a2 and b2, is of the form31

π ρ
ϕ

ϕ

= 
 + − +

+ + 


ρ π
ϕ ϕ

ϕ

−

k
a c b c a c b c

a c b c

H e e e e

e e

2 e 2cos ( )

2cos(2 )( ) (24)

PW
s k

z z

z

( )

0

i i /4
0 1 0 2 1 1 1 2

2 1 2 2

0

in the case of the incident plane wave

= + .x c cE e e( ) e ( ) (25)
inc k x

y z
( ) i

1 2
0

when the direction of an incident plane wave in the cross-section of the cylinder is oriented at angle α with 
respect to the axis x, the unit vectors ez and eϕ do not change, but angle ϕ should be replaced with ϕ − α in equa-
tion (24). Let us have a couple of plane waves now, the fields of which are given by (1). The angle of incidence for 
the first wave equals α, while its electric field (25) is characterized by the amplitudes ′c1  and ′c2. For the second 
wave the incident angle and amplitudes are −α ,  ″c1  and ″c2 .  The scattered magnetic f ield 

ρ ϕ α ρ ϕ α= − + +H H H( , ) ( , )s
PW
s

PW
s( ) ( ) ( )  for the particular case ′ = ″ =c c B/21 1  and ′ = ″ =c c A/22 2  (A and B are 

defined by equation (1)) is equal to

π ρ
α ϕ

α ϕ

= 
 + − +

+ + 
.

ρ π
ϕ ϕ

ϕ

−

k
a B b A a B b A

a B b A

H e e e e

e e

2 e 2cos cos ( )

2cos(2 )cos(2 )( ) (26)

s k
z z

z

( )

0

i i /4
0 0 1 1

2 2

0

Comparing magnetic fields (22) and (26) it is straightforward to derive the electric and magnetic dipole and 
quadrupole moments (2).

In general, the quadrupole moments of a cylindrical particle are the nondiagonal traceless matrices that can 
be written for any incident electromagnetic field as

= ∇ ⊗ + ∇ ⊗ = ∇ ⊗ + ∇ ⊗ˆ ˆq
q

ik
I I q

m
ik

I IE E H H( ( ) ) , ( ( ) ) ,
(27)e

xy
z

T
z m

xy
z

T
z

0 0

where the superscript T denotes the matrix transpose and = ⊗ + ⊗I e e e ez x x y y is the projection operator onto 
the plane of cylinder’s cross-section (x, y).

Optical forces exerting dipole-quadrupole cylinders. An optical force can be divided into two parts, 
the first of which, Finc, originates from the interaction of the incident electromagnetic field with the induced 
multipoles, while the second force, Fmult, stems from the interaction of the fields of multipoles with the multipoles 
themselves40. The latter force is also called a recoil force.

Force Finc is defined by the whole multipole moments pl, ml, q̂ le  and q̂ lm  (l is the length of the cylinder) as 
follows
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where differential operator ∇ acts only on the incident fields (the quantities subject to differentiation are denoted 
with an arrow on top), e.g., as 




∇
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↓ ∂

∂ =
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⁎ ⁎

⁎

p E ppE( )
i

x j j j j j
E

x1
3

1
3

i

j

i
. Incident fields ≡E E inc( ) and ≡H H inc( ) 

and their derivatives are calculated in the centre of the particle ρ = 0.
Since the distributions of the multipole fields depend on particle’s shape, recoil force Fmult is geometry depend-

ent. A proper relationship follows from the integration of the scattered dipole-quadrupole fields at infinity as (see 
the paper41 for spherical particles)

∫

∫

∫
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Using the derived expressions for Finc and Fmult the optical force per unit cylinder’s length takes the form
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Let us consider a nondiffractive TE-polarized beam (1). Since B = 0 in equation (1), the electric and magnetic 
fields equal E = Ezez and H = Hxex + Hyey, respectively. When calculated at the origin of the coordinate system, the 
magnetic field reduces to H =  Hyey =  −βEzey. Partial derivative required in equation (6) reads 

β∂ ∂ = +y ik H EH e/ ( )y z x0 . The dipole and quadrupole moments for the TE-polarized beam are equal to 
α=p Ee , α= ⊥m Hm , =q̂ 0e , and β β= 

 − 
 ⊗ + ⊗q̂ m H e e e e(2 1)/ ( )m xy y x y y x

2 . Note that the responses for the 
given polarization are determined by Mie coefficients b. With the above quantities in mind, the force along the 
optical axis is given by equation (7).

TM-polarization is characterized by A = 0 in equation (1), that is, electric and magnetic fields are equal to 
E = Exex + Eyey and H = Hzez, respectively. The electric field in the origin ρ = 0 is E = Eyey = βHzey, while the deriv-
ative takes the form β∂ ∂ = −y ik E HE e/ ( )y z x0 . The dipole and quadrupole moments are determined by Mie 
coefficients a as α= ⊥p Ee , α=m Hm , β β= − 


⊗ + ⊗q̂ q E e e e e[(2 1)/ ( )e xy y x y y x

2 , and =q̂ 0m . Then the opti-
cal force component fx reads
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β α α β π α α
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